OutOfMemoryException when updating a large list? - c#

I have a large list and I would like to overwrite one value if required. To do this, I create two subsets of the list which seems to give me an OutOfMemoryException. Here is my code snippet:
if (ownRG != "")
{
List<string> maclist = ownRG.Split(',').ToList();
List<IVFile> temp = powlist.Where(a => maclist.Contains(a.Machine)).ToList();
powlist = powlist.Where(a => !maclist.Contains(a.Machine)).ToList(); // OOME Here
temp.ForEach(a => { a.ReportingGroup = ownRG; });
powlist.AddRange(temp);
}
Essentially I'm splitting the list into the part that needs updating and the part that doesn't, then I perform the update and put the list back together. This works fine for smaller lists, but breaks with an OutOfMemoryException on the third row within the if for a large list. Can I make this more efficient?
NOTE
powlist is the large list (>1m) items. maclist only has between 1 and 10 but even with 1 item this breaks.

Solving your issue
Here is how to rearrange your code using the enumerator code from my answer:
if (!string.IsNullOrEmpty(ownRG))
{
var maclist = new CommaSeparatedStringEnumerable(str);
var temp = powlist.Where(a => maclist.Contains(a.Machine));
foreach (var p in temp)
{
p.ReportingGroup = ownRG;
}
}
You should not use ToList in your code.
You don't need to remove thee contents of temp from powlist (you are re-adding them anyway)
Streaming over a large comma-separated string
You can iterate over the list manually instead of doing what you do now, by looking for , characters and remembering the position of the last found one and the one before. This will definitely make your app work because then it won't need to store the entire set in the memory at once.
Code example:
var str = "aaa,bbb,ccc";
var previousComma = -1;
var currentComma = 0;
for (; (currentComma = str.IndexOf(',', previousComma + 1)) != -1; previousComma = currentComma)
{
var currentItem = str.Substring(previousComma + 1, currentComma - previousComma - 1);
Console.WriteLine(currentItem);
}
var lastItem = str.Substring(previousComma + 1);
Console.WriteLine(lastItem);
Custom iterator
If you want to do it 'properly' in a fancy way, you can even write a custom enumerator:
public class CommaSeparatedStringEnumerator : IEnumerator<string>
{
int previousComma = -1;
int currentComma = -1;
string bigString = null;
bool atEnd = false;
public CommaSeparatedStringEnumerator(string s)
{
if (s == null)
throw new ArgumentNullException("s");
bigString = s;
this.Reset();
}
public string Current { get; private set; }
public void Dispose() { /* No need to do anything here */ }
object IEnumerator.Current { get { return this.Current; } }
public bool MoveNext()
{
if (atEnd)
return false;
atEnd = (currentComma = bigString.IndexOf(',', previousComma + 1)) == -1;
if (!atEnd)
Current = bigString.Substring(previousComma + 1, currentComma - previousComma - 1);
else
Current = bigString.Substring(previousComma + 1);
previousComma = currentComma;
return true;
}
public void Reset()
{
previousComma = -1;
currentComma = -1;
atEnd = false;
this.Current = null;
}
}
public class CommaSeparatedStringEnumerable : IEnumerable<string>
{
string bigString = null;
public CommaSeparatedStringEnumerable(string s)
{
if (s == null)
throw new ArgumentNullException("s");
bigString = s;
}
public IEnumerator<string> GetEnumerator()
{
return new CommaSeparatedStringEnumerator(bigString);
}
IEnumerator IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
}
Then you can iterate over it like this:
var str = "aaa,bbb,ccc";
var enumerable = new CommaSeparatedStringEnumerable(str);
foreach (var item in enumerable)
{
Console.WriteLine(item);
}
Other thoughts
Can I make this more efficient?
Yes, you can. I suggest to either work with a more efficient data format (you can take a look around databases or XML, JSON, etc. depending on your needs). If you really want to work with comma-separated items, see my code examples above.

There's no need to create a bunch of sub-lists from powlist and reconstruct it. Simply loop over the powlist and update the ReportingGroup property accordingly.
var maclist = new HashSet<string>( ownRG.Split(',') );
foreach( var item in powlist) {
if( maclist.Contains( item.Machine ) ){
item.ReportingGroup = ownRG;
}
}
Since this changes powlist in place, you won't allocate any extra memory and shouldn't run into an OutOfMemoryException.

In a loop find the next ',' char. Take the substring between the ',' and the previous ',' position. At the end of the loop save a reference to the previous ',' position (which is initially set to 0). So you parse the items one-by-one rather than all at once.

