I've been told that Rigidbody.MoveRotation is the best way in Unity 3D to rotate the player between fixed positions while still detecting hits. However, while I can move smoothly from fixed position to position with:
if (Vector3.Distance(player.position, targetPos) > 0.0455f) //FIXES JITTER
{
var direction = targetPos - rb.transform.position;
rb.MovePosition(transform.position + direction.normalized * playerSpeed * Time.fixedDeltaTime);
}
I can't find out how to rotate smoothly between fixed positions. I can rotate to the angle I want instantly using Rigidbody.MoveRotation(Vector3 target);, but I can't seem to find a way to do the above as a rotation.
Note: Vector3.Distance is the only thing stopping jitter. Has anyone got any ideas?
First of all MoveRotation doesn't take a Vector3 but rather a Quaternion.
Then in general your jitter might come from overshooting - you might be moving further than the distance between your player and target actually is.
You can avoid that bit by using Vector3.MoveTowards which prevents any overshooting of the target position like e.g.
Rigidbody rb;
float playerSpeed;
Vector3 targetPos;
// in general ONLY g through the Rigidbody as soon as dealing wit Physics
// do NOT go through transform at all
var currentPosition = rb.position;
// This moves with linear speed towards the target WITHOUT overshooting
// Note: It is recommended to always use "Time.deltaTime". It is correct also during "FixedUpdate"
var newPosition = Vector3.MoveTowards(currentPosition, targetPos, playerSpeed * Time.deltaTime);
rb.MovePosition(newPosition);
// [optionally]
// Note: Vector3 == Vector3 uses approximation with a precision of 1e-5
if(rb.position == targetPos)
{
Debug.Log("Arrived at target!");
}
Then you can simply apply this same concept also to rotation by going through the equivalent Quaternion.RotateTowards basically just the same approach
Rigidbody rb;
float anglePerSecond;
Quaternion targetRotation;
var currentRotation = rb.rotation;
var newRotation = Quaternion.RotateTowards(currentRotation, targetRotation, anglePerSecond * Time.deltaTime);
rb.MoveRotation(newRotation);
// [optionally]
// tests whether dot product is close to 1
if(rb.rotation == targetRotation)
{
Debug.Log("Arrived at rotation!");
}
You can go one step further and use a tweeting library to tween between rotations.
DOTween
With that you can call it like this:
rigidbody.DoRotate(target, 1f) to rotate to target in 1 second.
Or even add callbacks.
rigidbody.DoRotate(target, 1f).OnComplete(//any method or lambda you want)
If at some point you want to cancel the tween yuou can save it on a variable and then call tween.Kill();
So, you want to animate the rotation value over time until it reaches a certain value.
Inside the Update method, you can use the Lerp method to keep rotating the object to a point, but you will never really reach this point if you use Lerp. It will keep rotating forever (always closer to the point).
You can use the following:
private bool rotating = true;
public void Update()
{
if (rotating)
{
Vector3 to = new Vector3(20, 20, 20);
if (Vector3.Distance(transform.eulerAngles, to) > 0.01f)
{
transform.eulerAngles = Vector3.Lerp(transform.rotation.eulerAngles, to, Time.deltaTime);
}
else
{
transform.eulerAngles = to;
rotating = false;
}
}
}
So, if the distance between the current object angle and the desired angle is greater than 0.01f, it jumps right to the desired position and stop executing the Lerp method.
Related
Im scratching my head over this one, really cant figure it out.
Im trying to implement the player movement from this example:
https://www.youtube.com/watch?v=LNidsMesxSE
Starts at minute 4:25 and ends at minute 5:20
This script tries translating all that to unity.So I started all the way over from scratch and just want to make a simple movement script.
You can plug this into any Unity version, throw the script onto and object with a CharacterController component, add a child object with a mesh that will tilt, the main object will rotate around its Y axis and move.
I do recommend using a simple T pose character or atleast a long capsule so you can better see what is happening than when you would be using a cube to test this.
The weird glitches im having is that the object randomly spasms out even though im always only adding extremely small rotations and movements every frame. And 95% of the time it doesnt happen, so I havent been able to pinpoint exactly what is causing this.
