I have WinForms app where button click calls some async method of external library.
private async void button1_Click(object sender, EventArgs e)
{
await CallLibraryAsync();
}
private static async Task CallLibraryAsync()
{
var library = new Library();
await library.DoSomethingAsync();
}
The library looks like this:
public class Library
{
public async Task DoSomethingAsync()
{
Thread.Sleep(2000);
await Task.Delay(1000).ConfigureAwait(false);
// some other code
}
}
Before any asynchronous code there is some calculation simulated by Thread.Sleep call. In that case this call will block UI thread for 2 seconds. I have no option to change the code in DoSomethingAsync.
If I want to solve blocking problem, I could call the library in Task.Run like this:
private static async Task CallLibraryAsync()
{
var library = new Library();
// added Task.Run
await Task.Run(() => library.DoSomethingAsync());
}
It solves the problem, UI is not blocke anymore, but I've consumed one thread from ThreadPool. It is not good solution.
If I want to solve this problem without another thread, I can do something like this:
private static async Task CallLibraryAsync()
{
var library = new Library();
// added
await YieldOnlyAsync().ConfigureAwait(false);
await library.DoSomethingAsync();
}
// added
private static async Task YieldOnlyAsync()
{
await Task.Yield();
}
This solution works. Task.Yield() causes that method YieldOnlyAsync() always runs asynchronously and ConfigureAwait(false) causes that next code (await library.DoSomethingAsync();) runs on some ThreadPool thread, not UI thread.
But it is quite complicated solution. Is there any simpler?
Edit:
If the library method looks like this
public class Library
{
public async Task DoSomethingAsync()
{
await Task.Delay(1000).ConfigureAwait(false);
Thread.Sleep(2000);
await Task.Delay(1000);
// some other code
}
}
UI thread would not be blocked and I do not need to do anything. But that's the problem that it is some implementation detail I do not see directly because that could be in some nuget package. When I see that the UI freezes in some situations, I may find this problem (mean CPU-bound calculation before any await in async method) just after some investigation. There is no Wait() or Result, that would be easy to find, this is more problematic.
What I would like is to be prepared for that situation if possible in some simpler way. And that's why I do not want to use Task.Run whenewer I call some third-party library.
If I want to solve blocking problem, I could call the library in Task.Run like this:
It solves the problem, UI is not blocke anymore, but I've consumed one thread from ThreadPool. It is not good solution.
This is exactly what you want to do in a WinForms app. CPU-intensive code should be moved to a separate thread to free up the UI thread. There isn't any downside to consuming a new thread in WinForms.
Use Task.Run to move it to a different thread, and wait asynchronously from the UI thread for it to complete.
To quote the Asynchronous programming article from Microsoft:
If the work you have is CPU-bound and you care about responsiveness, use async and await, but spawn off the work on another thread with Task.Run.
I have no option to change the code
People say that, but you might not actually be hamstrung thus..
Here's a simple app with the same problem you face:
It's definitely pretty sleepy:
So let's whack it into ILSpy with the Reflexil plugin loaded:
We can perhaps shorten that timeout a bit.. Right click, Edit..
Make it 1ms, Right click the assembly and Save As..
That's a bit quicker!
Have a play, NOP it out etc..
You wrote:
If I want to solve blocking problem, I could call the library in Task.Run like this:
private static async Task CallLibraryAsync()
{
var library = new Library();
// added Task.Run
await Task.Run(() => library.DoSomethingAsync());
}
It solves the problem, UI is not blocked anymore, but I've consumed one thread from ThreadPool. It is not good solution.
(emphasis added)
...and then you proceed with inventing a convoluted hack that does the same thing: offloads the invocation of the DoSomethingAsync method to the ThreadPool. So you either want to:
Invoke the DoSomethingAsync method without using any thread at all, or
Invoke the DoSomethingAsync method on a non-ThreadPool thread.
