I have a method RenderReport which generates a PDF file (byte[]). This can sometimes hang indefinitely. It should take no more than 15 seconds to complete when successful. Hence, I'm using a TaskCompletionSource to be able to limit the execution time and throw a TimeoutException if it exceeds the timeout.
However, what I can't determine is: how do you provide the byte[] file returned by RenderReport to the SetResult in the following code? longRunningTask.Wait returns a boolean and not the file so where do you get the file from?
I don't want to use longRunningTask.Result as that can introduce deadlock issues. Here's my code:
public async Task RunLongRunningTaskAsync()
{
Task<byte[]> longRunningTask = Task.Run(() => RenderReport());
TaskCompletionSource<byte[]> tcs = new TaskCompletionSource<byte[]>();
Task toBeAwaited = tcs.Task;
new Thread(() => ThreadBody(longRunningTask, tcs, 15)).Start();
await toBeAwaited;
}
private void ThreadBody(Task<byte[]> longRunningTask, TaskCompletionSource<byte[]> tcs, int seconds)
{
bool completed = longRunningTask.Wait(TimeSpan.FromSeconds(seconds));
if (completed)
// The result is a placeholder. How do you get the return value of the RenderReport()?
tcs.SetResult(new byte[100]);
else
tcs.SetException(new TimeoutException("error!"));
}
private byte[] RenderReport()
{
using (var report = new Microsoft.Reporting.WinForms.LocalReport())
{
// Other logic here...
var file = report.Render("PDF", null, out _, out _, out _, out _, out var warnings);
if (warnings.Any())
{
// Log warnings...
}
return file; // How do I get this file?
}
}
You only risk deadlocks if you synchronously wait for a Task to complete.
If you know that longRunningTask has completed, it's perfectly safe to access longRunningTask.Result. So just do:
if (completed)
tcs.SetResult(longRunningTask.Result);
else
tcs.SetException(new TimeoutException("error!"));
And even then it's more complex than this: your case won't deadlock even if you do synchronously wait for longRunningTask to complete, as longRunningTask doesn't rely on any awaits. It's well worth understanding why this deadlock situation can occur.
That said, abandoning a thread which has got stuck somewhere sounds like a terrible idea: the thread will just sit around forever leaking resources, and you'll accumulate them as more reports hang, until you run out of memory.
If you really can't figure out what's going on, I'd recommend writing a small wrapper application around the report generation, and run that as a separate process. Killing processes is well-supported, and lets you ensure that nothing is leaked. You can return the bytes of the report back through standard output.
What works for me is to use ContinueWith:
This shows a first run with a successful retrieval in the specified 2-seconds and then a second run where it times out.
So it's just one approach, but is this helpful at all?
using System;
using System.Threading;
using System.Threading.Tasks;
namespace task_completion
{
class Program
{
static void Main(string[] args)
{
runAsync();
Console.ReadKey();
}
static async void runAsync()
{
// Normal
await longRunningByteGetter(1000, new CancellationTokenSource(2000).Token)
.ContinueWith((Task<byte[]> t)=>
{
switch (t.Status)
{
case TaskStatus.RanToCompletion:
var bytesReturned = t.Result;
Console.WriteLine($"Received {bytesReturned.Length} bytes");
break;
default:
Console.WriteLine(nameof(TimeoutException));
break;
}
});
// TimeOut
await longRunningByteGetter(3000, new CancellationTokenSource(2000).Token)
.ContinueWith((Task<byte[]> t) =>
{
switch (t.Status)
{
case TaskStatus.RanToCompletion:
var bytesReturned = t.Result;
Console.WriteLine($"Received {bytesReturned.Length} bytes");
break;
default:
Console.WriteLine(nameof(TimeoutException));
break;
}
});
}
async static Task<Byte[]> longRunningByteGetter(int delay, CancellationToken token)
{
await Task.Delay(delay, token); // This is a mock of your file retrieval
return new byte[100];
}
}
}
Related
I have an array of tasks and I am awaiting them with Task.WhenAll. My tasks are failing frequently, in which case I inform the user with a message box so that she can try again. My problem is that reporting the error is delayed until all tasks are completed. Instead I would like to inform the user as soon as the first task has thrown an exception. In other words I want a version of Task.WhenAll that fails fast. Since no such build-in method exists I tried to make my own, but my implementation does not behave the way I want. Here is what I came up with:
public static async Task<TResult[]> WhenAllFailFast<TResult>(
params Task<TResult>[] tasks)
{
foreach (var task in tasks)
{
await task.ConfigureAwait(false);
}
return await Task.WhenAll(tasks).ConfigureAwait(false);
}
This generally throws faster than the native Task.WhenAll, but usually not fast enough. A faulted task #2 will not be observed before the completion of task #1. How can I improve it so that it fails as fast as possible?