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class CharacterMove : MonoBehaviour
{
public float speed = 200f;
public float rotationSpeed = 180f;
public float tiltFactor = 8f;
public bool normalizeVelocity = false;
CharacterController cc;
Vector3 velocity;
Transform armatureBody;
void Start()
{
cc = GetComponent<CharacterController>();
armatureBody = transform.GetChild(0);
}
void Update()
{
velocity = new Vector3(Input.GetAxis("Horizontal"), 0,
Input.GetAxis("Vertical"));
}
void FixedUpdate()
{
if ((velocity != Vector3.zero))
{
var ccVelocity = cc.velocity; // CharacterController velocity. This might be the problem, but without it I cannot rotate the object towards the actual forward velocity.
Quaternion toRotation;
toRotation = Quaternion.LookRotation(ccVelocity, Vector3.up);
transform.rotation = Quaternion.RotateTowards(transform.rotation, toRotation, rotationSpeed * Time.deltaTime);
if (Input.GetKey(KeyCode.S)) print("new toRotation: " + toRotation);
armatureBody.localEulerAngles = new Vector3(velocity.z * tiltFactor, 0, -velocity.x * tiltFactor); // Tilt Body towards velocity This causes the weirdest and most consistest twitching bugs when the tilt is backwards so the object is moving backwards, maybe because im using LookRotation to look backwards?
}
velocity = Quaternion.Euler(0, transform.eulerAngles.y, 0) * velocity; // forward is always forward
cc.SimpleMove(velocity * Time.deltaTime * speed);
}
}
This script does 4 things,
get the velocity from player input.
rotate the main Object(this script) towards the velocity
add tilt towards the velocity, to the child armatureBody, this is a t Pose character in my case.
move the main Object this script is on.
Any help would be appreciated.
I tried removing the vector3 != Zero check, I tried normalizing the vectors, and I tried using a different Quaternion rotation method, but all with the same faulty results.
Check in Update() if Input.forward > threshold if so rotate to velocity. Dont rotate to velocity when only going sideways or backwards, so we can now strafe sideways and walk backwards when standing still or run and rotate to our velocity with the AD keys when running.
void Update()
{
velocity = new Vector3(Input.GetAxis("Horizontal"), 0,
Input.GetAxis("Vertical"));
if (velocity.z > 0.2f)
{
forwardVelocityThreshold = true;
}
else forwardVelocityThreshold = false;
}
Then in our FixedUpdate() we check for that bool and apply the rotateToVelocity if true.
Adjust the following if statement:
if (ccVelocity != Vector3.zero && forwardVelocityThreshold)
{
toRotation = Quaternion.LookRotation(ccVelocity, Vector3.up);
transform.rotation = Quaternion.RotateTowards(transform.rotation, toRotation, rotationSpeed * Time.fixedDeltaTime);
}
Now it works as intended, I also changed the deltaTime to FixedDeltaTime as suggested by Voidsay in the comments, although I have heard conflicting things about this. Some say FixedUpdate always uses fixedDeltaTime even if you are using deltaTime, other say no, always use fixedDeltaTime in FixedUpdate.
I am moving a rigidbody using rb.AddForce(force,ForceMode.Impulse) where force is the target position the rigidbody have to reach.
Now the speed it goes directly depends on the distance it has to cover.
Let's say the time taken to reach the target position is 3sec. I need the rigidbody to cover the same target pos in 5sec.
I dont want to change the timescale as it affects my gameflow
On Changing the velocity of rigidbody it fails to reach the target position
Some basic physics/math:
velocity = change-in-position / travel-time
force = mass * change-in-velocity / acceleration-time
For ease, we're going to call change-in-position as distance, and change-in-velocity/acceleration-time as acceleration
Now, since the acceleration-time component is effectively zero because you're using Impulse, we're going to remove it from the equation (in math terms, we set it at '1')
force = mass * change-in-velocity
Assuming your object starts at zero velocity, we can simplify change-in-velocity to just velocity
force = mass * velocity
force = mass * distance / travel-time
To bring that back into Unity code:
var mass = rb.mass;
var distance = destination.position - transform.position;
var travelTime = 5f; // seconds
var force = mass * distance / travelTime;
rb.AddForce(force, ForceMode.Impulse);
Note that this assumes a frictionless transfer and constant velocity.