The first is impossible. You can't invoke a method without using a thread. Code runs on CPUs, not on thin air. The second can be done in many ways, with the easiest being to use the Task.Factory.StartNew method, in combination with the LongRunning flag:
await Task.Factory.StartNew(() => library.DoSomethingAsync(), default,
TaskCreationOptions.LongRunning, TaskScheduler.Default).Unwrap();
This way you will invoke the DoSomethingAsync on a newly created thread, which will be destroyed immediately after the invocation of the method has completed. To be clear, the thread will be destroyed when the invocation completes, not when the asynchronous operation completes. Based on the DoSomethingAsync implementation that you have included in the question (the first one), the invocation will complete immediately after creating the Task.Delay(1000) task, and initiating the await of this task. There will be nothing for the thread to do after this point, so it will be recycled.
Side notes:
The CallLibraryAsync method violates the guideline for not exposing asynchronous wrappers for synchronous methods. Since the DoSomethingAsync method is implemented as partially synchronous and partially asynchronous, the guideline still applies IMHO.
If you like the idea of controlling imperatively the current context, instead of controlling it with wrappers like the Task.Run method, you could check out this question: Why was SwitchTo removed from Async CTP / Release? There are (not very many) people who like it as well, and there are libraries available that make it possible (SwitchTo - Microsoft.VisualStudio.Threading).
When you use async/await for I/O or CPU-bound operations, your UI thread will not blocked. In your example, you use Thread.Sleep(2000);command for simulating your CPU-bound operations but this will block your thread-pool thread not UI thread. You can use Task.Delay(2000); for simulating your I/O operations without blocking thread-pool thread.
Related
So I have this WrapperFunction that tries to make a FunctionReturningVoid to be called asynchronously:
public async Task WrapperFunction()
{
this.FunctionReturningVoid("aParameter");
}
This is the function that returns nothing. In some parts of the code (not detailed here) it is called SYNChronously but in the CallerFunction() we want it to be run ASYNChronously.
public void FunctionReturningVoid(string myString)
{
Console.Write(myString);
}
This is the function that has the async implemented and needs to have WrapperFunction do its things without blocking otherStuff().
public async Task CallerFunction()
{
await WrapperFunction():
int regular = otherStuff();
...
}
The IDE is warning me that WrapperFunction is not using await:
This async method lacks 'await' operators and will run synchronously.
Consider using the 'await' operator to await non-blocking API calls,
or 'await Task.Run(...)' to do CPU-bound work on a background thread.
Question: How to use async without using await in WrapperFunction? If I use await it tells me that cannot await void.
It's important to distinguish asynchronous from parallel.
Asynchronous means not blocking the current thread while you're waiting for something to happen. This lets the current thread go do something else while waiting.
Parallel means doing more than one thing at the same time. This requires separate threads for each task.
You cannot call FunctionReturningVoid asynchronously because it is not an asynchronous method. In your example, Console.WriteLine() is written in a way that will block the thread until it completes. You can't change that. But I understand that's just your example for this question. If your actual method is doing some kind of I/O operation, like a network request or writing a file, you could rewrite it to use asynchronous methods. But if it's doing CPU-heavy work, or you just can't rewrite it, then you're stuck with it being synchronous - it will block the current thread while it runs.
However, you can run FunctionReturningVoid in parallel (on another thread) and wait for it asynchronously (so it doesn't block the current thread). This would be wise if this is a desktop application - you don't want to lock up your UI while it runs.
To do that, you can use Task.Run, which will start running code on another thread and return a Task that you can use to know when it completes. That means your WrapperFunction would look like this:
public Task WrapperFunction()
{
return Task.Run(() => this.FunctionReturningVoid("aParameter"));
}
Side point: Notice I removed the async keyword. It's not necessary since you can just pass the Task to the calling method. There is more information about this here.
Microsoft has some well-written articles about Asynchronous programming with async and await that are worth the read.
They seem to be doing the same thing, but I don't know when I'm supposed to use tasks and when normal delegates.
Consider the example below:
private async void Button_Click(object sender, RoutedEventArgs e) {
UseDelegates();
// await UseTasks();
}
private void UseDelegates() {
Action action = () => {
Thread.Sleep(TimeSpan.FromSeconds(2));
};
var result = action.BeginInvoke(unusedResult => {
MessageBox.Show("Used delegate.BeginInvoke!");
}, null);
action.EndInvoke(result);
}
private async Task UseTasks() {
await Task.Run(() => {
Thread.Sleep(TimeSpan.FromSeconds(2));
});
MessageBox.Show("Used await with tasks!");
}
There is no truly asynchronous work being done in your example. It seems like the only thing you want to do is to offload some synchronous work to a background thread in order to keep the UI thread responsive during the time it takes for the synchronous method - Thread.Sleep in this case - to complete.
