how to fixed CS0070 error?
Error:
Error CS0070 The event 'Demo.MyEvent' can only appear on the left hand side of += or -= (except when used from within the type 'Demo')
Code:
class Demo
{
public event EventHandler<int> MyEvent;
public void Handler(object sender, int arg)
{
Console.WriteLine($"I just go {arg}");
}
}
class Program
{
static void Main(string[] args)
{
var demo = new Demo();
var eventInfo = typeof(Demo).GetEvent("MyEvent");
var handlerMethod = demo.GetType().GetMethod("Handler");
var handler = Delegate.CreateDelegate(
eventInfo.EventHandlerType,
null,
handlerMethod
);
eventInfo.AddEventHandler(demo, handler);
demo.MyEvent?.Invoke(null, 312);
}
}
Error line:
demo.MyEvent?.Invoke(null, 312);
Field-like events (which this is) act like a field to the declaring type, but just appear like an event add/remove pair to external types. This means that only the type that declares the event can do things like access the current value, which is required in order to invoke the backing delegate. Basically, there's a hidden private field that the compiled declares that you can't see - and when you access the event from within the type, you're talking to the field directly. But when accessing the event from outside, you have to go via the accessors - and the only accessors that C# provides are the add and remove accessors.
If you write a method inside Demo, that method will be able to invoke the event.
Event must be invoked directly form it's class, if your scenario requires to invoke it from outside the event then simply encapsulate your event with a method:
public void InvokeMyEvent(int value)
{
MyEvent?.Invoke(this,value);
}
Then subscribe to it easily with a short code:
demo.MyEvent += MyEvent_EventHandeler;
private void My_EventHandeler(object sender, int e)
{
//enter code here
}
Or even shorter with lambda:
demo.MyEvent += (s, e) =>
{
//enter code here
}
Invoke it from anywhere:
demo.InvokeMyEvent(321);
Thanks Mr. Marc Gravell.
Excuse me, My code is wrong.
Correct code is:
namespace ConsoleApp1
{
class Demo
{
public event EventHandler<int> MyEvent;
public void Handler(object sender, int arg)
{
Console.WriteLine($"I just go {arg}");
}
public static void Main(string[] args)
{
var demo = new Demo();
var eventInfo = typeof(Demo).GetEvent("MyEvent");
var handlerMethod = demo.GetType().GetMethod("Handler");
var handler = Delegate.CreateDelegate(
eventInfo.EventHandlerType,
null,
handlerMethod
);
eventInfo.AddEventHandler(demo, handler);
demo.MyEvent?.Invoke(null, 312);
}
}
}
Related
Is it possible to unsubscribe an anonymous method from an event?
If I subscribe to an event like this:
void MyMethod()
{
Console.WriteLine("I did it!");
}
MyEvent += MyMethod;
I can un-subscribe like this:
MyEvent -= MyMethod;
But if I subscribe using an anonymous method:
MyEvent += delegate(){Console.WriteLine("I did it!");};
is it possible to unsubscribe this anonymous method? If so, how?
Action myDelegate = delegate(){Console.WriteLine("I did it!");};
MyEvent += myDelegate;
// .... later
MyEvent -= myDelegate;
Just keep a reference to the delegate around.
One technique is to declare a variable to hold the anonymous method which would then be available inside the anonymous method itself. This worked for me because the desired behavior was to unsubscribe after the event was handled.
Example:
MyEventHandler foo = null;
foo = delegate(object s, MyEventArgs ev)
{
Console.WriteLine("I did it!");
MyEvent -= foo;
};
MyEvent += foo;
Since C# 7.0 local functions feature has been released, the approach suggested by J c becomes really neat.
void foo(object s, MyEventArgs ev)
{
Console.WriteLine("I did it!");
MyEvent -= foo;
};
MyEvent += foo;
So, honestly, you do not have an anonymous function as a variable here. But I suppose the motivation to use it in your case can be applied to local functions.
From memory, the specification explicitly doesn't guarantee the behaviour either way when it comes to equivalence of delegates created with anonymous methods.
If you need to unsubscribe, you should either use a "normal" method or retain the delegate somewhere else so you can unsubscribe with exactly the same delegate you used to subscribe.
In 3.0 can be shortened to:
MyHandler myDelegate = ()=>Console.WriteLine("I did it!");
MyEvent += myDelegate;
...
MyEvent -= myDelegate;
Instead of keeping a reference to any delegate you can instrument your class in order to give the event's invocation list back to the caller. Basically you can write something like this (assuming that MyEvent is declared inside MyClass):
public class MyClass
{
public event EventHandler MyEvent;
public IEnumerable<EventHandler> GetMyEventHandlers()
{
return from d in MyEvent.GetInvocationList()
select (EventHandler)d;
}
}
So you can access the whole invocation list from outside MyClass and unsubscribe any handler you want. For instance:
myClass.MyEvent -= myClass.GetMyEventHandlers().Last();
I've written a full post about this tecnique here.