If you ignore gravity, this code solves the problem, here I changed the drag according to weight and distance, it may be a little bit away from the destination at the end, the reason should be higher drag friction.
public void ForceToTarget(Transform target, float time = 1f)
{
var rb = GetComponent<Rigidbody>();
var vector = target.position - transform.position;
var distance = vector.magnitude;
rb.drag = distance/time;
rb.AddForce(vector*rb.mass*distance/time, ForceMode.Impulse);
}
If you want precise control over your speed, then stop using ForceMode.Impulse because other physics effects like drag will make your answers wrong. Instead, just set the speed yourself. You can do this with a Coroutine to control timing and ForceMode.VelocityChange to control the speed. Basically, just look at where you are, where the target is, how much time is left, and apply the speed directly.
private bool canMove = true;
public void MoveTo(Vector3 targetPosition, float targetTime)
{
if(canMove)
{
StartCoroutine(MoveToCoroutine(targetPosition,targetTime));
}
}
private IEnumerator MoveToCoroutine(Vector3 targetPosition, float time)
{
canMove = false;
while(time > 0)
{
var positionDelta = transform.position - targetPosition;
var targetSpeed = positionDelta / time;
var speedDelta = targetSpeed - rb.velocity;
rb.AddForce(speedDelta , ForceMode.VelocityChange);
yield return null;
time -= Time.deltaTime;
}
// Bring the object to a stop before fully releasing the coroutine
rb.AddForce(-rb.velocity, ForceMode.VelocityChange);
canMove = true;
}
I wrote this here into the text editor, no IDE and haven't tested it, but I'm pretty sure this'll do what you want.
Assuming you're using the target position as-is then larger vectors will cause larger force to be applied than smaller vectors. Similarly, if using a direction vector as-is then as the rb gets closer to the target the magnitute of the vector gets smaller and thus less force is applied.
To get a constant speed use the direction to the target and Normalise it instead. Regardless of the distance the direction vector will always have a magnitude of 1 so you can multiply it by any value to accurately control the speed of the object:
Rigidbody rb;
public Transform target;
public float dist;
public float speed = 2f; // or whatever
public float targetDistance = 40f; // or whatever
private void Start()
{
rb = GetComponent<Rigidbody>();
StartCoroutine("IMove");
}
IEnumerator IMove()
{
dist = Vector3.Distance(transform.position, target.position);
while (dist > targetDistance)
{
dist = Vector3.Distance(transform.position, target.position);
rb.AddForce(Vector3.Normalize(target.position - transform.position) * speed, ForceMode.Impulse);
yield return new WaitForFixedUpdate();
}
}
Without getting too much into the physics and maths, if you want it to travel slower but the same distance you need to reduce the gravity on it and the initial force.
Note in this example I am assuming the weight is 1 to make the calculation a bit easier for force.
public class TrevelSpeedAdjusted
{
public float speedFactor = 1;
void FixedUpdate()
{
// Reduce the gravity on the object
rb.AddForce(-Physics.gravity * rigidbody.mass * (1 - speedFactor));
}
public float AddAdjustedForce(Vector3 force, ForceMode forceMode)
{
rb.AddForce(force * speedFactor, forceMode);
}
}
So you can try DoTween package to do this pretty easily and its very convenient to use a package instead of using Unity's inbuilt system.
With doTween use this:
DOMove(Vector3 to, float duration, bool snapping) condition to tween your physics Gameobject to a given target position in the duration you require.
Here's documentation you can refer to if you want: http://dotween.demigiant.com/documentation.php
Let me give you an example:
Install the doTween Package. http://dotween.demigiant.com/download
Import it to unity.
Go to your script where you want to achieve the functionality you mentioned on your question and add this header "using DG.Tweening".
Now get access of your RigidBody.
For Example Lets say: I have a cube gameobject with rigidbidy and this script attached.