As stated on MSDN; starting with the .NET Framework 4, the Task Parallel Library (TPL) is the preferred way to write multithreaded and parallel code. That's what your UseTasks() method does, i.e. it uses Task.Run to schedule the call to Thread.Sleep on a thread pool thread using the TPL's default task scheduler.
The BeginInvoke/EndInvoke pattern is known as the Asynchronous Programming Model (APM). This pattern is no longer recommended for new development as stated here.
So to answer your questions, you are generally "supposed to use tasks" when offloading work to a background thread in .NET 4+ applications.
In the example you have given. I would use Task every time. The library and syntax has been created with the very aim of getting rid of BeginInvoke and EndInvoke type patterns.
The only time you probably don't want to use Task over an older library is in desktop apps that use BackgroundWorker, which is specifically for running long running background work, that wants to report progress easily to the UI thread. This sort of things isn't as elegant with tasks.
I am pretty sure, this was answered already and I read many related stuff but somehow I am not getting it to work in my code. Here is the exact code base.
I have this async method in my library, that returns a string upon doing some DB entries:
public class MyLibrary
{
public async Task<string> DoSomethingAsync()
{
return await DoAsync();
}
// some private method, with multiple parameters
private Task<string> DoAsync()
{
return Task.Run(() => Do());
}
}
Now on UI, below resulted a frozen state or deadlock:
var myTask = MyLibraryobject.DoSomethingAsync();
console.Write(myTask.Result);
Since my call is awaitable, I think, UI thread waits for my call to finish its business and populate the result, doesn't it? Or since the call is running on another thread, the task might not yet completed when my cursor hits the line 2. So what now? the cursor will wait till the task gets completed or the line 2 gets executed whenever the task gets completed? sounds synchronous to me..
Also if at all, I want to 'exlicitly' wait till the task gets finished, how do i enforce that? some posts, suggested in doing like below, which gave me the result, but created some more confusion:
var myTask = Task.Run(async () => await MyLibraryobject.DoSomethingAsync());
myTask.Wait();
console.Write(myTask.Result);
What is happening above? why should i create another task and set it to wait? can't I wait for the thread, used by the async method? Again, i am clearly missing some basic stuff here.
Lastly, this is an async call, but the UI thread is waiting for it to be completed thus gives me an impression that it's synchronous. Am I thinking it right? Then what is the main purpose of async methods, which return something, and UI waits for it to complete?
Also what's the difference between a fire-and-forget call being non-async and async? is there any benefit of returning Task, instead of void, for such calls?
I am pretty sure, some broken link that connects all these pieces together in my brain. Can someone explain that to me, please??
You should probably start with my async intro and follow up with my article on async best practices. They answer almost all your questions.
For the details...
how and when to fetch return from awaitable(async) method
You should use await to get the result from an async task.
I have this async method in my library, that returns a string upon doing some DB entries
Then it should not be using Task.Run. It should be using naturally-asynchronous APIs, e.g., Entity Framework's FirstAsync.
Since my call is awaitable, I think, UI thread waits for my call to finish its business and populate the result, doesn't it?
No. The UI is blocking because your code is calling Result. Result is a blocking call.
sounds synchronous to me..
That's because you're making it synchronous by using Result. If you use await, the code will execute serially, but asynchronously.
Also if at all, I want to 'exlicitly' wait till the task gets finished, how do i enforce that?
Your code is already doing that. It's explicitly blocking until the task is complete. If you change it to properly use await, it will be explicitly waiting (but not blocking) until the task is complete.
some posts, suggested in doing like below
No. Don't use Task.Run unnecessarily.
can't I wait for the thread, used by the async method?
Pure async methods don't have threads that they use.
Then what is the main purpose of async methods, which return something, and UI waits for it to complete?