Update: Regarding cancellation, it is not in my requirements right now, but lets say that for consistency the first cancelled task should stop the awaiting immediately. In this case the combining task returned from WhenAllFailFast should have Status == TaskStatus.Canceled.
Clarification: Τhe cancellation scenario is about the user clicking a Cancel button to stop the tasks from completing. It is not about cancelling automatically the incomplete tasks in case of an exception.
Your best bet is to build your WhenAllFailFast method using TaskCompletionSource. You can .ContinueWith() every input task with a synchronous continuation that errors the TCS when the tasks end in the Faulted state (using the same exception object).
Perhaps something like (not fully tested):
using System;
using System.Threading;
using System.Threading.Tasks;
namespace stackoverflow
{
class Program
{
static async Task Main(string[] args)
{
var cts = new CancellationTokenSource();
cts.Cancel();
var arr = await WhenAllFastFail(
Task.FromResult(42),
Task.Delay(2000).ContinueWith<int>(t => throw new Exception("ouch")),
Task.FromCanceled<int>(cts.Token));
Console.WriteLine("Hello World!");
}
public static Task<TResult[]> WhenAllFastFail<TResult>(params Task<TResult>[] tasks)
{
if (tasks is null || tasks.Length == 0) return Task.FromResult(Array.Empty<TResult>());
// defensive copy.
var defensive = tasks.Clone() as Task<TResult>[];
var tcs = new TaskCompletionSource<TResult[]>();
var remaining = defensive.Length;
Action<Task> check = t =>
{
switch (t.Status)
{
case TaskStatus.Faulted:
// we 'try' as some other task may beat us to the punch.
tcs.TrySetException(t.Exception.InnerException);
break;
case TaskStatus.Canceled:
// we 'try' as some other task may beat us to the punch.
tcs.TrySetCanceled();
break;
default:
// we can safely set here as no other task remains to run.
if (Interlocked.Decrement(ref remaining) == 0)
{
// get the results into an array.
var results = new TResult[defensive.Length];
for (var i = 0; i < tasks.Length; ++i) results[i] = defensive[i].Result;
tcs.SetResult(results);
}
break;
}
};
foreach (var task in defensive)
{
task.ContinueWith(check, default, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Default);
}
return tcs.Task;
}
}
}
Edit: Unwraps AggregateException, Cancellation support, return array of results. Defend against array mutation, null and empty. Explicit TaskScheduler.
I recently needed once again the WhenAllFailFast method, and I revised #ZaldronGG's excellent solution to make it a bit more performant (and more in line with Stephen Cleary's recommendations). The implementation below handles around 3,500,000 tasks per second in my PC.