Kind of lame approach:
public class SomeClass
{
private readonly IList<Action> _eventList = new List<Action>();
...
public event Action OnDoSomething
{
add {
_eventList.Add(value);
}
remove {
_eventList.Remove(value);
}
}
}
Override the event add/remove methods.
Keep a list of those event handlers.
When needed, clear them all and re-add the others.
This may not work or be the most efficient method, but should get the job done.
If you want to be able to control unsubscription then you need to go the route indicated in your accepted answer. However, if you are just concerned about clearing up references when your subscribing class goes out of scope, then there is another (slightly convoluted) solution which involves using weak references. I've just posted a question and answer on this topic.
One simple solution:
just pass the eventhandle variable as parameter to itself.
Event if you have the case that you cannot access the original created variable because of multithreading, you can use this:
MyEventHandler foo = null;
foo = (s, ev, mehi) => MyMethod(s, ev, foo);
MyEvent += foo;
void MyMethod(object s, MyEventArgs ev, MyEventHandler myEventHandlerInstance)
{
MyEvent -= myEventHandlerInstance;
Console.WriteLine("I did it!");
}
If the best way is to keep a reference on the subscribed eventHandler, this can be achieved using a Dictionary.
In this example, I have to use a anonymous method to include the mergeColumn parameter for a set of DataGridViews.
Using the MergeColumn method with the enable parameter set to true enables the event while using it with false disables it.
static Dictionary<DataGridView, PaintEventHandler> subscriptions = new Dictionary<DataGridView, PaintEventHandler>();
public static void MergeColumns(this DataGridView dg, bool enable, params ColumnGroup[] mergedColumns) {
if(enable) {
subscriptions[dg] = (s, e) => Dg_Paint(s, e, mergedColumns);
dg.Paint += subscriptions[dg];
}
else {
if(subscriptions.ContainsKey(dg)) {
dg.Paint -= subscriptions[dg];
subscriptions.Remove(dg);
}
}
}
if you want refer to some object with this delegate, may be you can use Delegate.CreateDelegate(Type, Object target, MethodInfo methodInfo)
.net consider the delegate equals by target and methodInfo
There is a way to solve this by implementing the closure yourself instead of a lambda expression.
Assume that the class to be used as a capture variable is as follows.
public class A
{
public void DoSomething()
{
...
}
}
public class B
{
public void DoSomething()
{
...
}
}
public class C
{
public void DoSomething()
{
...
}
}
These classes will be used as capture variables, so we instantiate them.
A a = new A();
B b = new B();
C c = new C();
Implement the closure class as shown below.
private class EventHandlerClosure
{
public A a;
public B b;
public C c;
public event EventHandler Finished;
public void MyMethod(object, MyEventArgs args)
{
a.DoSomething();
b.DoSomething();
c.DoSomething();
Console.WriteLine("I did it!");
Finished?.Invoke(this, EventArgs.Empty);
}
}
Instantiate the closure class, create a handler, then subscribe to the event and subscribe to the lambda expression that unsubscribes from the closure class's Finished event.
var closure = new EventHandlerClosure
{
a = a,
b = b,
c = c
};
var handler = new MyEventHandler(closure.MyMethod);
MyEvent += handler;
closure.Finished += (s, e)
{
MyEvent -= handler;
}
I discovered this quite old thread recently for a C# project and found all the answers very useful. However, there was one aspect that didn't work well for my particular use case - they all put the burden of unsubscribing from an event on the subscriber. I understand that one could make the argument that it's the subscribers job to handle this, however that isn't realistic for my project.
My primary use case for events is for listening to timers to sequence animations (it's a game). In this scenario, I use a lot of anonymous delegates to chain together sequences. Storing a reference to these isn't very practical.
In order to solve this, I've created a wrapper class around an event that lets you subscribe for a single invocation.
internal class EventWrapper<TEventArgs> {
private event EventHandler<TEventArgs> Event;
private readonly HashSet<EventHandler<TEventArgs>> _subscribeOnces;
internal EventWrapper() {
_subscribeOnces = new HashSet<EventHandler<TEventArgs>>();
}
internal void Subscribe(EventHandler<TEventArgs> eventHandler) {
Event += eventHandler;
}
internal void SubscribeOnce(EventHandler<TEventArgs> eventHandler) {
_subscribeOnces.Add(eventHandler);
Event += eventHandler;
}
internal void Unsubscribe(EventHandler<TEventArgs> eventHandler) {
Event -= eventHandler;
}
internal void UnsubscribeAll() {
foreach (EventHandler<TEventArgs> eventHandler in Event?.GetInvocationList()) {
Event -= eventHandler;
}
}
internal void Invoke(Object sender, TEventArgs e) {
Event?.Invoke(sender, e);
if(_subscribeOnces.Count > 0) {
foreach (EventHandler<TEventArgs> eventHandler in _subscribeOnces) {
Event -= eventHandler;
}
_subscribeOnces.Clear();
}
}
internal void Remove() {
UnsubscribeAll();
_subscribeOnces.Clear();
}
}
The side benefit of having this in a class is that you can make it private and expose only the functionality you want. For example, only expose the SubscribeOnce (and not the Subscribe) method.