You can try looping the items of your lists, but this will increase processing time.
foreach(var item in powlist)
{
//do your opeartions
}

Related

Index was outside the bounds of the array while reading from a file

I hope all of you are having a nice day. So I fixed one error of my program but there's another :/
So here's the code where I create my and read the data from a file:
void ReadData(string fileName, Branch[] branches)
{
string shopsName = null;
using (StreamReader reader = new StreamReader(#fileName))
{
string line = null;
line = reader.ReadLine();
if (line != null)
{
shopsName = line;
}
Branch tempBranches = TempBranch(branches, shopsName);
string address = reader.ReadLine();
string phoneNumber = reader.ReadLine();
while (null != (line = reader.ReadLine()))
{
string[] values = line.Split(';');
string facturer = values[0];
string model = values[1];
double capacity = double.Parse(values[2]);
string energyClass = values[3];
string assemblyType = values[4];
string color = values[5];
string attribute = values[6];
double cost = double.Parse(values[7]);
Fridges fridge = new Fridges(facturer, model, capacity, energyClass, assemblyType, color, attribute, cost);
tempBranches.fridges.AddFridge(fridge);
}
}
And there's the code where I use the TempBranch method. The error is in this line: if (branches[i].ShopsName == shopsName). Hopefully you can help me, cuz I was trying to fix this yesterday for 30 minutes and it still wasn't working :D
private static Branch TempBranch(Branch[] branches, string shopsName)
{
for (int i = 0; i < MaxNumberOfFridges; i++)
{
if (branches[i].ShopsName == shopsName)
{
return branches[i];
}
}
return null;
}
If you replace MaxNumberOfFridges with branches.Length it will only try to find a Branch that's within the range of the branches array. The reason it's not working is because you're trying to access an index which is greater than the Length of the array.
Try this one. Use foreach, if you dont know the lenght of array.
private static Branch TempBranch(Branch[] branches, string shopsName)
{
foreach(var branch in branches)
{
if (branch.ShopsName == shopsName)
{
return branch;
}
}
return null;
}
You can also try to make use of a LINQ query,
return branches.Where(b => b.ShopsName == shopsName).FirstOrDefault();
EDIT:
To NullReferenceError which occurs in your new post occurs due to null being returned in your function where your shop gets created. This due to not finding the given shopname.
So it tries to add an fridge to an shop which does not exist, which is not possible. You will have to add a check so that this does not occur.
This raised error because MaxNumberOfFridges is bigger than branches length.. to simplify it, assume MaxNumberOfFridges is 20 but arry length is 10, so you are trying to access element 11 in array which is outside of array length.
to fix it
for (int i = 0; i < branches.Length; i++)
{
if (branches[i].ShopsName == shopsName)
{
return branches[i];
}
}
other option is to use foreach loop
foreach(var b in branches)
{
if (b.ShopsName == shopsName)
{
return branches[i];
}
}

dynamic flexibility in C#

I have recently started learning programming and chose .NET with Visual Studio Express. I am trying to write a CSV Parser as a learning experience and it's giving me a lot more trouble than I expected. I am starting with the reader. One thing I am doing differently in my parser is that I am not using quotes. I am escaping commas with a backslash, backslashes with a backslash, and line breaks with a backslash. For example, if a comma is preceded by an even number of backslashes it is a field and I halve any blocks of backslashes. If it's odd, it's not end of field and I still halve blocks of backslashes. I'm not sure how robust this will be if I can ever get it working, except I'm only learning at this point and I'm looking at it mostly as an exercise in manipulating data structures.
