performance issues with WPF - c#

I am working with a dnp3 nuget package and I want to implement it in a WPF, and I achieve it by referring to this example https://github.com/stepfunc/dnp3/blob/master/ffi/bindings/dotnet/examples/master/Program.cs
I managed to implement it by an MVVM method where it dynamically shows the messages it receives (in the gif it shows an error because it did not create another program that will connect but the important thing is that it is being updated).
but I created another much simpler project to do the demonstration here on github , in my project create a class called protocol and paste all the master example eliminating the main function and changing the private functions for public functions, then inside my MainWindow.xaml.cs start the code
{
public MainWindow()
{
InitializeComponent();
// ANCHOR: logging_init
// Initialize logging with the default configuration
// This may only be called once during program initialization
Logging.Configure(
new LoggingConfig(),
new Protocolo.ConsoleLogger()
);
// ANCHOR_END: logging_init
// ANCHOR: runtime_init
var runtime = new Runtime(new RuntimeConfig { NumCoreThreads = 4 });
// ANCHOR_END: runtime_init
// ANCHOR: create_master_channel
var channel = MasterChannel.CreateTcpChannel(
runtime,
LinkErrorMode.Close,
Protocolo. GetMasterChannelConfig(),
new EndpointList("127.0.0.1:20000"),
new ConnectStrategy(),
new Protocolo.TestListener()
);
// ANCHOR_END: create_master_channel
Task.Run(() =>
{
try
{
Protocolo.RunChannel(channel).GetAwaiter().GetResult();
}
finally
{
// ANCHOR: runtime_shutdown
runtime.Shutdown();
// ANCHOR_END: runtime_shutdown
}
}
);
}
}
I did performance profiles and RunChannel is what they demand a lot from the CPU
public static async Task RunChannel(MasterChannel channel)
{
// ANCHOR: association_create
var association = channel.AddAssociation(
1024,
GetAssociationConfig(),
new TestReadHandler(),
new TestAssocationHandler()
);
// ANCHOR_END: association_create
// ANCHOR: add_poll
var poll = channel.AddPoll(association, Request.ClassRequest(false, true, true, true), TimeSpan.FromSeconds(5));
// ANCHOR_END: add_poll
// start communications
channel.Enable();
while (true)
{
//Here there was a switch that read the commands that were entered into the console but it is unnecessary, with the empty while it continues to update
}
}
I don't know why but without the While the received messages are not updated, (these messages arrive in the Logger) I have to keep this function always alive but I don't know how to do it without consuming so much CPU
to see the messages in the output you have to change Console.WriteLine to Debug.WriteLine
class ConsoleLogger : ILogger
{
public void OnMessage(LogLevel level, string message)
{
Console.Write($"{message}");
//this is inside the master example in the github link
}
}

As commented before (answering about "performance issue"):
Your empty while loop running without any pause or job. You need to fill loop with some job or simple pause (Thread.Sleep(10)/await Task.Delay(10)).
Your RunChannel method have no any await, so you should get CS1998 warning "This async method lacks 'await'" and, obviously, put it into your while loop.
On DNP3 Github example, there is await GetInputAsync() inside while loop, which waits for user input with Console.ReadLine() and returns inputed string into switch statement.
So:
public MainWindow()
{
// InitializeComponent() and other stuff...
Task.Run(async () => // Make it async
{
try
{
// You really didn't want GetAwaiter().GetResult().
await Protocolo.RunChannel(channel);
}
finally
{
runtime.Shutdown();
}
});
}
public class Protocolo
{
public static async Task RunChannel(MasterChannel channel)
{
// Associations and polls stuff...
while (true)
{
await Task.Delay(10); // Set some delay or...
await SomeJob(); // ...or do some job or ...
switch (await GetInputAsync()) // ...or take github's example
{
case "x":
return;
default:
Console.WriteLine("Unknown command");
break;
}
}
}
public static Task SomeJob()
{
return Task.Run(() =>
{
for (int i = 0; i < 5; i++)
{
Thread.Sleep(200); // 200 x 5 = Total task for 1 second
}
});
}
public static Task<string> GetInputAsync()
{
return Task.Run(() => Console.ReadLine());
}
}

