Does the C# Implementation of gRPC have streaming back-pressure? - c#

I have a gRPC service that accepts streaming messages from a client. The client sends a finite sequence messages to the server at a high rate.
The result is the server buffering a large number of messages (> 1GB) and it's memory usage skyrocketing and then slowly draining as it handles them.
I find that even if I await all async calls, the client just keeps pushing messages as fast as it can. I would like the client to slow down.
I have implemented an explicit ack response that the client waits for before sending the next message, but since http/2 already has flow control semantics built in I feel like I'm reinventing the wheel a bit.
I have two concrete questions.
Does the C# implementation automatically apply backpressure? For example, if the consuming side is slow to call MoveNext on the async stream, will the client side take longer to return from it's calls to WriteAsync?
Does the C# implementation of gRPC have any configurable way of limiting the buffering of messages for a streaming rpc call. For example, capping the number of buffered messages or limiting the amount of space in the call's buffer.

As Jan commented, this question was answered on the gRPC GitHub Repo here.
flow control is expected to work in all gRPC languages as we consider
it one of the key features for a scalable RPC system.
More specifically:
if one side is slow to request messages (MoveNext()), the sending side will eventually be "blocked" when sending (WriteAsync() will take
longer to succeed - and you can only have on WriteAsync() operation in
progress per call).
I believe such parameters can be configured via C-core channel argument (ChannelOption in c#).

Related

Deadlocked when both endpoints do Socket.SendAsync

So I have written this client/server socket application that uses the SocketAsyncEventArgs "method" for doing async sockets.
Using the same library I have used for many other applications, I now for the first time experience a situation that I never anticipated.
Our new client/server application when started, starts to send lot's of data in both directions.
When done in unit-tests using mock-objects (without delays) to mimic normal socket operations, it all works well.
But in real situations using real sockets, we get a sort of deadlock where both endpoints are stuck in a Socket.SendAsync() operation (yes it returned true, was not synchronously handled)
My idea is that the receive buffer of both parties are full, and the tcp stack is not acknowleding any frames anymore. (connected to 127.0.0.1)
So I made the receivebuffer twice as large as the sendbuffer, but unfortunately it is not that simple due to the nature of our "protocol", and how we determine to send or receive.
I now have to re-think the method that determines when to start sending and when to start receiving.
A complicating factor is, that the purpose of this connection is to mutliplex multiple bi-directional general purpose communication channels over this socket connection. That means that there is no pre-determined sequence of communication, all channels may have their own protocols.
Of course, there is a tls initiation, handshake and authentication, which all work well, but when the connection becomes operational, and the channels start their own communications, the only sure thing is that received data has a size and channelnumber as a header.
After each operation, I check to see if there is any waiting data in the receivebuffer, or by checking Socket.Available.
This combined with measuring how much data was received since last sent operation, and how full the transmitbuffer is getting, I decide to receive more or start sending, or do nothing, and poll again in xx ms.
I now realize that this is wronge.
Am I trying to accomplish something that is simply not possible using only one socket connection?
Anyone every tried to accomplish something simular, or know a good way of accomplish a safe way that does not introduce these odd lock-ups.
Thanks,
Theo.