Async makes sense when it's consumed with await.
Now on UI, below resulted a frozen state or deadlock:
var myTask = MyLibraryobject.DoSomethingAsync();
This is blocking the UI because it is not awaited. You simply need to await an async method
string res = await MyLibraryobject.DoSomethingAsync();
and the above should be placed in the UI inside an async context too.
Edit - reply to comment do "you mean another wrapper async method, which returns Task<string>..."? No,I don't. When I wrote "inside an async context" I meant to add the async keyword to a subscribed event, like a button click, if you are in the code behind or to your delegate command implementation, if you are in a more advanced MVVM implementation of the GUI.
Furthermore, your class library is supposed to do something truly asynchronous, not just starting a task and wrapping it inside a formally async method, like it is your DoAsync.
Edit - in reply to comment "how should avoid" it? If you can't do async all the way, just keep the library and the API sync and unblock the UI by starting a separate thread to call the sync api.
I have read a lot of articles and still cant get understand this part.
Consider this code :
private async void button1_Click(object sender, EventArgs e)
{
await Dosomething();
}
private async Task<string> Dosomething()
{
await Task.Run((() => "Do Work"));
return "I am done";
}
First question:
When I click the button, it will Call DoSomething and await a Task that creates a Thread from the threadpool by calling Task.Run ( if I am not mistaken ) and all of this runs asynchronously. So I achieved creating a thread that does my work but doing it asynchronously? But consider that I don't need any result back, i just want the work to be done without getting any result back, is there really a need to use async/await , and if so, how?
Second question:
When running a thread asynchronously, how does that work? Is it running on the main UI but on a separate thread or is it running on a separate thread and separate is asynchronously inside that method?
The purpose of creating Async methods is so you can Await them later. Kind of like "I'm going to put this water on to boil, finish prepping the rest of my soup ingredients, and then come back to the pot and wait for the water to finish boiling so I can make dinner." You start the water boiling, which it does asynchronously while you do other things, but eventually you have to stop and wait for it. If what you want is to "fire-and-forget" then Async and Await are not necessary.
Simplest way to do a fire and forget method in C#?
Starting a new task queues that task for execution on a threadpool thread. Threads execute in the context of the process (eg. the executable that runs your application). If this is a web application running under IIS, then that thread is created in the context of the IIS worker process. That thread executes separately from the main execution thread, so it goes off and does its thing regardless of what your main execution thread is doing, and at the same time, your main execution thread moves on with its own work.
1
There's a big difference if you don't await the Task or you await it:
Case you don't await it: DoSomething is called but next sentence is executed while DoSomething Task hasn't been completed.
Case you await it: DoSomething is called and next sentence is executed once DoSomething Task has been completed.
So, the need of async/await will depend on how you want to call DoSomething: if you don't await it is like calling it the fire & forget way.
2
Is it running on the main UI but on a separate thread or is it running
on a seperate thread and separate is asynchronously inside that
method?
Asynchronous code sometimes means other thread (see this Q&A Asynchronous vs Multithreading - Is there a difference?). That is, either if the code is being executed in a separate thread from the UI one or it lets continue the processing of the UI thread while it gets resumed, it's nice because UI loop can still update the screen while other tasks are being done in parallel without freezing the UI.
An asynchronous method (i.e. async method) is a syntactic sugar to tell the compiler that await statements should be treated as a state machine. The C# compiler turns your async/await code into a state machine where code awaiting a Task result is executed after the code that's being awaited.
Interesting Q&As
You might want to review these other Q&As:
Async/Await vs Threads
What's the difference between Task.Start/Wait and Async/Await?
async/await - when to return a Task vs void?
Is Async await keyword equivalent to a ContinueWith lambda?
OP said...
[...] But does this mean that "async/await" will fire off a thread and
Task.Run also fires off a thread or are they both the same thread?
Using async-await doesn't mean "I create a thread". It's just a syntactic sugar to implement continuations in an elegant way. A Task may or may not be a thread. For example, Task.FromResult(true) creates a fake task to be able to implement an async method without requirement it to create a thread:
public Task<bool> SomeAsync()
{
// This way, this method either decides if its code is asynchronous or
// synchronous, but the caller can await it anyway!
return Task.FromResult(true);
}
The type Task<TResult> requires you to return a TResult from your task. If you don't have anything to return, you can use Task instead (which, incidentally, is the base class of Task<TResult>).