I have a question in reference to the code snippet at the bottom of this post and how to make it not so static and limiting and still compile and run for me.
The line of code that reads:
var contents = (String)fileContents;
I keep trying to make it more dynamic to increase flexibility and make it something like this:
var contents = (otherVariableThatCouldChangeTypeAtRuntime.GetType())fileContents;
Is there something I can do to get it to do this and still compile? Maybe something like Option Infer from VB.NET might help, except I can't find that.
Also, I have written this in VB.NET as well. It seems to me that VB.NET allows me a considerably more dynamic style than what I've posted below, such as not having to type var over and over again and not having to keep casting my index counting variable into an integer over and over again if I shut off Option Strict and Option Explicit as well as turn on Option Infer. For example, C# won't let me type something analogous to the following VB.NET code even though I know the methods and properties I will be calling at run-time will be there at run-time.
Dim contents As Object = returnObjectICantDetermineAtComplieTime()
contents.MethodIKnowWillBeThereAtRunTime()
Can I do these things in C#? Anyways, here's the code and thanks in advance for any responses.
public class Widget
{
public object ID { get; set; }
public object PartNumber { get; set; }
public object VendorID { get; set; }
public object TypeID { get; set; }
public object KeyMarkLoc { get; set; }
public Widget() { }
}
public object ReadFromFile(object source)
{
var fileContents = new FileService().GetFileContents(source);
object records = null;
if (fileContents == null)
return null;
var stringBuffer = "";
var contents = (String)fileContents;
while (contents.Length > 0 && contents != "\r\n")
{
for (object i = 0; (int)i < contents.Length; i=(int)i+1 )
{
object character = contents[(int)i];
if (!stringBuffer.EndsWith("\r\n"))
{
stringBuffer += character.ToString();
}
if (stringBuffer.EndsWith("\r\n"))
{
var bSlashes = getBackSlashes(stringBuffer.Substring(0, stringBuffer.Length - 4));
stringBuffer = stringBuffer.Substring(0, stringBuffer.Length - 4);
if ((int)bSlashes % 2 == 0)
{
break;
}
}
}
contents = contents.Substring(stringBuffer.Length+2);
records = records == null ? getIncrementedList(new List<object>(), getNextObject(getFields(stringBuffer))) : getIncrementedList((List<object>)records, getNextObject(getFields(stringBuffer)));
}
return records;
}
private Widget getNextRecord(object[] fields)
{
var personStudent = new Widget();
personStudent.ID = fields[0];
personStudent.PartNumber = fields[1];
personStudent.VendorID = fields[2];
personStudent.TypeID = fields[3];
personStudent.GridPath = fields[4];
return personStudent;
}
private object[] getFields(object buffer)
{
var fields = new object[5];
var intFieldCount = 0;
var fieldVal = "";
var blocks = buffer.ToString().Split(',');
foreach (var block in blocks)
{
var bSlashes = getBackSlashes(block);
var intRemoveCount = (int)bSlashes / 2;
if ((int)bSlashes % 2 == 0) // Delimiter
{
fieldVal += block.Substring(0, block.Length - intRemoveCount);
fields[intFieldCount] += fieldVal;
intFieldCount++;
fieldVal = "";
}
else // Part of Field
{
fieldVal += block.Substring(0, block.Length - intRemoveCount - 1) + ",";
}
}
return fields;
}
private object getBackSlashes(object block)
{
object bSlashes = block.ToString().Length == 0 ? new int?(0) : null;
for (object i = block.ToString().Length - 1; (int)i>-1; i=(int)i-1)
{
if (block.ToString()[(int)i] != '\\') return bSlashes = bSlashes == null ? 0 : bSlashes;
bSlashes = bSlashes == null ? 1 : (int)bSlashes + 1;
}
return bSlashes;
}
}
Here is the web service code.
[WebMethod]
public object GetFileContents(object source)
{
return File.ReadAllText(source.ToString());
}
Dim contents As Object = returnObjectICantDetermineAtComplieTime()
contents.MethodIKnowWillBeThereAtRunTime()
You can do this with the dynamic type.
See for more information: http://msdn.microsoft.com/en-us/library/dd264736.aspx