public class MyClass {
private EventWrapper<MyEventEventArgs> myEvent = new EventWrapper<MyEventEventArgs>();
public void FireMyEvent() {
myEvent.Invoke(this, new MyEventEventArgs(1000, DateTime.Now));
}
public void SubscribeOnce(EventHandler<MyEventEventArgs> eventHandler) {
myEvent.SubscribeOnce(eventHandler);
}
public class MyEventEventArgs : EventArgs {
public int MyInt;
public DateTime MyDateTime;
public MyEventEventArgs(int myInt, DateTime myDateTime) {
MyInt = myInt;
MyDateTime = myDateTime;
}
}
}
The tradeoff here is more overhead for having an instance of this for each event, however in my scenario - this is an acceptable tradeoff to ensure that garbage gets collected efficiently and the code is more maintainable on the subscriber side. Full example here.
Here is a simple solution, which removes all assigned methods from an event. Also anonymous methods.
Use this code and adjust the names.
if (MyEvent != null)
foreach (Delegate del in MyEvent.GetInvocationList())
MyEvent -= (EventHandler<MyEventHandlerType>)del;
Example usage
public class SomeClass
{
public event EventHandler<NiceEventArgs> NiceEvent;
public void RemoveHandlers()
{
if (NiceEvent != null)
foreach (Delegate del in NiceEvent.GetInvocationList())
NiceEvent -= (EventHandler<NiceEventArgs>)del;
}
}
Thanks to hemme's answer, which I used as inspiration.
This question already has answers here:
AddEventHandler using reflection
(3 answers)
Closed 1 year ago.
I am trying to use Reflection to add a method from a class to an event. Here is my setup.
Have a class with a keyPressDown & keyPressUp method. I also have an Event in this class. keyPressDown & keyPressUp will fire whatever methods are subscribed to it (if any).
These additional methods are controlling RGB light emitting diodes. One method can flash a color, another can fade a color, etc..
I can subscribe to the event like myEventKeyUp += myClass.MethodA;
My problem is, I am storing the configuration the user wants in a database. So the only thing I can think of is storing the Method Name as text and use reflection to add it to the event handler.
Code Example:
Class MyClass
public event delegateKeyDown keyDownEvent;
public event delegateKeyUp keyUpEvent;
public void KeyUp()
{
joystick.SetBtn(false, 1, vJoyButtonID);
if (keyUpEvent != null) keyUpEvent();
}
public void KeyDown()
{
joystick.SetBtn(true, 1, vJoyButtonID);
// IF WE HAVE ANY LISTENERS THEN FIRE THEM
if (keyDownEvent != null) keyDownEvent();
}
public void MethodA()
{
// DO SOMeTHING HERE
}
Main Form
button.keyDownEvent += button.SetRandomColor;
button.keyUpEvent += button.TurnOff;
What I need to do is something like:
button.keyUpEvent += MyClass.GetType().GetMethod("MethodA");
I know you can't do what I am trying to do with Reflection, I read that I can use reflection to get hold of the delegate that contains the event handler, and add it through that way but I am unsure (or unclear about this).
In the vein of Jim W's link, here's a working example:
using System;
using System.Reflection;
internal class Program
{
private static void Main()
{
var foo = new Foo();
var fooType = foo.GetType();
var eventInfo = fooType.GetEvent("Bar");
var methodInfo = fooType.GetMethod("OnBar", BindingFlags.Static | BindingFlags.Public);
eventInfo.AddEventHandler(foo, Delegate.CreateDelegate(eventInfo.EventHandlerType, methodInfo));
foo.RaiseBar();
Console.ReadKey();
}
}
public class Foo
{
public delegate void BarHandler(object sender, BarEventArgs args);
public event BarHandler Bar;
public void RaiseBar()
{
Bar(this, new BarEventArgs());
}
public static void OnBar(object sender, BarEventArgs args)
{
Console.WriteLine(args.Guid);
}
}
public class BarEventArgs : EventArgs
{
public Guid Guid => Guid.NewGuid();
}
Thanks for both of your help. Between the two examples shown I was able to wrap my head around this. I Made a function to handle the event setup as follows:
private void SetupEventHandlers(RGBButton button,string EventName, string MethodName)
{
// THIS SETS UP THE EVENT HANDLER THAT WILL FIRE ANY ADDITION
// ACTIONS THE USER COULD WANT WHEN A BUTTON IS PRESSED OR RELEASED.