public static Task<TResult[]> WhenAllFailFast<TResult>(params Task<TResult>[] tasks)
{
if (tasks is null) throw new ArgumentNullException(nameof(tasks));
if (tasks.Length == 0) return Task.FromResult(new TResult[0]);
var results = new TResult[tasks.Length];
var remaining = tasks.Length;
var tcs = new TaskCompletionSource<TResult[]>(
TaskCreationOptions.RunContinuationsAsynchronously);
for (int i = 0; i < tasks.Length; i++)
{
var task = tasks[i];
if (task == null) throw new ArgumentException(
$"The {nameof(tasks)} argument included a null value.", nameof(tasks));
HandleCompletion(task, i);
}
return tcs.Task;
async void HandleCompletion(Task<TResult> task, int index)
{
try
{
var result = await task.ConfigureAwait(false);
results[index] = result;
if (Interlocked.Decrement(ref remaining) == 0)
{
tcs.TrySetResult(results);
}
}
catch (OperationCanceledException)
{
tcs.TrySetCanceled();
}
catch (Exception ex)
{
tcs.TrySetException(ex);
}
}
}
Your loop waits for each of the tasks in pseudo-serial, so that's why it waits for task1 to complete before checking if task2 failed.
You might find this article helpful on a pattern for aborting after the first failure: http://gigi.nullneuron.net/gigilabs/patterns-for-asynchronous-composite-tasks-in-c/
public static async Task<TResult[]> WhenAllFailFast<TResult>(
params Task<TResult>[] tasks)
{
var taskList = tasks.ToList();
while (taskList.Count > 0)
{
var task = await Task.WhenAny(taskList).ConfigureAwait(false);
if(task.Exception != null)
{
// Left as an exercise for the reader:
// properly unwrap the AggregateException;
// handle the exception(s);
// cancel the other running tasks.
throw task.Exception.InnerException;
}
taskList.Remove(task);
}
return await Task.WhenAll(tasks).ConfigureAwait(false);
}
I'm adding one more answer to this problem, not because I've found a faster solution, but because I am now a bit skeptical about starting multiple async void operations on an unknown SynchronizationContext. The solution I am proposing here is significantly slower. It's about 3 times slower than #ZaldronGG's excellent solution, and about 10 times slower than my previous async void-based implementation. It has though the advantage that after the completion of the returned Task<TResult[]>, it doesn't leak fire-and-forget continuations attached on the observed tasks. When this task is completed, all the continuations created internally by the WhenAllFailFast method have been cleaned up. Which is a desirable behavior for APIs is general, but in many scenarios it might not be important.
public static Task<TResult[]> WhenAllFailFast<TResult>(params Task<TResult>[] tasks)
{
ArgumentNullException.ThrowIfNull(tasks);
CancellationTokenSource cts = new();
Task<TResult> failedTask = null;
TaskContinuationOptions flags = TaskContinuationOptions.DenyChildAttach |
TaskContinuationOptions.ExecuteSynchronously;
Action<Task<TResult>> continuationAction = new(task =>
{
if (!task.IsCompletedSuccessfully)
if (Interlocked.CompareExchange(ref failedTask, task, null) is null)
cts.Cancel();
});
IEnumerable<Task> continuations = tasks.Select(task => task
.ContinueWith(continuationAction, cts.Token, flags, TaskScheduler.Default));
return Task.WhenAll(continuations).ContinueWith(allContinuations =>
{
cts.Dispose();
var localFailedTask = Volatile.Read(ref failedTask);
if (localFailedTask is not null)
return Task.WhenAll(localFailedTask);
// At this point all the tasks are completed successfully
Debug.Assert(tasks.All(t => t.IsCompletedSuccessfully));
Debug.Assert(allContinuations.IsCompletedSuccessfully);
return Task.WhenAll(tasks);
}, default, flags, TaskScheduler.Default).Unwrap();
}
This implementation is similar to ZaldronGG's in that it attaches one continuation on each task, with the difference being that these continuations are cancelable, and they are canceled en masse when the first non-successful task is observed. It also uses the Unwrap technique that I've discovered recently, which eliminates the need for the manual completion of a TaskCompletionSource<TResult[]> instance, and usually makes for a concise implementation.