Logical Inversion of Symbol Tree

I have a class, Symbol_Group, that represents an invertible expression of the nature AB(C+DE) + FG. Symbol_Group contains a List<List<iSymbol>>, where iSymbol is an interface applied to Symbol_Group, and Symbol.
The above equation would be represented as A,B,Sym_Grp + F,G; Sym_Grp = C + D,E, where each + represents a new List<iSymbol>
I need to be able to invert and expand this equation using an algorithm that can handle any amount of nesting, and any amount of symbols anded or ored together, to produce a set of Symbol_Group, with each containing a unique expansion. For the above question the answer set would be !A!F; !B!F; !C!D!F; !C!E!F; !A!G; !B!G; !C!D!G; !C!E!G;
I know that I will need to use recursion, but I have had very little experience with it. Any help figuring out this algorithm would be appreciated.
Unless you are somehow required to use a List<List<iSymbol>>, I recommend switching to a different class structure, with a base class (or interface) Expression and subclasses (or implementors) SymbolExpression, NotExpression, OrExpression, and AndExpression. A SymbolExpression contains a single symbol; a NotExpression contains one Expression, and OrExpression and AndExpression contain two expressions each. This is a much more standard structure for working with mathematical expressions, and it is probably simpler to perform the transformations on it.
With the above classes, you can model any expression as a binary tree. Negate the expression by replacing the root by a NotExpression whose child is the original root. Then, traverse the tree with a depth-first search, and whenever you hit a NotExpression whose child is an OrExpression or an AndExpression, you can replace that by an AndExpression or an OrExpression (respectively) whose children are NotExpressions with the original children below them. You might also want to eliminate double negations (look for NotExpressions whose child is a NotExpression, and remove both).
(Whether this answer is understandable probably depends on how comfortable you are with working with trees. Let me know if you need clarification.)
After much work, this is the method I used to get the minimum terms of inversion.
public List<iSymbol> GetInvertedGroup()
{
TrimSymbolList();
List<List<iSymbol>> symbols = this.CopyListMembers(Symbols);
List<iSymbol> SymList;
while (symbols.Count > 1)
{
symbols.Add(MultiplyLists(symbols[0], symbols[1]));
symbols.RemoveRange(0, 2);
}
SymList = symbols[0];
for(int i=0;i<symbols[0].Count;i++)
{
if (SymList[i] is Symbol)
{
Symbol sym = SymList[i] as Symbol;
SymList.RemoveAt(i--);
Symbol_Group symgrp = new Symbol_Group(null);
symgrp.AddSymbol(sym);
SymList.Add(symgrp);
}
}
for (int i = 0; i < SymList.Count; i++)
{
if (SymList[i] is Symbol_Group)
{
Symbol_Group SymGrp = SymList[i] as Symbol_Group;
if (SymGrp.Symbols.Count > 1)
{
List<iSymbol> list = SymGrp.GetInvertedGroup();
SymList.RemoveAt(i--);
AddElementsOf(list, SymList);
}
}
}
return SymList;
}
public List<iSymbol> MultiplyLists(List<iSymbol> L1, List<iSymbol> L2)
{
List<iSymbol> Combined = new List<iSymbol>(L1.Count + L2.Count);
foreach (iSymbol S1 in L1)
{
foreach (iSymbol S2 in L2)
{
Symbol_Group newGrp = new Symbol_Group(null);
newGrp.AddSymbol(S1);
newGrp.AddSymbol(S2);
Combined.Add(newGrp);
}
}
return Combined;
}
This resulted in a List of Groups of Symbols, with each group representing 1 or term in the final result (e.g !A!F). Some further code was used to reduce this to a List>, as there was a reasonable amount of nesting in the answer. To reduce it, I used:
public List<List<Symbol>> ReduceList(List<iSymbol> List)
{
List<List<Symbol>> Output = new List<List<Symbol>>(List.Count);
foreach (iSymbol iSym in List)
{
if (iSym is Symbol_Group)
{
List<Symbol> L = new List<Symbol>();
(iSym as Symbol_Group).GetAllSymbols(L);
Output.Add(L);
}
else
{
throw (new Exception());
}
}
return Output;
}
public void GetAllSymbols(List<Symbol> List)
{
foreach (List<iSymbol> SubList in Symbols)
{
foreach (iSymbol iSym in SubList)
{
if (iSym is Symbol)
{
List.Add(iSym as Symbol);
}
else if (iSym is Symbol_Group)
{
(iSym as Symbol_Group).GetAllSymbols(List);
}
else
{
throw(new Exception());
}
}
}
}
Hope this helps someone else!
I came to this simpler solution after a bit of rejigging. I hope it helps out somebody else with a similar problem! This is the class structure (plus a few other properties)
public class SymbolGroup : iSymbol
{
public SymbolGroup(SymbolGroup Parent, SymRelation Relation)
{
Symbols = new List<iSymbol>();
this.Parent = Parent;
SymbolRelation = Relation;
if (SymbolRelation == SymRelation.AND)
Name = "AND Group";
else
Name = "OR Group";
}
public int Depth
{
get
{
foreach (iSymbol s in Symbols)
{
if (s is SymbolGroup)
{
return (s as SymbolGroup).Depth + 1;
}
}
return 1;
}
}
}
The method of inversion is also contained within this class. It replaces an unexpanded group in the results list with all of the expanded results of that result. It only strips away one level at a time.
public List<SymbolGroup> InvertGroup()
{
List<SymbolGroup> Results = new List<SymbolGroup>();
foreach (iSymbol s in Symbols)
{
if (s is SymbolGroup)
{
SymbolGroup sg = s as SymbolGroup;
sg.Parent = null;
Results.Add(s as SymbolGroup);
}
else if (s is Symbol)
{
SymbolGroup sg = new SymbolGroup(null, SymRelation.AND);
sg.AddSymbol(s);
Results.Add(sg);
}
}
bool AllChecked = false;
while (!AllChecked)
{
AllChecked = true;
for(int i=0;i<Results.Count;i++)
{
SymbolGroup result = Results[i];
if (result.Depth > 1)
{
AllChecked = false;
Results.RemoveAt(i--);
}
else
continue;
if (result.SymbolRelation == SymRelation.OR)
{
Results.AddRange(result.MultiplyOut());
continue;
}
for(int j=0;j<result.nSymbols;j++)
{
iSymbol s = result.Symbols[j];
if (s is SymbolGroup)
{
result.Symbols.RemoveAt(j--); //removes the symbolgroup that is being replaced, so that the rest of the group can be added to the expansion.
AllChecked = false;
SymbolGroup subResult = s as SymbolGroup;
if(subResult.SymbolRelation == SymRelation.OR)
{
List<SymbolGroup> newResults;
newResults = subResult.MultiplyOut();
foreach(SymbolGroup newSg in newResults)
{
newSg.Symbols.AddRange(result.Symbols);
}
Results.AddRange(newResults);
}
break;
}
}
}
}
return Results;
}

Performance ideas (in-memory C# hashset and contains too slow)