var p = button;
var eventInfo = p.GetType().GetEvent(EventName);
var methodInfo = typeof(RGBButton).GetMethod(MethodName);
try
{
// TRY TO SUBSCRIBE TO OUR KEYUP OR KEYDOWN EVENT
Delegate handler = Delegate.CreateDelegate(eventInfo.EventHandlerType, p, methodInfo);
eventInfo.AddEventHandler(p, handler);
}
catch (Exception)
{
// MOST LIKELY COULDN'T FIND THE METHOD WE ARE TRYING TO FIRE
throw new System.InvalidOperationException("Failed to find method: " + MethodName + "', which is registered as an Event Subscriber.");
}
}
This allows me to add to an event in my class (a few different events) with any given name (stored in a database) all from one function. the var P = button is a class which defines my RGB Led arcade buttons. That class contains the events that get triggered when the button is pressed.
im trying to learn delegates and events in c#, i understand that an event is some sort of a wrapper for a delegate and a delegate is a pointer for functions/methods...
below is my code but when i run it, nothing is being shown... what could be the problems?
public class ClassHandler
{
public delegate void DoProcesses();
public event DoProcesses DoProcessesEvent;
}
public class Class1
{
public void Func1()
{
Console.WriteLine("Class 1 doing function 1");
}
public void Func2()
{
Console.WriteLine("Class 1 doing function 2");
}
}
public class Class2
{
public void Func1()
{
Console.WriteLine("Class 2 doing function 1");
}
public void Func2()
{
Console.WriteLine("Class 2 doing function 2");
}
}
class Program
{
static void Main(string[] args)
{
Class1 cs1 = new Class1();
Class2 cs2 = new Class2();
ClassHandler main = new ClassHandler();
main.DoProcessesEvent += new ClassHandler.DoProcesses(cs1.Func1);
main.DoProcessesEvent += new ClassHandler.DoProcesses(cs1.Func2);
main.DoProcessesEvent += new ClassHandler.DoProcesses(cs2.Func1);
main.DoProcessesEvent += new ClassHandler.DoProcesses(cs2.Func2);
main.DoProcessesEvent += new ClassHandler.DoProcesses(ff); // this line here is causing an error: An object reference is required for the non-static field, method, or property 'TryDelegatesAndEvents.Program.ff()'
Console.Read();
}
public void ff()
{
Console.WriteLine("gggg");
}
}
UPDATE: how do i raise the event so it will execute the methods already?
Problem with this line: main.DoProcessesEvent += new ClassHandler.DoProcesses(ff)
That is because your method ff() is a non-static method and you can't access it directly like that from a static method.
Make your method ff as static, or create and object of the containing class and assign the method with an instance of it.
For Comments: The reason you are not seeing anything is because you are just binding them to an event DoProcessesEvent, but you are not raising the event any where. You are only defining the handler for the event.
EDIT:
Change your ClassHandler class to:
public class ClassHandler
{
public delegate void DoProcesses();
public event DoProcesses DoProcessesEvent;
public void OnDoProcessEvent()
{
if (DoProcessesEvent != null)
DoProcessesEvent();
}
}
In your Main method before Console.Read(); Type:
main.OnDoProcessEvent();
This will raise the event and it will handled from the application and will give you the following output.
Class 1 doing function 1
Class 1 doing function 2
Class 2 doing function 1
Class 2 doing function 2
gggg
change main.DoProcessesEvent += new ClassHandler.DoProcesses(ff); to main.DoProcessesEvent += new ClassHandler.DoProcesses(new Program().ff); or make ff static
Well it does not compile due to the line:
main.DoProcessesEvent += new ClassHandler.DoProcesses(ff);
The error VS spits out is that:
An object reference is required for the non-static field, method, or property 'ConsoleApplication2.Program.ff()'
Just change your ff() method to be static to get around it.
Eg:
public static void ff()
{
Console.WriteLine("gggg");
}
Besides the problem pointed out in earlier comments, You have to trigger the event.
make a copy of an event before you check it for null and fire it. This will eliminate a potential problem with threading where the event becomes null at the location right between where you check for null and where you fire the event:
// Copy the event delegate before checking/calling
EventHandler copy = DoProcessesEvent ;
if (copy != null)
copy(this, EventArgs.Empty); // Call any handlers on the copied list
This will ensure that your event fires and you will get the result.