Given the following method signature in a WCF service:
public string Query(string request)
{
using (Log.BeginTimedOperation("Persist request"))
{
var messageCorrelationId = Guid.NewGuid().ToString();
var payloadURI = PayloadHelper.GetFullPath(messageCorrelationId);
PayloadHelper.PersistPayloadWithPath(request, payloadURI);
Log.Information("My service request {MessageCorrelationId} {RequestPayloadPath}", messageCorrelationId, payloadURI);
}
// DoWork here, code removed for brevity
return result;
}
and the corresponding extension methods:
public static string GetFullPath(string messageCorrelationId)
{
var folderDate = DateTime.Now.ToString("yyyyMMdd");
var folderHour = DateTime.Now.ToString("HH");
var logFolder = Path.Combine(ConfigurationManager.AppSettings["NetworkFiler"], "Payloads", folderDate, folderHour);
Directory.CreateDirectory(logFolder);
var fileName = $"{messageCorrelationId}-{"MyWCFService"}-{$"{DateTime.Now:yyyy-MM-dd-HH-mm-ss-fff}-{Guid.NewGuid():N}"}.{"xml"}";
return Path.Combine(logFolder, fileName);
}
public static void PersistPayloadWithPath(string text, string path)
{
var task = WriteFileAsync(path, text);
task.GetAwaiter().GetResult();
}
private static async Task WriteFileAsync(string path, string text)
{
try
{
byte[] buffer = Encoding.Unicode.GetBytes(text);
using (var stream = new FileStream(path, FileMode.Create, FileAccess.Write, FileShare.None, bufferSize: 4096, useAsync: true))
{
await stream.WriteAsync(buffer, 0, buffer.Length).ConfigureAwait(false);
}
}
catch (Exception ex)
{
Serilog.Log.Error(ex, "WriteFileAsync");
}
}
This code will block, if for instance the file is being interrogated by anti-virus (guess) or IO slowness to the filer.
So here is the great debate, calling a asynchronous method from a synchronous method in ASP.NET. To this day I still don't know if there is a reliable way to create a fire and forget mechanism. It's not that I don't care about the failure, I do, that 'should be' handled by the catch statement and the static Serilog instance.
While writing this version of the post, it dawned on me that maybe one of the problems might be in fact the logger and it's async wrapper around the File Sink.. will test that in a few.
Any help is appreciated with this bugger.
Thank you,
Stephen
UPDATE-ASYNC
public async Task<string> QueryAsync(string request)
{
using (Log.BeginTimedOperation("PersistAsync-Request"))
{
var messageCorrelationId = Guid.NewGuid().ToString();
var payloadURI = PayloadHelper.GetFullPath(messageCorrelationId);
await PayloadHelper.PersistPayloadWithPathAsync(request, payloadURI).ConfigureAwait(false);
Log.Information("My service request {MessageCorrelationId} {RequestPayloadPath}", messageCorrelationId, payloadURI);
}
// DoWork here, code removed for brevity
return result;
}
public static string GetFullPath(string messageCorrelationId)
{
var folderDate = DateTime.Now.ToString("yyyyMMdd");
var folderHour = DateTime.Now.ToString("HH");
var logFolder = Path.Combine(ConfigurationManager.AppSettings["NetworkFiler"], "Payloads", folderDate, folderHour);
Directory.CreateDirectory(logFolder);
var fileName = $"{messageCorrelationId}-MyWCFService-{DateTime.Now:yyyy-MM-dd-HH-mm-ss-fff}-{Guid.NewGuid():N}.xml";
return Path.Combine(logFolder, fileName);
}
public static async Task PersistPayloadWithPathAsync(string text, string path)
{
await WriteFileAsync(path, text).ConfigureAwait(false);
}
private static async Task WriteFileAsync(string path, string text)
{
try
{
byte[] buffer = Encoding.Unicode.GetBytes(text);
using (var stream = new FileStream(path, FileMode.Create, FileAccess.Write, FileShare.None, bufferSize: 4096, useAsync: true))
{
await stream.WriteAsync(buffer, 0, buffer.Length).ConfigureAwait(false);
}
}
catch
{
// ignored
}
}
Still blocking randomly, lick every 20-30 requests
So it's blocking on the new FileStream(). Looking at the source code, the constructor calls a method called Init(), which actually ends up opening the file. So it is doing I/O in the constructor, which really it shouldn't be since you can't await it.