The Cube Initial Position is at 0,0,0.
And I want it to move to 5,5,5 in 3 seconds or 5 seconds as per your questions request. And lets say I want this to happen when I click SpaceBar on keyboard.
So I would simply do.
Rigidbody rb;
void Start()
{
rb= GetComponent<Rigibody>();
}
void Update()
{
if(Input.GetButtonDown(Keycode.Space))
{
MoveCube(new Vector3(5,5,5),5);
}
}
void MoveCube(Vector3 inTargetPosition , float durationToReachTheTarget)
{
//What this line does is first take in the target position you want your physics object to reach as it first parameter, Then takes in the duration in which you want it to reach there.
rb.DoMove(inTargetPosition,durationToReachTheTarget);
}
This should help you. But remember this is only if you okay with adding an extra package. Personally this package is very good and I would recommend you this.
travelTime = 0.0f;
while (Vector3.Distance(Vector2.Lerp(startPos, endPos, travelTime), transform.position) >= maxDistance) {
locationToGo = Vector2.Lerp(startPos, Input.mousePosition, travelTime);
travelTime += 0.1f;
}
// SHOW
// Smoothly move the camera towards that target position
transform.position = Vector3.SmoothDamp(transform.position, locationToGo, ref velocity, smoothTime);
So, this code is meant to use Lerp to return a Vector2 a certain amount of 'steps' towards the mouse pointer. And then give that value to the SmoothDamp to move the square to the pos. But the Lerp is not calculating correctly. Does anyone know what is wrong, or any better working alternatives?
Since I don't really know what exactly you are trying to achieve i'm just gonna guess you want to move a GameObject to the MousePosition every Frame.
You could do it like this (it is out of my head, not compileproof):
GameObject ourGameobject;
Vector3 ourTarget;
void Update()
{
ourGameobject.transform.position = Vector3.lerp(ourGameobject.transform.position, ourTarget, Time.DeltaTime);
}
For faster or lower speed just multiply Time.DeltaTime with sth.
Also Note that Input.MousePosition returns a coordinate on the screen.
What I want to do is to make a kind of 2.5D runner game in Unity, which the character's all three rotation axises are frozen and the position on Z axis is also frozen. I don't know how to make the character moving forward nicely on the seesaw. (I create the seesaw by using HingeJoint.)
I create a struct to detect the CapsuleCollider status by using Physics.Raycast() function and that works fine.
private struct ColliderStatus
{
public bool headed; //colliding up
public bool footed; //colliding down
public bool onPlane; //colliding down && the obstacle colliding does not have slope angle
public bool lefted; //colliding left
public bool righted; //colliding right
public bool inAir; //not colliding anything
}
I've tried these ways:
Add force on Rigidbody to move forward
//To move character rigidbody move forward automatically in runner game
//when the speed is lower than the minimum speed and it's on plane or in air.
if (rigidbody.velocity.x < minForwardSpeed && (colliderStatus.onPlane || colliderStatus.inAir))
{
rigidbody.AddForce(20f * Vector3.right);
}
//Add gravity to player
Vector3 gravityForce = new Vector3(0f, -gravityOnPlayer, 0f);
rigidbody.AddForce(gravityForce);
It doesn't work well because the character continue going up when it's on the seesaw though the seesaw starts to tilt. And there will be a velocity loss when the character fall to ground from a higher plane or after jumping and what it looks like is that the character will stunned for a little moment on the landing point and then begin to accelerate.