Just to add to #Habib's answer, it would be fairly unusual to subscribe instance class methods as event handlers of an object potentially in another scope (e.g. what happens if Class1 goes out of scope, yet main() still has a subscription?). A more common scenario would be to subscribe (and de-subscribe) handlers in the same scope, often in an asynchronous manner (the below events are still raised synchronously).
namespace ConsoleApplication1
{
public delegate void ProcessCompletedEvent(string description);
public class Class1
{
public void Func1()
{
// Do Func1 work
Thread.Sleep(500);
RaiseEvent("Func1 completed");
}
public void Func2()
{
// Do Func2 work
Thread.Sleep(1000);
RaiseEvent("Func2 completed");
}
private void RaiseEvent(string description)
{
if (ProcessCompleted != null)
{
ProcessCompleted(description);
}
}
public event ProcessCompletedEvent ProcessCompleted;
}
class Program
{
static void Main(string[] args)
{
Class1 cs1 = new Class1();
// Wire up event handler
cs1.ProcessCompleted += new ProcessCompletedEvent(MyHandler);
cs1.Func1();
cs1.Func2();
Console.Read();
// Remove the subscription
cs1.ProcessCompleted -= MyHandler;
}
// *** Is in the same scope as main, which subscribes / desubscribes
public static void MyHandler(string description)
{
Console.WriteLine(description);
}
}
}
I would like to create a method that takes an event as an argument and adds eventHandler to it to handle it properly. Like this:
I have two events:
public event EventHandler Click;
public event EventHandler Click2;
Now I would like to pass a particular event to my method like this (pseudocode):
public AttachToHandleEvent(EventHandler MyEvent)
{
MyEvent += Item_Click;
}
private void Item_Click(object sender, EventArgs e)
{
MessageBox.Show("lalala");
}
ToolStripMenuItem tool = new ToolStripMenuItem();
AttachToHandleEvent(tool.Click);
Is it possible?
I've noticed that this code worked fine, and returned to my project and noticed that when I pass an event declared in my class, it works, but when I pass event from other class it still does not work.
What I get is this error:
The event
'System.Windows.Forms.ToolStripItem.Click'
can only appear on the left hand side
of += or -=
My original answer was suitable from within the class that defined the event, but you've since updated your question to reflect that you wish to accomplish this from outside the defining class, so I've stricken that.
Only the class that defines an event can refer to the implicit delegate variable that the event uses. From outside that class, you only have access to the add and remove methods, via += and -=. This means that you can't do what you're asking, directly. You can, however, use a functional approach.
class A{
public event EventHandler Event1;
public void TriggerEvent1(){
if(Event1 != null)
Event1(this, EventArgs.Empty);
}
}
class B{
static void HandleEvent(object o, EventArgs e){
Console.WriteLine("Woo-hoo!");
}
static void AttachToEvent(Action<EventHandler> attach){
attach(HandleEvent);
}
static void Main(){
A a = new A();
AttachToEvent(handler=>a.Event1 += handler);
a.TriggerEvent1();
}
}
I did it like this:
public AttachToHandleEvent(Object obj, string EventName)
{
EventInfo mfi = obj.GetType().GetEvent(EventName);
MethodInfo mobj = mfi.GetAddMethod();
mobj.Invoke(obj, new object[] { Item_Click});
}
private void Item_Click(object sender, EventArgs e)
{
MessageBox.Show("lalala");
}
ToolStripMenuItem tool = new ToolStripMenuItem();
AttachToHandleEvent(tool "Click");
Thank you all for advice. This solution could not be done without your help.
It's not possible. You can use a delegate instead of an event if that meets your needs.
Just write tool.Click += Item_Click;
Edit: From MSDN "Events can only be invoked from within the class or struct where they (it) are declared". So what you are trying to do is not possible. Could you elaborate more on your needs? Why would you want to pass an event as a parameter?
delegate void doIt(object sender, object data);
event doIt OnDoIt;
void add(doIt theDel)
{
OnDoIt += theDel;
}
void doIt1(object a, object b)
{
}
void doIt2(object a, object b)
{
}
void add()
{
add(doIt1);
add(doIt2);
}
Your question suggests that you got some mechanisms wrong:
You can't pass events!
You most probably want to pass a function as a parameter, so the calling method will call that other method at some point. In technical terms this is a delegate. I suggest using the already defined Action class. Here's an example snippet:
void MyFunction (string otherArguments, Action onFinished){
...
if (onFinished != null)
onFinished.Invoke();
}
The nice thing about this is that when calling MyFunction you can declare the Action using the inline syntax:
MyFunction("my other argument", ()=>{
///do stuff here, which will be execuded when the action is invoked
});
I pass functions/methods (instead of events) like this:
class A
{
public void something()
{
var myAction =
new Action<object, object>((sender, evArgs) => {
MessageBox.Show("hiii, event happens " + (evArgs as as System.Timers.ElapsedEventArgs).SignalTime);
});
B.timer(myAction);
}
}
class B
{
public static void timer( Action<object, System.Timers.ElapsedEventArgs> anyMethod)
{
System.Timers.Timer myTimer = new System.Timers.Timer();
myTimer.Elapsed += new System.Timers.ElapsedEventHandler(anyMethod);
myTimer.Interval = 2000;
myTimer.Start();
}
}
Giving an update to this question with an object oriented solution.