I have the following code
private void LoadIntoMemory()
{
//Init large HashSet
HashSet<document> hsAllDocuments = new HashSet<document>();
//Get first rows from database
List<document> docsList = document.GetAllAboveDocID(0, 500000);
//Load objects into dictionary
foreach (document d in docsList)
{
hsAllDocuments.Add(d);
}
Application["dicAllDocuments"] = hsAllDocuments;
}
private HashSet<document> documentHits(HashSet<document> hsRawHit, HashSet<document> hsAllDocuments, string query, string[] queryArray)
{
int counter = 0;
const int maxCount = 1000;
foreach (document d in hsAllDocuments)
{
//Headline
if (d.Headline.Contains(query))
{
if (counter >= maxCount)
break;
hsRawHit.Add(d);
counter++;
}
//Description
if (d.Description.Contains(query))
{
if (counter >= maxCount)
break;
hsRawHit.Add(d);
counter++;
}
//splitted query word by word
//string[] queryArray = query.Split(' ');
if (queryArray.Count() > 1)
{
foreach (string q in queryArray)
{
if (d.Headline.Contains(q))
{
if (counter >= maxCount)
break;
hsRawHit.Add(d);
counter++;
}
//Description
if (d.Description.Contains(q))
{
if (counter >= maxCount)
break;
hsRawHit.Add(d);
counter++;
}
}
}
}
return hsRawHit;
}
First I load all the data into a hashset (via Application for later use) - runs fine - totally OK to be slow for what I'm doing.
Will be running 4.0 framework in C# (can't update to the new upgrade for 4.0 with the async stuff).
The documentHits method runs fairly slow on my current setup - considering that it's all in memory. What can I do to speed up this method?
Examples would be awesome - thanks.
I see that you are using a HashSet, but you are not using any of it's advantages, so you should just use a List instead.
What's taking time is looping through all the documents and looking for strings in other strings, so you should try to elliminate as much as possible of that.
One possibility is to set up indexes of which documents contains which character pairs. If the string query contains Hello, you would be looking in the documents that contains He, el, ll and lo.
You could set up a Dictionary<string, List<int>> where the dictionary key is the character combinations and the list contains indexes to the documents in your document list. Setting up the dictionary will take some time, of course, but you can focus on the character combinations that are less common. If a character combination exists in 80% of the documents, it's pretty useless for elliminating documents, but if a character combination exists in only 2% of the documents it has elliminated 98% of your work.
If you loop through the documents in the list and add occurances to the lists in the dictionary, the lists of indexes will be sorted, so it will be very easy to join the lists later on. When you add indexes to the list, you can throw away lists when they get too large and you see that they would not be useful for elliminating documents. That way you will only be keeping the shorter lists and they will not consume so much memory.
Edit:
It put together a small example:
public class IndexElliminator<T> {
private List<T> _items;
private Dictionary<string, List<int>> _index;
private Func<T, string> _getContent;
private static HashSet<string> GetPairs(string value) {
HashSet<string> pairs = new HashSet<string>();
for (int i = 1; i < value.Length; i++) {
pairs.Add(value.Substring(i - 1, 2));
}
return pairs;
}
public IndexElliminator(List<T> items, Func<T, string> getContent, int maxIndexSize) {
_items = items;
_getContent = getContent;
_index = new Dictionary<string, List<int>>();
for (int index = 0;index<_items.Count;index++) {
T item = _items[index];
foreach (string pair in GetPairs(_getContent(item))) {
List<int> list;
if (_index.TryGetValue(pair, out list)) {
if (list != null) {
if (list.Count == maxIndexSize) {
_index[pair] = null;
} else {
list.Add(index);
}
}
} else {
list = new List<int>();
list.Add(index);
_index.Add(pair, list);
}
}
}
}
private static List<int> JoinLists(List<int> list1, List<int> list2) {
List<int> result = new List<int>();
int i1 = 0, i2 = 0;
while (i1 < list1.Count && i2 < list2.Count) {
switch (Math.Sign(list1[i1].CompareTo(list2[i2]))) {
case 0: result.Add(list1[i1]); i1++; i2++; break;
case -1: i1++; break;
case 1: i2++; break;
}
}
return result;
}
public List<T> Find(string query) {
HashSet<string> pairs = GetPairs(query);
List<List<int>> indexes = new List<List<int>>();
bool found = false;
foreach (string pair in pairs) {
List<int> list;
if (_index.TryGetValue(pair, out list)) {
found = true;
if (list != null) {
indexes.Add(list);
}
}
}
List<T> result = new List<T>();
if (found && indexes.Count == 0) {
indexes.Add(Enumerable.Range(0, _items.Count).ToList());
}
if (indexes.Count > 0) {
while (indexes.Count > 1) {
indexes[indexes.Count - 2] = JoinLists(indexes[indexes.Count - 2], indexes[indexes.Count - 1]);
indexes.RemoveAt(indexes.Count - 1);
}
foreach (int index in indexes[0]) {
if (_getContent(_items[index]).Contains(query)) {
result.Add(_items[index]);
}
}
}
return result;
}
}
Test:
List<string> items = new List<string> {
"Hello world",
"How are you",
"What is this",
"Can this be true",
"Some phrases",
"Words upon words",
"What to do",
"Where to go",
"When is this",
"How can this be",
"Well above margin",
"Close to the center"
};
IndexElliminator<string> index = new IndexElliminator<string>(items, s => s, items.Count / 2);
List<string> found = index.Find("this");
foreach (string s in found) Console.WriteLine(s);
Output:
What is this
Can this be true
When is this
How can this be
You are running linearly through all documents to find matches - this is O(n), you could do better if you solved the inverse problem, similar to how a fulltext index works: start with the query terms and preprocess the set of documents that match each query term - since this might get complicated I would suggest just using a DB with fulltext capability, this will be much faster than your approach.
Also you are abusing HashSet - instead just use a List, and don't put in duplicates - all the cases in documentHits() that produce a match should be exclusive.
If you have a whole lot of time at the start to create the database, you can look into using a Trie.
A Trie will make the string search much faster.
There's a little explanation and an implementation in the end here.
Another implementation: Trie class
You should not test each document for all test steps!
Instead it you should go to the next document after first successeful test result.
hsRawHit.Add(d);
counter++;
you should add continue; after counter++;
hsRawHit.Add(d);
counter++;
continue;