Setting useAsync should make it run async, if it can. But maybe it can't open the file from a network drive asynchronously.
So your best bet is to just run it inside Task.Run() to guarantee it doesn't block.
The following only applies to .NET Core (unfortunately):
You would be better off using File.WriteAllTextAsync, which would actually make your life easier:
await File.WriteAllTextAsync(path, text);
The documentation of that doesn't really explain anything for some reason, but it works the same as File.WriteAllText (it's just async):
Creates a new file, write the contents to the file, and then closes the file. If the target file already exists, it is overwritten.
So, exactly what you're doing in your code, but this way you can await the whole operation (including opening the file).
I think it waits becuse you use
task.GetAwaiter().GetResult();
If you don't need the result, just remove this line. It should work fine.
If you need the result you should make PersistPayloadWithPath function also async.
The problem is your WriteFileAsync method. It actually runs synchronously until it hits the first await (that's how async/await works). I believe it hangs at new FileStream(...).
If you want to just fire-end-forget form synchronous code, this should be enough:
public static void PersistPayloadWithPath(string text, string path)
{
Task.Run(async () => await WriteFileAsync(path, text));
}
The code above should help you when you don't have async alternatives. However as Gabriel Luci suggested in his answer you should go with await File.WriteAllTextAsync(path, text); as it's probably optimized for async work.
You can still use Task.Run(...); with await File.WriteAllTextAsync(path, text); in fire-and-forget scenario.
Just beware that exceptions from inside the task (WriteFileAsync) won't propagate to the calling thread. This won't be the problem in your case since the whole WriteFileAsync method's body is inside try-catch block, where you log the exception.
EDIT
To illustrate how the threads behave in async/await methods, play around with the following example (try all 3 ways the Bar function is ran):
using System;
using System.Net;
using System.Threading;
using System.Threading.Tasks;
namespace ConsoleApp2
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine($"Main thread: {Thread.CurrentThread.ManagedThreadId}");
Task.Run(async () => await Bar());
// Task.Run(() => Bar());
// Bar();
Console.ReadLine();
}
static async Task Bar()
{
Console.WriteLine($"Bar thread before await: {Thread.CurrentThread.ManagedThreadId}");
await Foo();
Console.WriteLine($"Bar thread after await: {Thread.CurrentThread.ManagedThreadId}");
}
static async Task Foo()
{
Console.WriteLine($"Foo thread before await: {Thread.CurrentThread.ManagedThreadId}");
var c = new WebClient();
var source = await c.DownloadStringTaskAsync("http://google.com");
Console.WriteLine($"Foo thread after await: {Thread.CurrentThread.ManagedThreadId}");
}
}
}
The root caused was determined to be an incorrectly configured StealthAudit, a tool that we use to audit our filers. Once the configuration was adjusted everything works as expected.
One method is a standard async method, like this one :
private static async Task AutoRetryHandlerAsync_Worker(Func<Task<bool>> taskToRun,...)
I have tested two implementations, one that use await and the other uses .Wait()
The two implementations are not equal at all because the same tests are failing with the await version but not the Wait() one.
The goal of this method is to "execute a Task returned by the input function, and retry by executing the same function until it works" (with limitations to stop automatically if a certain number of tries is reached).
This works:
private static async Task AutoRetryHandlerAsync_Worker(Func<Task<bool>> taskToRun,...)
{
try {
await taskToRun();
}
catch(Exception)
{
// Execute later, and wait the result to complete
await Task.Delay(currentDelayMs).ContinueWith(t =>
{
// Wait for the recursive call to complete
AutoRetryHandlerAsync_Worker(taskToRun).Wait();
});
// Stop
return;
}
}
And this (with async t => and the usage of await instead of t => and the usage of .Wait() doesn't work at all because the result of the recursive call is not awaited before the final return; is executed :
private static async Task AutoRetryHandlerAsync_Worker(Func<Task<bool>> taskToRun,...)