But keep in mind that a task is not a thread. A task is a job to be done, while a thread is a worker. As your program runs, jobs and workers become available and unavailable. Behind the scenes, the library will assign your jobs to available workers and, because creating new workers is a costly operation, it will typically prefer to reuse the existing ones, through a thread pool.
I have such question. For example I create dynamically custom userControl using mvvm pattern. So I've sended a command to create an userControl. So creation looks like
private async Task<bool> OnAddUserControl1(List<ALV_VM_ADWERT> control)
{
try
{
_cancellationTokenSource = new CancellationTokenSource();
var userControl = _userControlsContainer.CreateUserControl1(control);
var task1 = Task.Factory.StartNew(() =>
{
userControl.ViewModel.InOperationEvent += OnUsercontrolInOperationChanged;
userControl.ViewModel.ValueTypeChangedEvent += OnValueTypeChanged;
userControl.ViewModel.SetExpandableName += OnSetExpandableName;
}, _cancellationTokenSource.Token, TaskCreationOptions.AttachedToParent, TaskScheduler.FromCurrentSynchronizationContext());
var task2 = Task.Factory.StartNew(() => FinalCreatingStep(userControl, control[0].RAUMNAME.Trim()), _cancellationTokenSource.Token, TaskCreationOptions.AttachedToParent, TaskScheduler.FromCurrentSynchronizationContext());
await Task.WhenAll(task1, task2);
return true;
}
catch (Exception)
{
return false;
}
}
and my question is - does it make sence to create child tasks, or it is better to have code without child tasks? And if the answer is yes, then should I make all methods async? If not, what methods I should not make async?
Do those event subscriptions really need to be asynchronous? You may be trying too hard to use asynchronous code.
The user control constructor is usually the most time consuming part and must be done on the UI thread. Asynchronous operations are generally only required when some form of IO or processing is involed;
Reading Files
Writing Files
Processing large data sets
Crossing the process boundary to talk to a server or connect device
In short, an asynchronous task is probably overkill here.
Does it make sence to create child tasks, or it is better to have code without child tasks?
It is depending on your requirements. If your UI will blocked (Freeze) for long time you have to create a child task, otherwise not!
And if the answer is yes, then should I make all methods async? If not, what methods I should not make async?
Here it is also depending on your requirements and your .Net Version. If you are using .NET 4.5 the easiest way to do that with Async await. If you are using .Net 3.5 than just use Task. If .Net 2 use BackgorundWorker else use Thread class. ONLY Asynchrony methods must get the word async. Other methods you do not have to change them. In other words only the method which blocked the UI.
Your current code doesn't make any sense.
The point of async code in a UI application is responsiveness - i.e., moving long-running operations off the UI thread. As #Gusdor pointed out, most of the use cases for async are I/O-based (or event-based) operations, where you don't want to block the UI thread just to wait for some result. Another use case is when you have some CPU-bound work to do, but you don't want to tie up the UI thread; in this case, you can use Task.Run.
But in your code, you're calling StartNew with TaskScheduler.FromCurrentSynchronizationContext, which means your "child" tasks are going to execute on the UI thread. So your OnAddUserControl1 is just starting tasks which will run on the same thread and asynchronously waiting for them to complete. This is a very complex way of doing nothing.
While we're on the subject of StartNew, there are a number of other problems:
The code is passing a CancellationToken without ever observing it in the delegate.
The code is specifying AttachedToParent which is incorrect for await-compatible tasks.
As mentioned above, the code is passing a TaskScheduler which will run the delegate right back on the UI thread.
If you need to use background (thread pool) tasks, you should use Task.Run instead of Task.Factory.StartNew; I go into more detail on my blog.
So for this example, it doesn't make sense to use async or await at all.
The best way to start using async is to identify the I/O-bound (or event-driven) parts first (e.g., HTTP requests, database calls), make them async, and then work your way up the call stack.