Remove duplicates from a List<T> in C#

Anyone have a quick method for de-duplicating a generic List in C#?
If you're using .Net 3+, you can use Linq.
List<T> withDupes = LoadSomeData();
List<T> noDupes = withDupes.Distinct().ToList();
Perhaps you should consider using a HashSet.
From the MSDN link:
using System;
using System.Collections.Generic;
class Program
{
static void Main()
{
HashSet<int> evenNumbers = new HashSet<int>();
HashSet<int> oddNumbers = new HashSet<int>();
for (int i = 0; i < 5; i++)
{
// Populate numbers with just even numbers.
evenNumbers.Add(i * 2);
// Populate oddNumbers with just odd numbers.
oddNumbers.Add((i * 2) + 1);
}
Console.Write("evenNumbers contains {0} elements: ", evenNumbers.Count);
DisplaySet(evenNumbers);
Console.Write("oddNumbers contains {0} elements: ", oddNumbers.Count);
DisplaySet(oddNumbers);
// Create a new HashSet populated with even numbers.
HashSet<int> numbers = new HashSet<int>(evenNumbers);
Console.WriteLine("numbers UnionWith oddNumbers...");
numbers.UnionWith(oddNumbers);
Console.Write("numbers contains {0} elements: ", numbers.Count);
DisplaySet(numbers);
}
private static void DisplaySet(HashSet<int> set)
{
Console.Write("{");
foreach (int i in set)
{
Console.Write(" {0}", i);
}
Console.WriteLine(" }");
}
}
/* This example produces output similar to the following:
* evenNumbers contains 5 elements: { 0 2 4 6 8 }
* oddNumbers contains 5 elements: { 1 3 5 7 9 }
* numbers UnionWith oddNumbers...
* numbers contains 10 elements: { 0 2 4 6 8 1 3 5 7 9 }
*/
How about:
var noDupes = list.Distinct().ToList();
In .net 3.5?
Simply initialize a HashSet with a List of the same type:
var noDupes = new HashSet<T>(withDupes);
Or, if you want a List returned:
var noDupsList = new HashSet<T>(withDupes).ToList();
Sort it, then check two and two next to each others, as the duplicates will clump together.
Something like this:
list.Sort();
Int32 index = list.Count - 1;
while (index > 0)
{
if (list[index] == list[index - 1])
{
if (index < list.Count - 1)
(list[index], list[list.Count - 1]) = (list[list.Count - 1], list[index]);
list.RemoveAt(list.Count - 1);
index--;
}
else
index--;
}
Notes:
Comparison is done from back to front, to avoid having to resort list after each removal
This example now uses C# Value Tuples to do the swapping, substitute with appropriate code if you can't use that
The end-result is no longer sorted
I like to use this command:
List<Store> myStoreList = Service.GetStoreListbyProvince(provinceId)
.GroupBy(s => s.City)
.Select(grp => grp.FirstOrDefault())
.OrderBy(s => s.City)
.ToList();
I have these fields in my list: Id, StoreName, City, PostalCode
I wanted to show list of cities in a dropdown which has duplicate values.
solution: Group by city then pick the first one for the list.
It worked for me. simply use
List<Type> liIDs = liIDs.Distinct().ToList<Type>();
Replace "Type" with your desired type e.g. int.
As kronoz said in .Net 3.5 you can use Distinct().
In .Net 2 you could mimic it:
public IEnumerable<T> DedupCollection<T> (IEnumerable<T> input)
{
var passedValues = new HashSet<T>();
// Relatively simple dupe check alg used as example
foreach(T item in input)
if(passedValues.Add(item)) // True if item is new
yield return item;
}
This could be used to dedupe any collection and will return the values in the original order.
It's normally much quicker to filter a collection (as both Distinct() and this sample does) than it would be to remove items from it.
An extension method might be a decent way to go... something like this:
public static List<T> Deduplicate<T>(this List<T> listToDeduplicate)
{
return listToDeduplicate.Distinct().ToList();
}
And then call like this, for example:
List<int> myFilteredList = unfilteredList.Deduplicate();
In Java (I assume C# is more or less identical):
list = new ArrayList<T>(new HashSet<T>(list))
If you really wanted to mutate the original list:
List<T> noDupes = new ArrayList<T>(new HashSet<T>(list));
list.clear();
list.addAll(noDupes);
To preserve order, simply replace HashSet with LinkedHashSet.
This takes distinct (the elements without duplicating elements) and convert it into a list again:
List<type> myNoneDuplicateValue = listValueWithDuplicate.Distinct().ToList();
Use Linq's Union method.
Note: This solution requires no knowledge of Linq, aside from that it exists.
Code
Begin by adding the following to the top of your class file:
using System.Linq;
Now, you can use the following to remove duplicates from an object called, obj1:
obj1 = obj1.Union(obj1).ToList();
Note: Rename obj1 to the name of your object.
How it works
The Union command lists one of each entry of two source objects. Since obj1 is both source objects, this reduces obj1 to one of each entry.
The ToList() returns a new List. This is necessary, because Linq commands like Union returns the result as an IEnumerable result instead of modifying the original List or returning a new List.
As a helper method (without Linq):