{
try {
await taskToRun();
}
catch(Exception)
{
// Execute later, and wait the result to complete
await Task.Delay(currentDelayMs).ContinueWith(async t =>
{
// Wait for the recursive call to complete
await AutoRetryHandlerAsync_Worker(taskToRun);
});
// Stop
return;
}
}
I'm trying to understand why this simple change does change everything, when it's supposed to do the exact same thing : waiting the ContinueWith completion.
If I extract the task ran by the ContinueWith method, I do see the state of the ContinueWith function passing to "ranToCompletion" before the return of the inner await completes.
Why? Isn't it supposed to be awaited?
Concrete testable behaviour
public static void Main(string[] args)
{
long o = 0;
Task.Run(async () =>
{
// #1 await
await Task.Delay(1000).ContinueWith(async t =>
{
// #2 await
await Task.Delay(1000).ContinueWith(t2 => {
o = 10;
});
});
var hello = o;
});
Task.Delay(10000).Wait();
}
Why does var hello = o; is reached before o=10?
Isn't the #1 await supposed to hang on before the execution can continue?
The lambda syntax obscures the fact that you ContinueWith(async void ...).
async void methods are not awaited and any errors they throw will go unobserved.
And to your base question, retrying from within a catch is not a recommended practice anyway. Too much going on, catch blocks should be simple. And bluntly retrying for all exception types is also very suspect. You ought to have an idea what errors could warrant a retry, and let the rest pass.
Go for simplicity and readability:
while (count++ < N)
{
try
{
MainAction();
break;
}
catch(MoreSpecificException ex) { /* Log or Ignore */ }
Delay();
}
I am using Async await with Task.Factory method.
public async Task<JobDto> ProcessJob(JobDto jobTask)
{
try
{
var T = Task.Factory.StartNew(() =>
{
JobWorker jobWorker = new JobWorker();
jobWorker.Execute(jobTask);
});
await T;
}
This method I am calling inside a loop like this
for(int i=0; i < jobList.Count(); i++)
{
tasks[i] = ProcessJob(jobList[i]);
}
What I notice is that new tasks opens up inside Process explorer and they also start working (based on log file). however out of 10 sometimes 8 or sometimes 7 finishes. Rest of them just never come back.
why would that be happening ?
Are they timing out ? Where can I set timeout for my tasks ?
UPDATE
Basically above, I would like each Task to start running as soon as they are called and wait for the response on AWAIT T keyword. I am assuming here that once they finish each of them will come back at Await T and do the next action. I am alraedy seeing this result for 7 out of 10 tasks but 3 of them are not coming back.
Thanks
It is hard to say what the issues is without the rest if the code, but you code can be simplified by making ProcessJob synchronous and then calling Task.Run with it.
public JobDto ProcessJob(JobDto jobTask)
{
JobWorker jobWorker = new JobWorker();
return jobWorker.Execute(jobTask);
}
Start tasks and wait for all tasks to finish. Prefer using Task.Run rather than Task.Factory.StartNew as it provides more favourable defaults for pushing work to the background. See here.
for(int i=0; i < jobList.Count(); i++)
{
tasks[i] = Task.Run(() => ProcessJob(jobList[i]));
}
try
{
await Task.WhenAll(tasks);
}
catch(Exception ex)
{
// handle exception
}
First, let's make a reproducible version of your code. This is NOT the best way to achieve what you are doing, but to show you what is happening in your code!