Use transform.Translate() to move forward && change the way of adding gravity
//Use transform.Translate() to move forward
//I recognize that by this way, there will be no velocity loss
//when the character falling down to the ground at the landing point
//If I don't use this condition, my character will stuck on the
//right vertical wall
if (!colliderStatus.righted)
{
transform.Translate(new Vector2(minForwardSpeed, 0f) * Time.deltaTime);
}
I don't know why I can't write like this since it will cause the velocity doesn't react correctly:
//Use transform.Translate() to move forward
if (!colliderStatus.righted && rigidbody.velocity.x < minForwardSpeed)
{
transform.Translate(new Vector2(minForwardSpeed, 0f) * Time.deltaTime);
}
To change the way of adding gravity, I use a function SlopeAngleVector() to calculate the slope vector the character is running on.
private Vector3 SlopeAngleVector()
{
Vector3 nextStepPositon = new Vector3(transform.position.x + 0.01f, transform.position.y, 0f);
Ray nextPosRay = new Ray(nextStepPositon, Vector3.down);
Ray nowPosRay = new Ray(transform.position, Vector3.down);
RaycastHit nextPosHit;
RaycastHit nowPosHit;
Vector3 slopeAngle = Vector3.zero;
Physics.Raycast(nowPosRay, out nowPosHit, 5f, obstaclesLayerMask);
if (Physics.Raycast(nextPosRay, out nextPosHit, 5f, obstaclesLayerMask))
{
slopeAngle = new Vector3(nextPosHit.point.x - nowPosHit.point.x, nextPosHit.point.y - nowPosHit.point.y, 0f).normalized;
}
return slopeAngle;
}
Then I add the gravity by calculate the gravity projection on the slope vector:
private void AddGravity()
{
Vector3 gravityForce = new Vector3(0f, -gravityOnPlayer, 0f);
//my character could be collided by the long vertical wall(colliderStatus.righted)
//so I set the condition as "!colliderStatus.footed"
//otherwise, I would use "colliderStatus.inAir"
if (!colliderStatus.footed)
{
gravityForce = new Vector3(0f, -gravityOnPlayer, 0f);
}
else
{
gravityForce = Vector3.Project(Vector3.down * gravityOnPlayer, SlopeAngleVector());
}
rigidbody.AddForce(gravityForce);
}
Now my character can slide down from the seesaw but it will keep going backwards. And it cannot make it through when on the low slope angle seesaw.
How to make a good behavior script for the runner on seesaw?
I'd suggest looking at some of the Unity standard asset character controllers, I believe they take slopes into account for their character movement. It may give you some ideas.
I'd also recommend modifying the way your code calculates the angle of the slope. The raycast hit will give you back a surface normal, you should then be able to use the Vector3.Cross to figure out the angle of the slope.
It'll be something like: Vector3.Cross(normal, (vector that points away from screen)).
You may need to tweak it to get it working correctly but this can give you the slope angle in one raycast. It may also eliminate potential issues of your move to position being just below the see saw.
As a general tip, try not to mix transform and rigidbody stuff together, if you want to move the rigidbody, move the rigidbody directly, not indirectly through the transform.
I'm making a basic 2D space shooter game in unity. I have the movements working fine and the camera follows the player. I've been scratching my head over how to give the camera a slight delay from the player moving to the camera moving to catch up to it without it teleporting. I was told to use a Vector3.Lerp and tried a few things from stackoverflow answers but none seemed to work with the way my code is set up. Any suggestions?
(myTarget is linked to the player)
public class cameraFollower : MonoBehaviour {
public Transform myTarget;
void Update () {
if(myTarget != null){
Vector3 targPos = myTarget.position;
targPos.z = transform.position.z;
transform.position = targPos;
}
}
}
If you linear interpolate (Lerp) you risk that Time.deltaTime * speed > 1 in which case the camera will start to extrapolate. That is, instead of following it will get in front if your target.
An alternative is to use pow in your linear interpolation.
float speed = 2.5f;
float smooth = 1.0f - Mathf.Pow(0.5f, Time.deltaTime * speed);
transform.position = Vector3.Lerp(transform.position, targetPos, smooth);
Mathf.Pow(0.5, time) means that after 1/speed second, half of the distance to the target point will be travelled.
The idea with Lerping camera movement is to gradually and smoothly have the camera make its way to the target position.
The further away the camera is, the bigger the distance it will travel per frame, but the closer the camera is, the distance per frame becomes smaller, making the camera ease into its target position.
As an example, try replacing your transform.position = targPos; line with:
float speed = 2.5f; // Set speed to whatever you'd like
transform.position = Vector3.Lerp(transform.position, targPos, Time.deltaTime * speed);