Instead of using an Action<EventHandler> that registers the event, you could create an object handling that for you
public class AEvent
{
private readonly A aInstance;
private AEvent(A instance) {
aInstance = instance;
}
public void Add(EventHandler eventHandler)
=> a.Event1 += eventHandler;
public void Remove(EventHandler eventHandler)
=> a.Event1 -= eventHandler;
public EventHandler Invoke => aInstance.Event1;
}
Then later on use that object like this:
static void Main(){
A a = new A();
AEvent aEvent = new AEvent(A)
aEvent.Add(handler);
a.Invoke();
}
One approach I haven't seen here would be to create an object which has delegates for subscribe and unsubscribe. Here is a complete example program.
class Program
{
private event EventHandler<EventArgs> eventHandler;
public static void Main(string[] args)
{
Program program = new Program();
Thing thing = new Thing(new EventWrapper<EventArgs>(
delegate(EventHandler<EventArgs> handler) { program.eventHandler += handler; },
delegate(EventHandler<EventArgs> handler) { program.eventHandler -= handler; }
));
// events are fired
program.eventHandler?.Invoke(program, EventArgs.Empty);
thing.Unsubscribe();
}
}
class Thing
{
private readonly Action<EventHandler<EventArgs>> _unsubscribeEventHandler;
public Thing(EventWrapper<EventArgs> eventHandler)
{
this._unsubscribeEventHandler = eventHandler.Unsubscribe;
eventHandler.Subscribe?.Invoke(OnEvent);
Console.WriteLine("subscribed");
}
private void OnEvent(object? sender, EventArgs e)
{
Console.WriteLine("event fired");
}
public void Unsubscribe()
{
_unsubscribeEventHandler?.Invoke(OnEvent);
Console.WriteLine("unsubscribed");
}
}
class EventWrapper<T> where T : EventArgs
{
public Action<EventHandler<T>> Subscribe { get; private set; }
public Action<EventHandler<T>> Unsubscribe { get; private set; }
public EventWrapper(Action<EventHandler<T>> subscribe, Action<EventHandler<T>> unsubscribe)
{
Subscribe = subscribe;
Unsubscribe = unsubscribe;
}
}
In this example, we created a new class called EventWrapper<T> which wraps delegates for += and -= and exposes them with Subscribe and Unsubscribe methods. The delegates will need to be created by the class which created the event.
I am currently having a hardtime understanding and implementing events in C# using delagates. I am used to the Java way of doing things:
Define an interface for a listener type which would contain a number of method definitions
Define adapter class for that interface to make things easier if I'm not interested in all the events defined in a listener
Define Add, Remove and Get[] methods in the class which raises the events
Define protected fire methods to do the dirty work of looping through the list of added listeners and calling the correct method
This I understand (and like!) - I know I could do this exactly the same in c#, but it seems that a new (better?) system is in place for c#. After reading countless tutorials explaining the use of delegates and events in c# I still am no closer to really understanding what is going on :S
In short, for the following methods how would I implement the event system in c#:
void computerStarted(Computer computer);
void computerStopped(Computer computer);
void computerReset(Computer computer);
void computerError(Computer computer, Exception error);
^ The above methods are taken from a Java application I once made which I'm trying to port over to c#.
Many many thanks!
You'd create four events, and methods to raise them, along with a new EventArgs-based class to indicate the error:
public class ExceptionEventArgs : EventArgs
{
private readonly Exception error;
public ExceptionEventArgs(Exception error)
{
this.error = error;
}
public Error
{
get { return error; }
}
}
public class Computer
{
public event EventHandler Started = delegate{};
public event EventHandler Stopped = delegate{};
public event EventHandler Reset = delegate{};
public event EventHandler<ExceptionEventArgs> Error = delegate{};
protected void OnStarted()
{
Started(this, EventArgs.Empty);
}
protected void OnStopped()
{
Stopped(this, EventArgs.Empty);
}
protected void OnReset()
{
Reset(this, EventArgs.Empty);
}
protected void OnError(Exception e)
{
Error(this, new ExceptionEventArgs(e));
}
}
Classes would then subscribe to the event using either a method or a an anonymous function:
someComputer.Started += StartEventHandler; // A method
someComputer.Stopped += delegate(object o, EventArgs e)
{
Console.WriteLine("{0} has started", o);
};
someComputer.Reset += (o, e) => Console.WriteLine("{0} has been reset");
A few things to note about the above:
The OnXXX methods are protected so that derived classes can raise the events. This isn't always necessary - do it as you see fit.