I'll keep the code almost same as your code, except I'll use simple int rather than your JobDto and on completion of the job Execute() I'll write in a file that we can verify later. Here's the code
public class SomeMainClass
{
public void StartProcessing()
{
var jobList = Enumerable.Range(1, 10).ToArray();
var tasks = new Task[10];
//[1] start 10 jobs, one-by-one
for (int i = 0; i < jobList.Count(); i++)
{
tasks[i] = ProcessJob(jobList[i]);
}
//[4] here we have 10 awaitable Task in tasks
//[5] do all other unrelated operations
Thread.Sleep(1500); //assume it works for 1.5 sec
// Task.WaitAll(tasks); //[6] wait for tasks to complete
// The PROCESS IS COMPLETE here
}
public async Task ProcessJob(int jobTask)
{
try
{
//[2] start job in a ThreadPool, Background thread
var T = Task.Factory.StartNew(() =>
{
JobWorker jobWorker = new JobWorker();
jobWorker.Execute(jobTask);
});
//[3] await here will keep context of calling thread
await T; //... and release the calling thread
}
catch (Exception) { /*handle*/ }
}
}
public class JobWorker
{
static object locker = new object();
const string _file = #"C:\YourDirectory\out.txt";
public void Execute(int jobTask) //on complete, writes in file
{
Thread.Sleep(500); //let's assume does something for 0.5 sec
lock(locker)
{
File.AppendAllText(_file,
Environment.NewLine + "Writing the value-" + jobTask);
}
}
}
After running just the StartProcessing(), this is what I get in the file
Writing the value-4
Writing the value-2
Writing the value-3
Writing the value-1
Writing the value-6
Writing the value-7
Writing the value-8
Writing the value-5
So, 8/10 jobs has completed. Obviously, every time you run this, the number and order might change. But, the point is, all the jobs did not complete!
Now, if I un-comment the step [6] Task.WaitAll(tasks);, this is what I get in my file
Writing the value-2
Writing the value-3
Writing the value-4
Writing the value-1
Writing the value-5
Writing the value-7
Writing the value-8
Writing the value-6
Writing the value-9
Writing the value-10
So, all my jobs completed here!
Why the code is behaving like this, is already explained in the code-comments. The main thing to note is, your tasks run in ThreadPool based Background threads. So, if you do not wait for them, they will be killed when the MAIN process ends and the main thread exits!!
If you still don't want to await the tasks there, you can return the list of tasks from this first method and await the tasks at the very end of the process, something like this
public Task[] StartProcessing()
{
...
for (int i = 0; i < jobList.Count(); i++)
{
tasks[i] = ProcessJob(jobList[i]);
}
...
return tasks;
}
//in the MAIN METHOD of your application/process
var tasks = new SomeMainClass().StartProcessing();
// do all other stuffs here, and just at the end of process
Task.WaitAll(tasks);
Hope this clears all confusion.
It's possible your code is swallowing exceptions. I would add a ContineWith call to the end of the part of the code that starts the new task. Something like this untested code:
var T = Task.Factory.StartNew(() =>
{
JobWorker jobWorker = new JobWorker();
jobWorker.Execute(jobTask);
}).ContinueWith(tsk =>
{
var flattenedException = tsk.Exception.Flatten();
Console.Log("Exception! " + flattenedException);
return true;
});
},TaskContinuationOptions.OnlyOnFaulted); //Only call if task is faulted
Another possibility is that something in one of the tasks is timing out (like you mentioned) or deadlocking. To track down whether a timeout (or maybe deadlock) is the root cause, you could add some timeout logic (as described in this SO answer):
int timeout = 1000; //set to something much greater than the time it should take your task to complete (at least for testing)
var task = TheMethodWhichWrapsYourAsyncLogic(cancellationToken);
if (await Task.WhenAny(task, Task.Delay(timeout, cancellationToken)) == task)
{
// Task completed within timeout.
// Consider that the task may have faulted or been canceled.
// We re-await the task so that any exceptions/cancellation is rethrown.
await task;
}
else
{
// timeout/cancellation logic
}
Check out the documentation on exception handling in the TPL on MSDN.
I have a doubt with cancellation token source which I am using as shown in the below code:
void Process()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
MainTaskRoutine();
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
void MainTaskRoutine()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
//this method shows that a nested task is created
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
Edit: further elaboration
End objective is: when a user cancels the operation, all the immediate pending tasks(either children or grand children) should cancel.
