Is this a proper way of using await/await with EF? - c#

Is this a proper way of using async/await with EF for an API? If not, can you please show me some options? The code is compiling and shows no errors. The application is working fine, but I want to make sure that it runs asynchronous.
public class AdminController : ControllerBase
{
[HttpGet("Users")]
public async Task<IResult> Users()
{
return await Admin.GetUsers();
}
}
public static class Admin
{
internal static async Task<IResult> GetUsers()
{
using var context = new DataBaseContext();
List<User>? _users = context.users.ToList();
return (_users.Count == 0) ?
Results.NotFound() :
Results.Ok(_users);
}
}
Or should I use this instead?
public class AdminController : ControllerBase
{
[HttpGet("Users")]
public Task<IResult> Users()
{
return Admin.GetUsers();
}
}
public static class Admin
{
internal static async Task<IResult> GetUsers()
{
using var context = new DataBaseContext();
List<User>? _users = await context.users.ToListAsync();
return (_users.Count == 0) ?
Results.NotFound() :
Results.Ok(_users);
}
}

The second one is what you want to use. Your first option lacks an async signature meaning you cannot await your static async method. To understand why you must understand what async and await does at runtime. So you have a bunch of threads running in a thread pool and when you have a request come in, a thread gets used to run your code and if its lacking async and await it would run in a synchronous fashion. This means that the thread will be out of that pool until the end of processing. If that admin function took 10 seconds to process, that thread will be locked to that request for 10 seconds. In that same example if you mark it as async and await, your thread goes back into the pool while you await and a callback gets used to say "Hey I'm done" and completes the execution from that await. It becomes more important as your application gets more requests. Hope I explained it well enough

Related

Run an async method only once, and return the same result to all concurrent and future calls [duplicate]

This question already has answers here:
Enforce an async method to be called once
(4 answers)
Closed 6 months ago.
I'm writing an ASP.net Core 6 application (but the question is more about C# in general) where I have a controller action like this:
[HttpGet]
public async Task<IActionResult> MyAction() {
var result = await myService.LongOperationAsync();
return Ok(result);
}
Basically, the action calls a service that needs to do some complex operation and can take a bit of time to respond, up to a minute. Obviously, if in the meantime another request arrives a second run of LongOperationAsync() starts, consuming even more resources.
What I would like to do is redesign this so that the calls to LongOperationAsync() don't run in parallel, but instead wait for the result of the first call and then all return the same result, so that LongOperationAsync() only runs once.
I thought of a few ways to implement this (for example by using a scheduler like Quartz to run the call and then check if a relevant Job is already running before enqueueing another one) but they all require quite a bit of relatively complicated plumbing.
So I guess my questions are:
Is there an established design pattern / best practice to implement this scenario? Is it even practical / a good idea?
Are there features in the C# language and/or the ASP.net Core framework that facilitate implementing something like this?
Clarification: basically I want to run the long-running operation only once, and "recycle" the result to any other call that was waiting without executing the long-running operation again.
You could use an async version of Lazy<T> to do this.
Stephen Toub has posted a sample implementation of LazyAsync<T> here, which I reproduce below:
public class AsyncLazy<T> : Lazy<Task<T>>
{
public AsyncLazy(Func<T> valueFactory) :
base(() => Task.Run(valueFactory))
{ }
public AsyncLazy(Func<Task<T>> taskFactory) :
base(() => Task.Run(taskFactory))
{ }
public TaskAwaiter<T> GetAwaiter() { return Value.GetAwaiter(); }
}
You could use it like this:
public class Program
{
public static async Task Main()
{
var test = new Test();
var task1 = Task.Run(async () => await test.AsyncString());
var task2 = Task.Run(async () => await test.AsyncString());
var task3 = Task.Run(async () => await test.AsyncString());
var results = await Task.WhenAll(task1, task2, task3);
Console.WriteLine(string.Join(", ", results));
}
}
public sealed class Test
{
public async Task<string> AsyncString()
{
Console.WriteLine("Started awaiting lazy string.");
var result = await _lazyString;
Console.WriteLine("Finished awaiting lazy string.");
return result;
}
static async Task<string> longRunningOperation()
{
Console.WriteLine("longRunningOperation() started.");
await Task.Delay(4000);
Console.WriteLine("longRunningOperation() finished.");
return "finished";
}
readonly AsyncLazy<string> _lazyString = new (longRunningOperation);
}
If you run this console app, you'll see that longRunningOperation() is only called once, and when it's finished all the tasks waiting on it will complete.
Try it on DotNetFiddle
As Matthew's answer points out, what you're looking for is an "async lazy". There is no built-in type for this, but it's not that hard to create.
What you should be aware of, though, is that there are a few design tradeoffs in an async lazy type:
What context the factory function is run on (the first invoker's context or no context at all). In ASP.NET Core, there isn't a context. So the Task.Factory.StartNew in Stephen Toub's example code is unnecessary overhead.
Whether failures should be cached. In the simple AsyncLazy<T> approach, if the factory function fails, then a faulted task is cached indefinitely.
When to reset. Again, by default the simple AsyncLazy<T> code never resets; a successful response is also cached indefinitely.
I'm assuming you do want the code to run multiple times; you just want it not to run multiple times concurrently. In that case, you want the async lazy to be reset immediately upon completion, whether successful or failed.
The resetting can be tricky. You want to reset only when it's completed, and only once (i.e., you don't want your reset code to clear the next operation). My go-to for this kind of logic is a unique identifier; I like to use new object() for this.
So, I would start with the Lazy<Task<T>> idea, but wrap it instead of derive, which allows you to do a reset, as such:
public class AsyncLazy<T>
{
private readonly Func<Task<T>> _factory;
private readonly object _mutex = new();
private Lazy<Task<T>> _lazy;
private object _id;
public AsyncLazy(Func<Task<T>> factory)
{
_factory = factory;
_lazy = new(_factory);
_id = new();
}
private (object LocalId, Task<T> Task) Start()
{
lock (_mutex)
{
return (_id, _lazy.Value);
}
}
private void Reset(object localId)
{
lock (_mutex)
{
if (localId != _id)
return;
_lazy = new(_factory);
_id = new();
}
}
public async Task<T> InvokeAsync()
{
var (localId, task) = Start();
try
{
return await task;
}
finally
{
Reset(localId);
}
}
}