C# Server - TCP/IP Socket Efficiency

Good day all!
I am working on a open source server for a game that is closed source - the game operates using TCP/IP sockets (instead of UDP, doh...) So being a connection based protocal, I am contrained to work with this.
My current program structure (dumbed down):
Core Thread
Receive new connection and create a new client object.
Client Object
IOloop (runs on its own thread)
Get data from socket, process packets. (one packet at a time)
Send data buffered from other threads (one packet at a time)
The client will send data immediately (no delay) when it is it's own thread.
I am noticing a huge flaw with the program, mainly it sends data very slow. Because I send data packet by packet, synchronously. (Socket.Send(byte[] buffer))
I would like to send data almost immediately, without delay - asynchronously.
I have tried creating a new thread every time I wanted to send a packet (so each packet sends on it's own managed thread) but this was a huge mess.
My current system uses a synchronous sending with nagle algorithm disabled - but this has the flaw of bottlenecking - send one packet, send operation blocks until TCP to confirms, then send the next... I can issue easily 10 packets every 100ms, and if the packets take 400ms to send, this backs up and breaks. Of course on my Local host I don't get this issue.
So, my question: What would be the best way to send multiple small packets of data? I am thinking of merging the data to send at the end of every IO thread loop to one large byte buffer, to reduce the back and forth delay - but the obvious problem here is this undermines the nagle algorithm avoidance which I had hoped would stop the delays.
How does a synchronous send work? Does it block until the data is confirmed correctly received by the recipient as I believe? Is there a way I can do this without waiting for confirmation? I do understand the packets must all go in order and correctly (as per the protocol specification).
I have done some research and I'm now using the current system:
Async send/receive operations with no threading, using AsyncCallbacks.
So I have the server start a read operation, then callback until done, when a packet is received, it is processed, then a new read operation will begin...
This method drastically reduces system overheads - thread pools, memory etc.
I have used some methods from the following and customised to my liking: https://msdn.microsoft.com/en-us/library/bew39x2a(v=vs.110).aspx
Very efficient, highly recommend this approach. For any TCP/IP network application low lag is very important and async callbacks is the best way to do it.

WebSockets and Long Polling

I have a chat room application that has been implemented in C# with SignalR WebSockets capabilities and hosted on Azure so it connects using WebSockets. I've also Implemented the same application to use long polling as a transport method.
What I want to do now is find "tests" as to which I can compare the network traffic and latency issues (or any other major differences) on both applications. One suggested evaluation for a comparison is the initial connection of the unnecessary network throughput but not quite sure how to go about that.
Any comments and suggestions would be highly appreciated.
Would a simple latency display be enough ?
An easy way to do this is :
implement a client to server call in which you send a browser-computed Date.now()
make the server immediately call a method in the client, sending back the value unchanged
the client computes the difference Date.now() - receivedDate. You now know the time interval for a back and forth request client->server->client.

C#: Question about socket programming (sync or async)

I'm writing an instant messaging server in C# for learning purposes.
My question is whether I should use synchronous or asynchronous sockets to handle the IM clients. The goal is to handle as many clients as possible.
I'm not quite sure but as far as I know with async sockets the packets don't arrive in order which means when you send 2 chat messages and there is a delay/lag it's possible that the second one arrive before the first one. Is this right and if so, is there a way to solve this issue?
About sync sockets: Is synchronous sockets a good solution for many clients? Do I have to check every socket/connection in a loop if there are new packets? If so, isn't this quite slow?
Last question: Assume I want to implement a way to send files (e.g. images) through the protocol (which is a non-standard binary protocol btw), can I still send messages while uploading?
The goal is to handle as many clients as possible.
Async then. It scales a lot better.
I'm not quite sure but as far as I know with async sockets the packets don't arrive in order which means when you send 2 chat messages and there is a delay/lag it's possible that the second one arrive before the first one.
TCP guarantees that everything arrives in order.
Assume I want to implement a way to send files (e.g. images) through the protocol (which is a non-standard binary protocol btw), can I still send messages while uploading
I recommend that you use a separate connection for file transfers. Use the first connection to do a handshake (determine which port to use and specify file name etc). Then use Socket.SendFile on the new socket to transfer the file.
Everything #jgauffin said (i.e. TCP handles packet-order, async better for n(clients) > 1000).
Assume I want to implement a way to send files (e.g. images) through the protocol (which is a non-standard binary protocol btw), can I still send messages while uploading?
Your custom protocol has to be built to support this. If you write a 8MB packet to the Socket, you won't be able to write anything else using that socket until the 8MB are sent. Instead, use upload-chunks of smaller size so that other packets have the chance to go over the pipe as well.
[UPLOAD id=123 START length=8012389]
[UPLOAD id=123 PART chunk=1 length=2048 data=...]
[UPLOAD id=123 PART chunk=2 length=2048 data=...]
[MESSAGE to="foo#example.com" text="Hi"]
[UPLOAD id=123 PART chunk=3 length=2048 data=...]
// ...
[UPLOAD id=123 COMPLETE checksum=0xdeadbeef]
The difference between an async approach and a sync approach is more about the difference between non-blocking and blocking io. With both approaches, the data is delivered in the same order that it has been transmitted. However, you don't block while you wait for an async call to complete, so you can start transmitting to all of your clients, before any of the individual communications has finished writing to the socket (which is why typically it would be the approach followed by servers).
If you go down the sync route, you block until each transmission / receive operation has completed, which means you may require need to run multiple threads to handle the clients.
As far as uploading an image at the same time as sending messages, you may want to handle that down a different pipe connection between the client/server so that it doesn't cause a blockage.