Scenario:
As per above code:
1. I first check whether user has asked for cancellation
2. If user has not asked for cancellation then only continue with the task (Please see Process method).
sample code shows only one task here but actually there can be three or more
Lets say that CPU started processing Task1 while other tasks are still in the Task queue waiting for some CPU to come and execute them.
User requests cancellation: Task 2,3 in Process method are immediately cancelled, but Task 1 will continue to work since it is already undergoing processing.
In Task 1 it calls method MainTaskRoutine, which in turn creates more tasks.
In the function of MainTaskRoutine I have written: cancellationToken.ThrowIfCancellationRequested();
So the question is: is it correct way of using CancellationTokenSource as it is dependent on Task.WaitAll()?
[EDITED] As you use an array in your code, I assume there could be multiple tasks, not just one. I also assume that within each task that you're starting from Process you want to do some CPU-bound work first (//do some work here), and then run MainTaskRoutine.
How you handle task cancellation exceptions is determined by your project design workflow. E.g., you could do it inside Process method, or from where you call Process. If your only concern is to remove Task objects from the array where you keep track of the pending tasks, this can be done using Task.ContinueWith. The continuation will be executed regardless of the task's completion status (Cancelled, Faulted or RanToCompletion):
Task Process(CancellationToken cancellationToken)
{
var tArray = new List<Task>();
var tArrayLock = new Object();
var task = Task.Run(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
return MainTaskRoutine(cancellationToken);
}, cancellationToken);
// add the task to the array,
// use lock as we may remove tasks from this array on a different thread
lock (tArrayLock)
tArray.Add(task);
task.ContinueWith((antecedentTask) =>
{
if (antecedentTask.IsCanceled || antecedentTask.IsFaulted)
{
// handle cancellation or exception inside the task
// ...
}
// remove task from the array,
// could be on a different thread from the Process's thread, use lock
lock (tArrayLock)
tArray.Remove(antecedentTask);
}, TaskContinuationOptions.ExecuteSynchronously);
// add more tasks like the above
// ...
// Return aggregated task
Task[] allTasks = null;
lock (tArrayLock)
allTasks = tArray.ToArray();
return Task.WhenAll(allTasks);
}
Your MainTaskRoutine can be structured in exactly the same way as Process, and have the same method signature (return a Task).
Then you may want to perform a blocking wait on the aggregated task returned by Process, or handle its completion asynchronously, e.g:
// handle the completion asynchronously with a blocking wait
void RunProcessSync()
{
try
{
Process(_cancellationTokenSource.Token).Wait();
MessageBox.Show("Process complete");
}
catch (Exception e)
{
MessageBox.Show("Process cancelled (or faulted): " + e.Message);
}
}
// handle the completion asynchronously using ContinueWith
Task RunProcessAync()
{
return Process(_cancellationTokenSource.Token).ContinueWith((task) =>
{
// check task.Status here
MessageBox.Show("Process complete (or cancelled, or faulted)");
}, TaskScheduler.FromCurrentSynchronizationContext());
}
// handle the completion asynchronously with async/await
async Task RunProcessAync()
{
try
{
await Process(_cancellationTokenSource.Token);
MessageBox.Show("Process complete");
}
catch (Exception e)
{
MessageBox.Show("Process cancelled (or faulted): " + e.Message);
}
}
After doing some research I found this link.
The code now looks like this:
see the usage of CancellationTokenSource.CreateLinkedTokenSource in below code
void Process()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
MainTaskRoutine(cancellationToken);
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
void MainTaskRoutine(CancellationToken cancellationToken)
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
//this method shows that a nested task is created
using (var cancellationTokenSource = CancellationTokenSource.CreateLinkedTokenSource(cancellationToken))
{
var cancelToken = cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancelToken.ThrowIfCancellationRequested();
//do some work here
}, cancelToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
}
Note: I haven't used it, but I will let You know once it is done :)