public static List<T> Distinct<T>(this List<T> list)
{
return (new HashSet<T>(list)).ToList();
}
Here's an extension method for removing adjacent duplicates in-situ. Call Sort() first and pass in the same IComparer. This should be more efficient than Lasse V. Karlsen's version which calls RemoveAt repeatedly (resulting in multiple block memory moves).
public static void RemoveAdjacentDuplicates<T>(this List<T> List, IComparer<T> Comparer)
{
int NumUnique = 0;
for (int i = 0; i < List.Count; i++)
if ((i == 0) || (Comparer.Compare(List[NumUnique - 1], List[i]) != 0))
List[NumUnique++] = List[i];
List.RemoveRange(NumUnique, List.Count - NumUnique);
}
Installing the MoreLINQ package via Nuget, you can easily distinct object list by a property
IEnumerable<Catalogue> distinctCatalogues = catalogues.DistinctBy(c => c.CatalogueCode);
If you have tow classes Product and Customer and we want to remove duplicate items from their list
public class Product
{
public int Id { get; set; }
public string ProductName { get; set; }
}
public class Customer
{
public int Id { get; set; }
public string CustomerName { get; set; }
}
You must define a generic class in the form below
public class ItemEqualityComparer<T> : IEqualityComparer<T> where T : class
{
private readonly PropertyInfo _propertyInfo;
public ItemEqualityComparer(string keyItem)
{
_propertyInfo = typeof(T).GetProperty(keyItem, BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Public);
}
public bool Equals(T x, T y)
{
var xValue = _propertyInfo?.GetValue(x, null);
var yValue = _propertyInfo?.GetValue(y, null);
return xValue != null && yValue != null && xValue.Equals(yValue);
}
public int GetHashCode(T obj)
{
var propertyValue = _propertyInfo.GetValue(obj, null);
return propertyValue == null ? 0 : propertyValue.GetHashCode();
}
}
then, You can remove duplicate items in your list.
var products = new List<Product>
{
new Product{ProductName = "product 1" ,Id = 1,},
new Product{ProductName = "product 2" ,Id = 2,},
new Product{ProductName = "product 2" ,Id = 4,},
new Product{ProductName = "product 2" ,Id = 4,},
};
var productList = products.Distinct(new ItemEqualityComparer<Product>(nameof(Product.Id))).ToList();
var customers = new List<Customer>
{
new Customer{CustomerName = "Customer 1" ,Id = 5,},
new Customer{CustomerName = "Customer 2" ,Id = 5,},
new Customer{CustomerName = "Customer 2" ,Id = 5,},
new Customer{CustomerName = "Customer 2" ,Id = 5,},
};
var customerList = customers.Distinct(new ItemEqualityComparer<Customer>(nameof(Customer.Id))).ToList();
this code remove duplicate items by Id if you want remove duplicate items by other property, you can change nameof(YourClass.DuplicateProperty) same nameof(Customer.CustomerName) then remove duplicate items by CustomerName Property.
If you don't care about the order you can just shove the items into a HashSet, if you do want to maintain the order you can do something like this:
var unique = new List<T>();
var hs = new HashSet<T>();
foreach (T t in list)
if (hs.Add(t))
unique.Add(t);
Or the Linq way:
var hs = new HashSet<T>();
list.All( x => hs.Add(x) );
Edit: The HashSet method is O(N) time and O(N) space while sorting and then making unique (as suggested by #lassevk and others) is O(N*lgN) time and O(1) space so it's not so clear to me (as it was at first glance) that the sorting way is inferior
Might be easier to simply make sure that duplicates are not added to the list.
if(items.IndexOf(new_item) < 0)
items.add(new_item)
You can use Union
obj2 = obj1.Union(obj1).ToList();
Another way in .Net 2.0
static void Main(string[] args)
{
List<string> alpha = new List<string>();
for(char a = 'a'; a <= 'd'; a++)
{
alpha.Add(a.ToString());
alpha.Add(a.ToString());
}
Console.WriteLine("Data :");
alpha.ForEach(delegate(string t) { Console.WriteLine(t); });
alpha.ForEach(delegate (string v)
{
if (alpha.FindAll(delegate(string t) { return t == v; }).Count > 1)
alpha.Remove(v);
});
Console.WriteLine("Unique Result :");
alpha.ForEach(delegate(string t) { Console.WriteLine(t);});
Console.ReadKey();
}
There are many ways to solve - the duplicates issue in the List, below is one of them:
List<Container> containerList = LoadContainer();//Assume it has duplicates
List<Container> filteredList = new List<Container>();
foreach (var container in containerList)
{
Container duplicateContainer = containerList.Find(delegate(Container checkContainer)
{ return (checkContainer.UniqueId == container.UniqueId); });
//Assume 'UniqueId' is the property of the Container class on which u r making a search
if(!containerList.Contains(duplicateContainer) //Add object when not found in the new class object
{
filteredList.Add(container);
}
}
Cheers
Ravi Ganesan
Here's a simple solution that doesn't require any hard-to-read LINQ or any prior sorting of the list.
private static void CheckForDuplicateItems(List<string> items)
{
if (items == null ||
items.Count == 0)
return;
for (int outerIndex = 0; outerIndex < items.Count; outerIndex++)
{