c# Task.WhenAll to block while awaiting completion

I have a simple Winforms application. I would like to background TCP connections/print requests and check the output of all tasks at a set point in my code.
I would expect ReportOnTasks to block until WaitAll is complete. Please could someone explain why this is not the case? I'm also worried I haven't structured this correctly.
Edit, to clarify my intentions:
I would like to send the print jobs as soon as I receive the data. Then continue with some other DB operations. Once all the print operations are complete, I would like to update the UI to state the result.
I've attempted to simplify the code as much as I can. Maybe too much. HomeController just inits some stuff. There are buttons on the form and file watchers that trigger the main functionality.
public class HomeController
{
public HomeController(){
MessageBox.Show("1");
oPrintController.PrintAsync("192.168.2.213", Encoding.ASCII.GetBytes("string to print"));
MessageBox.Show("2");
// Block here untill tasks are complete
ReportOnTasks();
MessageBox.Show("Report on tasks complete");
}
public async void ReportOnTasks()
{
await Task.WhenAll(oPrintController.Tasks);
foreach(Task<PrintController.PrintResult> PR in oPrintController.Tasks)
{
// do something with the result of task
}
}
}
and the PrintController
public class PrintController
{
public List<Task<PrintResult>> Tasks = new List<Task<PrintResult>>();
public async void PrintAsync(string sIP, List<byte[]> lsToPrint, int iPort = 9100)
{
var s = await Task.Run(() => PrintAsync1(sIP, lsToPrint));
}
public async System.Threading.Tasks.Task<PrintResult> PrintAsync1(string sIP, List<byte[]> lsToPrint, int iPort = 9100)
{
using (TcpClient tc = new TcpClient())
{
await tc.ConnectAsync(sIP, iPort);
using (var ns = tc.GetStream())
{
foreach (byte[] btLabel in lsToPrint)
{
await ns.WriteAsync(btLabel, 0, btLabel.Length);
}
}
}
Thread.Sleep(10000);
return new PrintResult();
}
}
public class PrintResult
{
bool bSuccess = false;
}
You are not awaiting the call to ReportOnTasks()
Moreover, you can't await within a ctor, because they can't be async.
Depending on how your HomeController is used, you could use a static async method which returns an instance of HomeController, created by a private ctor instead:
Something like this:
public class HomeController
{
//notice private - you can't new up a HomeController - you have to use `CreateInstance`
private HomeController(){
MessageBox.Show("1");
//not clear from your code where oPrintController comes from??
oPrintController.PrintAsync("192.168.2.213", Encoding.ASCII.GetBytes("string to print"));
MessageBox.Show("2");
MessageBox.Show("Report on tasks complete");
}
public static async Task<HomeController> CreateInstance() {
var homeController = new HomeController();
await homeController.ReportOnTasks();
return homeController;
}
//don't use async void! Change to Task
public async Task ReportOnTasks()
{
//not clear from your code where oPrintController comes from??
await Task.WhenAll(oPrintController.Tasks);
foreach(Task<PrintController.PrintResult> PR in oPrintController.Tasks)
{
// do something with the result of task
}
}
}
Usage:
var homeControllerInstance = await HomeController.CreateInstance();
It's generally not recommended to perform heavy operations in class constructors, but I suppose you won't change that part, so in order to wait for ReportOnTasks to finish, you need to make it synchronous.
Take into account, that constructor itself doesn't support async/await, it's not possible to mark it async.
Having said that, you won't have real performance enhancement marking void ReportOnTasks as async. In addition, it is not recommended to mark void methods as async due to issues with exceptions handling, which is usually not possible.
So, you can either postpone ReportOnTasks like Alex showed you, or you can synchronously wait until all tasks are finished (which is possible inside ctor).
public void ReportOnTasks()
{
Task.WhenAll(oPrintController.Tasks).GetAwaiter().GetResult(); //synchronously wait
foreach(Task<PrintController.PrintResult> PR in oPrintController.Tasks)
{
// do something with the result of task
}
}
However, I wouldn't suggest this approach, because instance creation will take a while and most importantly block UI thread - and that's usually signal something is really fishy