The delegate{} piece on each event declaration is just a trick to avoid having to do a null check. It's subscribing a no-op event handler to each event
The event declarations are field-like events. What's actually being created is both a variable and an event. Inside the class you see the variable; outside the class you see the event.
See my events/delegates article for much more detail on events.
You'll have to define a single delegate for that
public delegate void ComputerEvent(object sender, ComputerEventArgs e);
ComputerEventArgs would be defined like this:
public class ComputerEventArgs : EventArgs
{
// TODO wrap in properties
public Computer computer;
public Exception error;
public ComputerEventArgs(Computer aComputer, Exception anError)
{
computer = aComputer;
error = anError;
}
public ComputerEventArgs(Computer aComputer) : this(aComputer, null)
{
}
}
The class that fires the events would have these:
public YourClass
{
...
public event ComputerEvent ComputerStarted;
public event ComputerEvent ComputerStopped;
public event ComputerEvent ComputerReset;
public event ComputerEvent ComputerError;
...
}
This is how you assign handlers to the events:
YourClass obj = new YourClass();
obj.ComputerStarted += new ComputerEvent(your_computer_started_handler);
Your handler is:
private void ComputerStartedEventHandler(object sender, ComputerEventArgs e)
{
// do your thing.
}
The main difference is that in C# the events are not interface-based. Instead, the event publisher declares the delegate which you can think of as a function pointer (although not exactly the same :-)). The subscriber then implements the event prototype as a regular method and adds a new instance of the delegate to the event handler chain of the publisher. Read more about delegates and events.
You can also read short comparison of C# vs. Java events here.
First of all, there is a standard method signature in .Net that is typically used for events. The languages allow any sort of method signature at all to be used for events, and there are some experts who believe the convention is flawed (I mostly agree), but it is what it is and I will follow it for this example.
Create a class that will contain the event’s parameters (derived from EventArgs).
public class ComputerEventArgs : EventArgs
{
Computer computer;
// constructor, properties, etc.
}
Create a public event on the class that is to fire the event.
class ComputerEventGenerator // I picked a terrible name BTW.
{
public event EventHandler<ComputerEventArgs> ComputerStarted;
public event EventHandler<ComputerEventArgs> ComputerStopped;
public event EventHandler<ComputerEventArgs> ComputerReset;
...
}
Call the events.
class ComputerEventGenerator
{
...
private void OnComputerStarted(Computer computer)
{
EventHandler<ComputerEventArgs> temp = ComputerStarted;
if (temp != null) temp(this, new ComputerEventArgs(computer)); // replace "this" with null if the event is static
}
}
Attach a handler for the event.
void OnLoad()
{
ComputerEventGenerator computerEventGenerator = new ComputerEventGenerator();
computerEventGenerator.ComputerStarted += new EventHandler<ComputerEventArgs>(ComputerEventGenerator_ComputerStarted);
}
Create the handler you just attached (mostly by pressing the Tab key in VS).
private void ComputerEventGenerator_ComputerStarted(object sender, ComputerEventArgs args)
{
if (args.Computer.Name == "HAL9000")
ShutItDownNow(args.Computer);
}
Don't forget to detach the handler when you're done. (Forgetting to do this is the biggest source of memory leaks in C#!)
void OnClose()
{
ComputerEventGenerator.ComputerStarted -= ComputerEventGenerator_ComputerStarted;
}
And that's it!
EDIT: I honestly can't figure out why my numbered points all appear as "1." I hate computers.
there are several ways to do what you want. The most direct way would be to define delegates for each event in the hosting class, e.g.
public delegate void ComputerStartedDelegate(Computer computer);
protected event ComputerStartedDelegate ComputerStarted;
public void OnComputerStarted(Computer computer)
{
if (ComputerStarted != null)
{
ComputerStarted.Invoke(computer);
}
}
protected void someMethod()
{
//...
computer.Started = true; //or whatever
OnComputerStarted(computer);
//...
}
any object may 'listen' for this event simply by:
Computer comp = new Computer();
comp.ComputerStarted += new ComputerStartedDelegate(
this.ComputerStartedHandler);
protected void ComputerStartedHandler(Computer computer)
{
//do something
}
The 'recommended standard way' of doing this would be to define a subclass of EventArgs to hold the Computer (and old/new state and exception) value(s), reducing 4 delegates to one. In this case that would be a cleaner solution, esp. with an Enum for the computer states in case of later expansion. But the basic technique remains the same:
the delegate defines the signature/interface for the event handler/listener
the event data member is a list of 'listeners'
listeners are removed using the -= syntax instead of +=
In c# events are delegates. They behave in a similar way to a function pointer in C/C++ but are actual classes derived from System.Delegate.