for (int innerIndex = 0; innerIndex < items.Count; innerIndex++)
{
if (innerIndex == outerIndex) continue;
if (items[outerIndex].Equals(items[innerIndex]))
{
// Duplicate Found
}
}
}
}
David J.'s answer is a good method, no need for extra objects, sorting, etc. It can be improved on however:
for (int innerIndex = items.Count - 1; innerIndex > outerIndex ; innerIndex--)
So the outer loop goes top bottom for the entire list, but the inner loop goes bottom "until the outer loop position is reached".
The outer loop makes sure the entire list is processed, the inner loop finds the actual duplicates, those can only happen in the part that the outer loop hasn't processed yet.
Or if you don't want to do bottom up for the inner loop you could have the inner loop start at outerIndex + 1.
A simple intuitive implementation:
public static List<PointF> RemoveDuplicates(List<PointF> listPoints)
{
List<PointF> result = new List<PointF>();
for (int i = 0; i < listPoints.Count; i++)
{
if (!result.Contains(listPoints[i]))
result.Add(listPoints[i]);
}
return result;
}
All answers copy lists, or create a new list, or use slow functions, or are just painfully slow.
To my understanding, this is the fastest and cheapest method I know (also, backed by a very experienced programmer specialized on real-time physics optimization).
// Duplicates will be noticed after a sort O(nLogn)
list.Sort();
// Store the current and last items. Current item declaration is not really needed, and probably optimized by the compiler, but in case it's not...
int lastItem = -1;
int currItem = -1;
int size = list.Count;
// Store the index pointing to the last item we want to keep in the list
int last = size - 1;
// Travel the items from last to first O(n)
for (int i = last; i >= 0; --i)
{
currItem = list[i];
// If this item was the same as the previous one, we don't want it
if (currItem == lastItem)
{
// Overwrite last in current place. It is a swap but we don't need the last
list[i] = list[last];
// Reduce the last index, we don't want that one anymore
last--;
}
// A new item, we store it and continue
else
lastItem = currItem;
}
// We now have an unsorted list with the duplicates at the end.
// Remove the last items just once
list.RemoveRange(last + 1, size - last - 1);
// Sort again O(n logn)
list.Sort();
Final cost is:
nlogn + n + nlogn = n + 2nlogn = O(nlogn) which is pretty nice.
Note about RemoveRange:
Since we cannot set the count of the list and avoid using the Remove funcions, I don't know exactly the speed of this operation but I guess it is the fastest way.
Using HashSet this can be done easily.
List<int> listWithDuplicates = new List<int> { 1, 2, 1, 2, 3, 4, 5 };
HashSet<int> hashWithoutDuplicates = new HashSet<int> ( listWithDuplicates );
List<int> listWithoutDuplicates = hashWithoutDuplicates.ToList();
Using HashSet:
list = new HashSet<T>(list).ToList();
public static void RemoveDuplicates<T>(IList<T> list )
{
if (list == null)
{
return;
}
int i = 1;
while(i<list.Count)
{
int j = 0;
bool remove = false;
while (j < i && !remove)
{
if (list[i].Equals(list[j]))
{
remove = true;
}
j++;
}
if (remove)
{
list.RemoveAt(i);
}
else
{
i++;
}
}
}
If you need to compare complex objects, you will need to pass a Comparer object inside the Distinct() method.
private void GetDistinctItemList(List<MyListItem> _listWithDuplicates)
{
//It might be a good idea to create MyListItemComparer
//elsewhere and cache it for performance.
List<MyListItem> _listWithoutDuplicates = _listWithDuplicates.Distinct(new MyListItemComparer()).ToList();
//Choose the line below instead, if you have a situation where there is a chance to change the list while Distinct() is running.
//ToArray() is used to solve "Collection was modified; enumeration operation may not execute" error.
//List<MyListItem> _listWithoutDuplicates = _listWithDuplicates.ToArray().Distinct(new MyListItemComparer()).ToList();
return _listWithoutDuplicates;
}
Assuming you have 2 other classes like:
public class MyListItemComparer : IEqualityComparer<MyListItem>
{
public bool Equals(MyListItem x, MyListItem y)
{
return x != null
&& y != null
&& x.A == y.A
&& x.B.Equals(y.B);
&& x.C.ToString().Equals(y.C.ToString());
}
public int GetHashCode(MyListItem codeh)
{
return codeh.GetHashCode();
}
}
And:
public class MyListItem
{
public int A { get; }
public string B { get; }
public MyEnum C { get; }
public MyListItem(int a, string b, MyEnum c)
{
A = a;
B = b;
C = c;
}
}
I think the simplest way is:
Create a new list and add unique item.
Example:
class MyList{
int id;
string date;
string email;
}
List<MyList> ml = new Mylist();
ml.Add(new MyList(){
id = 1;
date = "2020/09/06";
email = "zarezadeh#gmailcom"
});
ml.Add(new MyList(){
id = 2;
date = "2020/09/01";
email = "zarezadeh#gmailcom"
});
List<MyList> New_ml = new Mylist();
foreach (var item in ml)
{
if (New_ml.Where(w => w.email == item.email).SingleOrDefault() == null)
{
New_ml.Add(new MyList()
{
id = item.id,
date = item.date,
email = item.email
});
}
}

Categories

Resources