ASP.NET MVC - Calling Async method from synchronous method deadlock [duplicate]

I'm stuck in an Async deadlock and I can't figure out the correct syntax to fix it. I've looked at several different solutions, but can't seem to quite figure out what is causing the problem.
I am using Parse as a backend and trying to use a handler to write to the table. My handler looks something like:
public class VisitorSignupHandler : IHttpHandler
{
public void ProcessRequest(HttpContext context)
{
//Get the user's name and email address
var UserFullName = context.Request.QueryString["name"].UrlDecode();
var UserEmailAddress = context.Request.QueryString["email"].UrlDecode();
//Save the user's information
var TaskToken = UserSignup.SaveUserSignup(UserFullName, UserEmailAddress);
TaskToken.Wait();
....
}
public bool IsReusable { get { return false; } }
}
Then it is calling my middle tier:
public static class UserSignup
{
public static async Task SaveUserSignup(string fullName, string emailAddress)
{
//Initialize the Parse client with the Application ID and the Windows key
ParseClient.Initialize(AppID, Key);
//Create the object
var UserObject = new ParseObject("UserSignup")
{
{"UserFullName", fullName},
{"UserEmailAddress", emailAddress}
};
//Commit the object
await UserObject.SaveAsync();
}
}
Although this seems to be getting stuck at Wait(). I was under the impression that Wait() would simply just wait for the task to complete, then return to normal operations. Is this not correct?
You're running into a common deadlock problem that I describe on my blog and in a recent MSDN article.
In short, await by default will resume its async method inside of a captured "context", and on ASP.NET, only one thread is allowed into that "context" at a time. So when you call Wait, you are blocking a thread inside that context, and the await cannot enter that context when it is ready to resume the async method. So the thread in the context is blocked at Wait (waiting for the async method to complete), and the async method is blocked waiting for the context to be free... deadlock.
To fix this, you should go "async all the way". In this case, use HttpTaskAsyncHandler instead of IHttpHandler:
public class VisitorSignupHandler : HttpTaskAsyncHandler
{
public override async Task ProcessRequestAsync(HttpContext context)
{
//Get the user's name and email address
var UserFullName = context.Request.QueryString["name"].UrlDecode();
var UserEmailAddress = context.Request.QueryString["email"].UrlDecode();
//Save the user's information
var TaskToken = UserSignup.SaveUserSignup(UserFullName, UserEmailAddress);
await TaskToken;
....
}
}
Your problem is that you are mixing synchronous and async code. This can be done, but is tricky. Your best bet is to make your http handler async as well:
public class VisitorSignupHandler : HttpTaskAsyncHandler
{
public override async Task ProcessRequestAsync(HttpContext context)
{
//Get the user's name and email address
var UserFullName = context.Request.QueryString["name"].UrlDecode();
var UserEmailAddress = context.Request.QueryString["email"].UrlDecode();
//Save the user's information
await UserSignup.SaveUserSignup(UserFullName, UserEmailAddress);
..
}
}