Async Sockets example which shows passing an object?

I need to create a server process which can push high frequency data (1000 updates per second) to around 50 client. I'm thinking the best way you do this is using async sockets with the SocketAsyncEventArgs type.
The client -> server connections will be long running at least several days to indefinite. I plan to have a server process listening and the clients connect and the server starts pushing the data to the clients.
Can someone point me to or show me an example of how to do this? I can't find any example showing a server process pushing an object to a client.
EDIT: This is over a gigibit LAN. Using windows server with 16 cores and 24gb ram
thanks
First, some more requirements from your side is required. You have server with lots of muscle, but it will fail miserably if you don't do what has to be done.
can the client live without some of the data? I mean, does the stream of the data need to reach other side in proper order, without any drops?
how big is 'the data'? few bytes or?
fact: scheduling interval on windows is 10 msec.
fact: no matter WHEN you send, clients will receive it depending on lots of stuff - network config, number of routers in-between, client processor load, and so on. so you need some kind of timestamping here
Depending on all this, you could design a priority queue with one thread servicing it and sending out UDP datagrams for each client. Also, since (4) is in effect, you can 'clump' some of your data together and have 10 updates per second of 100 data.
If you want to achieve something else, then LAN will be required here with lots of quality network equipment.
If you want to use .NET Sockets to create this server-client project, then this is a good outline of what's needed:
Since the server will be transferring data to several clients simultaneously, you'll need to use the asynchronous Socket.Beginxxx methods or the SocketAsyncEventArgs class.
You'll have clients connect to your server. The server will accept those connections and then add the newly connected client to an internal clients list.
You'll have a thread running within the server, that periodically sends notifications to all sockets in the clients list. If any exceptions/errors occurs while sending data to a socket, then that client is removed from the list.
You'll have to make sure that access to the clients list is synchronized since the server is a multithreaded application.
You don't need to worry about buffering your send data since the TCP stack takes care of that. If you do not want to buffer your data at all (i.e. have the socket send data immediately), then set Socket.NoDelay to true.
It doesn't seem like you need any data from your clients, but if you do, you'd have to make sure your server has a Socket.BeginReceive loop if using Socket.BeginXXX pattern or Socket.ReceiveAsync method if using SocketAsyncEventArgs.
Once you have the connection and transmission of data between server and client going, you then need to worry about serialization and deserialization of objects between client and server.
Serialization which occurs on the server is easy, since you can use the BinaryFormatter or other encoders to encode your object and dump the data onto the socket.
Deserialization on the other hand, which occurs on the client, can be pretty complex because an object can span multiple packets and you can have multiple objects in one packet. You essentially need a way to identify the beginning and end of an object within the stream, so that you can pluck out the object data and deserialize it.
One way to do this is to embed your data in a well known protocol, like HTTP, and send it using that format. Unfortunately, this also means you'd have to write a HTTP parser at the client. Not an easy task.
Another way is to leverage an existing encoding scheme like Google's protocol buffers. This approach would require learning how to use the protocol buffers stack.
You can also embed the data in an XML structure and then have a stream-to-XML decoder on your client side. This is probably the easiest approach but the least efficient.
As you can see, this is not an easy project, but you can get started with the Socket.BeginSend examples here and here, and the SocketAsyncEventArgs example here
Other Tips:
You can improve the reliability of your communication by having the client maintain two connections to the server for redundancy purposes. The reason being that TCP connections take a while to establish, so if one fails, you can still receive data from the other one while the client attempts to reconnect the failed connection.
You can look into using TCPClient class for the client implementation, since it's mostly reading a stream from a network connection.
What about rendezvous or 29 west? It would save reinventing the wheel. Dunno about amqp or zeromq they might work fine too....

Categories

Resources