In this case, create a custom EventArgs class to pass the Computer object.
public class ComputerEventArgs : EventArgs
{
private Computer _computer;
public ComputerEventArgs(Computer computer) {
_computer = computer;
}
public Computer Computer { get { return _computer; } }
}
Then expose the events from the producer:
public class ComputerEventProducer
{
public event EventHandler<ComputerEventArgs> Started;
public event EventHandler<ComputerEventArgs> Stopped;
public event EventHandler<ComputerEventArgs> Reset;
public event EventHandler<ComputerEventArgs> Error;
/*
// Invokes the Started event */
private void OnStarted(Computer computer) {
if( Started != null ) {
Started(this, new ComputerEventArgs(computer));
}
}
// Add OnStopped, OnReset and OnError
}
The consumer of the events then binds a handler function to each event on the consumer.
public class ComputerEventConsumer
{
public void ComputerEventConsumer(ComputerEventProducer producer) {
producer.Started += new EventHandler<ComputerEventArgs>(ComputerStarted);
// Add other event handlers
}
private void ComputerStarted(object sender, ComputerEventArgs e) {
}
}
When the ComputerEventProducer calls OnStarted the Started event is invoked which in turn will call the ComputerEventConsumer.ComputerStarted method.
The delegate declares a function signature, and when it's used as an event on a class it also acts as a collection of enlisted call targets. The += and -= syntax on an event is used to adding a target to the list.
Given the following delegates used as events:
// arguments for events
public class ComputerEventArgs : EventArgs
{
public Computer Computer { get; set; }
}
public class ComputerErrorEventArgs : ComputerEventArgs
{
public Exception Error { get; set; }
}
// delegates for events
public delegate void ComputerEventHandler(object sender, ComputerEventArgs e);
public delegate void ComputerErrorEventHandler(object sender, ComputerErrorEventArgs e);
// component that raises events
public class Thing
{
public event ComputerEventHandler Started;
public event ComputerEventHandler Stopped;
public event ComputerEventHandler Reset;
public event ComputerErrorEventHandler Error;
}
You would subscribe to those events with the following:
class Program
{
static void Main(string[] args)
{
var thing = new Thing();
thing.Started += thing_Started;
}
static void thing_Started(object sender, ComputerEventArgs e)
{
throw new NotImplementedException();
}
}
Although the arguments could be anything, the object sender and EventArgs e is a convention that's used very consistently. The += thing_started will first create an instance of the delegate pointing to target method, then add it to the event.
On the component itself you would typically add methods to fire the events:
public class Thing
{
public event ComputerEventHandler Started;
public void OnStarted(Computer computer)
{
if (Started != null)
Started(this, new ComputerEventArgs {Computer = computer});
}
}
You must test for null in case no delegates have been added to the event. When you make the method call however all delegates which have been added will be called. This is why for events the return type is void - there is no single return value - so to feed back information you would have properties on the EventArgs which the event handlers would alter.
Another refinement would be to use the generic EventHandler delegate rather than declaring a concrete delegate for each type of args.
public class Thing
{
public event EventHandler<ComputerEventArgs> Started;
public event EventHandler<ComputerEventArgs> Stopped;
public event EventHandler<ComputerEventArgs> Reset;
public event EventHandler<ComputerErrorEventArgs> Error;
}
Thank you all so much for your answers! Finally I'm starting to understand what is going on. Just one thing; It seems that if each event had a different number/type of arguments I'd need to create a different :: EventArgs class to deal with it:
public void computerStarted(Computer computer);
public void computerStopped(Computer computer);
public void computerReset(Computer computer);
public void breakPointHit(Computer computer, int breakpoint);
public void computerError(Computer computer, Exception exception);
This would require three classses to deal with the events!? (Well two custom, and one using the default EventArgs.Empty class)
Cheers!
Ok, FINAL clarification!: So this is pretty much the best I can do code-wise to implement those events?
public class Computer {
public event EventHandler Started;
public event EventHandler Stopped;
public event EventHandler Reset;
public event EventHandler<BreakPointEvent> BreakPointHit;
public event EventHandler<ExceptionEvent> Error;
public Computer() {
Started = delegate { };
Stopped = delegate { };
Reset = delegate { };
BreakPointHit = delegate { };
Error = delegate { };
}
protected void OnStarted() {
Started(this, EventArgs.Empty);
}
protected void OnStopped() {
Stopped(this, EventArgs.Empty);
}
protected void OnReset() {
Reset(this, EventArgs.Empty);
}
protected void OnBreakPointHit(int breakPoint) {
BreakPointHit(this, new BreakPointEvent(breakPoint));
}
protected void OnError(System.Exception exception) {
Error(this, new ExceptionEvent(exception));
}
}
}