Async method that throws exception won't resume the thread context back to the same thread

When I am using async await and an exception is thrown the thread context is being lost. In my code I'm using dependency injection that registered to resolve per thread so I need to execute my code on the same thread.
This is how it is setup:
I have a method that will try calling different communicators using async when one throws an exception it will go onto the next one:
public async Task<TResponse> VisitRequestAsync(Context context)
{
/* ....
prepare request from context
.... */
var communicatorEnumerableInstance = _communicatorService.GetCommunicatorInstanceEnumerable();
foreach (var communicator in communicatorEnumerableInstance)
{
using (communicator)
{
var communicatorInstance = communicator as ICommunicator<TResponse, TRequest>;
try
{
return await communicatorInstance.ProcessAsync(request).ConfigureAwait(true);
break;// call will break out of the for-each loop if successful processed.
}
catch (Exception exception)
{
continue;// Continue to load next communication method/instance
}
}
}
}
Below is a unit test that contains a communicator that always throws an exception and one that tries to get a dependency that is registered onto the original thread.
public class TestDependancy : ITestDependancy
{
}
public interface ITestDependancy
{ }
public class TestCommunicatorThrowsException :
ICommunicator<ResponseType, RequestType>
{
public async Task<ResponseType> ProcessAsync(RequestType request)
{
var task = Task.Run(() =>
{
throw new Exception();
return new ResponseType();
});
return await task;
}
public void Dispose()
{
}
}
public class TestCommunicatorGetsDependency :
ICommunicator<ResponseType, RequestType>
{
public TestCommunicatorGetsDependency()
{ }
public async Task<ResponseType> ProcessAsync(RequestType request)
{
TestDependancy = DefaultFactory.Default.Resolve<ITestDependancy>();
var task = Task.Run(() => new ResponseType());
return await task;
}
public ITestDependancy TestDependancy { get; set; }
public void Dispose()
{
}
}
[TestMethod]
[TestCategory("Unit")]
public async Task it_should_be_able_to_resolve_interface_from_original_thread()
{
var secondCommunicator = new TestCommunicatorGetsDependency();
_communicators = new ICommunicator<ResponseType, RequestType>[]
{new TestCommunicatorThrowsException(), secondCommunicator};
_communicatorServiceMock.Setup(
x => x.GetCommunicatorInstanceEnumerable(It.IsAny<string>(), It.IsAny<string>()))
.Returns(_communicators);
((IFactoryRegistrar) DefaultFactory.Default).RegisterPerThread<ITestDependancy, TestDependancy>();
var firstInstance = DefaultFactory.Default.Resolve<ITestDependancy>();
await it.VisitRequestAsync(_context).ConfigureAwait(true);
var secondInstance = secondCommunicator.TestDependancy;
Assert.AreEqual(firstInstance, secondInstance);
}
When the dependencies are resolved in the unit test they are not equal. After looking into it I see that the value for CurrentThread.ManagedThreadId changes at the point when the exception gets thrown. Then when it is caught in the VistRequestAsync method the CurrentThread.ManagedThreadId is never restored to its original state. So then the dependency injection is unable to get the same instance because it is now operating on a different thread.
Originally, I was using .ConfigureAwait(false) with the await. Then I tried setting it to true and I started seeing it sometimes get the same thread back. Which sounds a lot like what is said in this answer.
This post about the synchronization context and async sounds a lot like the problem I am facing. My trouble is I'm using WebApi and need a response back when things get done so I'm not sure how to use his message pump and asynchronously wait for an answer.
Async uses the ThreadPool to process tasks. This means that there is no guarantee that an async operation will start and complete on the same thread.
When a async task is first awaited, the task is put on a work queue. As soon as possible, the task scheduler grabs that task from the queue and assigns it to one of the many available threads.
For more information, see this overview of the structure of the TPL: https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx.
If you need a context that flows with the thread, look at using something like the logical call context or CallContext.LogicalSetData / LogicalGetData.
But the behavior you're seeing is correct, and as mentioned has nothing to do with whether or not an exception is thrown. You'll see different thread ids at various points of an asynchronous task's scheduling, execution, and completion.

How to seed Users in ASP.NET 5 Startup.cs with Async

I'm attempting to create an initial 'Super User' in an ASP.NET 5 application. Using the latest template files with MVC 6 / EF7.
I can follow the examples set out here:
http://wildermuth.com/2015/3/17/A_Look_at_ASP_NET_5_Part_3_-_EF7
This works fine - until I try to execute an async method. For example:
await _userManager.CreateAsync(user, "P#55w0rd!");
or even:
await _context.SaveChangesAsync();
Synchronous methods work without a problem and this code executes outside of the Startup.cs Configure{...} as well.
I get the 'White Screen of Death' on application start. I would do it all without async but I don't think the UserManager has a Create()in Identity 3.0.
Is this me not understanding asynchronous programming or should it be possible?
EDIT: Added the entire call:
Define a Seeder class and a method to create the user:
public class Seeder
{
private ApplicationDbContext _context;
private UserManager<ApplicationUser> _userManager;
public Seeder(
ApplicationDbContext context,
UserManager<ApplicationUser> userManager)
{
_context = context;
_userManager = userManager;
}
public async Task Seed()
{
await CreateUsersAsync();
}
public async Task CreateUsersAsync()
{
var user = await _userManager.FindByEmailAsync("superuser#superuser.com");
if (user == null)
{
var company = _context.Company.First(x => x.Name == "Acme Ltd");
user = new ApplicationUser
{
UserName = "superuser#superuser.com",
Email = "superuser#superuser.com",
CreatedDate = DateTime.Now,
IsActive = true,
CompanyID = company.CompanyId
};
await _userManager.CreateAsync(user, "P#55w0rd!!");
}
}
}
Configure the service:
public void ConfigureServices(IServiceCollection services)
{
...
services.AddTransient<Seeder>();
...
}
Call it:
public async void Configure(Seeder seeder)
{
...
await seeder.Seed();
...
}
Funny thing is; it does actually create the User - it just doesn't continue. So the second time it executes user != null and it executes fine.
I think the problem is because a deadlock is formed by the signature
public async void Configure(Seeder seeder).
Since it returns void, the awaited Task is never returned to the caller which creates a dead lock. Can you make it:
public async Task Configure(Seeder seeder).
I haven't gotten to work with MVC 6 yet, :( so I may be missing something. But that's why there is a deadlock.
Edit:
Since you can't change the signature of Configure, create a method called ConfigureAsync that returns type Task. Now await as per usual inside of it with your user manager code and call ConfigureAsync from Configure but wait on it.
ConfigureAsync.ConfigureAwait(false).Wait()
ConfigureAwait (false) is used to prevent potential dead locks of waiting on the async method to complete.
Full example:
public void Configure(Seeder seeder)
{
//Edited due to typo/bad syntax.
ConfigureAsync(seeder).Wait();
}
public async Task ConfigureAsync(Seeder seeder)
{
//Now treat this like true async/await.
await seeder.Seed().ConfigureAwait(false);
}
If you run into deadlocks here, perhaps your seeder should just be synchronous? I would avoid using Task.Run() in an ASP.NET context because that will totally defeat the purpose of async/await in the first place by taking up two request threads that would have just been done on one if done synchronously.
Sometimes, you need to implement a sync interface but you only have async APIs available. There is no perfect solution.
Fortunately, this code is only called once so performance concerns don't matter. You can just do the dirty sync over async bridge:
public void ConfigureServices(IServiceCollection services)
{
ConfigureServicesImpl(services).Wait(); //bridge
}
public async Task ConfigureServicesImpl(IServiceCollection services)
{
await ...;
}
You might need to insert a deadlock protection such as ConfigureAwait(false) or Task.Run(() => ...).Wait().

Categories

Resources