Related

C# Abortable Asynchronous Fifo Queue - leaking massive amounts of memory

I need to process data from a producer in FIFO fashion with the ability to abort processing if the same producer produces a new bit of data.
So I implemented an abortable FIFO queue based on Stephen Cleary's AsyncCollection (called AsyncCollectionAbortableFifoQueuein my sample) and one on TPL's BufferBlock (BufferBlockAbortableAsyncFifoQueue in my sample). Here's the implementation based on AsyncCollection
public class AsyncCollectionAbortableFifoQueue<T> : IExecutableAsyncFifoQueue<T>
{
private AsyncCollection<AsyncWorkItem<T>> taskQueue = new AsyncCollection<AsyncWorkItem<T>>();
private readonly CancellationToken stopProcessingToken;
public AsyncCollectionAbortableFifoQueue(CancellationToken cancelToken)
{
stopProcessingToken = cancelToken;
_ = processQueuedItems();
}
public Task<T> EnqueueTask(Func<Task<T>> action, CancellationToken? cancelToken)
{
var tcs = new TaskCompletionSource<T>();
var item = new AsyncWorkItem<T>(tcs, action, cancelToken);
taskQueue.Add(item);
return tcs.Task;
}
protected virtual async Task processQueuedItems()
{
while (!stopProcessingToken.IsCancellationRequested)
{
try
{
var item = await taskQueue.TakeAsync(stopProcessingToken).ConfigureAwait(false);
if (item.CancelToken.HasValue && item.CancelToken.Value.IsCancellationRequested)
item.TaskSource.SetCanceled();
else
{
try
{
T result = await item.Action().ConfigureAwait(false);
item.TaskSource.SetResult(result); // Indicate completion
}
catch (Exception ex)
{
if (ex is OperationCanceledException && ((OperationCanceledException)ex).CancellationToken == item.CancelToken)
item.TaskSource.SetCanceled();
item.TaskSource.SetException(ex);
}
}
}
catch (Exception) { }
}
}
}
public interface IExecutableAsyncFifoQueue<T>
{
Task<T> EnqueueTask(Func<Task<T>> action, CancellationToken? cancelToken);
}
processQueuedItems is the task that dequeues AsyncWorkItem's from the queue, and executes them unless cancellation has been requested.
The asynchronous action to execute gets wrapped into an AsyncWorkItem which looks like this
internal class AsyncWorkItem<T>
{
public readonly TaskCompletionSource<T> TaskSource;
public readonly Func<Task<T>> Action;
public readonly CancellationToken? CancelToken;
public AsyncWorkItem(TaskCompletionSource<T> taskSource, Func<Task<T>> action, CancellationToken? cancelToken)
{
TaskSource = taskSource;
Action = action;
CancelToken = cancelToken;
}
}
Then there's a task looking and dequeueing items for processing and either processing them, or aborting if the CancellationToken has been triggered.
That all works just fine - data gets processed, and if a new piece of data is received, processing of the old is aborted. My problem now stems from these Queues leaking massive amounts of memory if I crank up the usage (producer producing a lot more than the consumer processes). Given it's abortable, the data that is not processed, should be discarded and eventually disappear from memory.
So let's look at how I'm using these queues. I have a 1:1 match of producer and consumer. Every consumer handles data of a single producer. Whenever I get a new data item, and it doesn't match the previous one, I catch the queue for the given producer (User.UserId) or create a new one (the 'executor' in the code snippet). Then I have a ConcurrentDictionary that holds a CancellationTokenSource per producer/consumer combo. If there's a previous CancellationTokenSource, I call Cancel on it and Dispose it 20 seconds later (immediate disposal would cause exceptions in the queue). I then enqueue processing of the new data. The queue returns me a task that I can await so I know when processing of the data is complete, and I then return the result.
Here's that in code
internal class SimpleLeakyConsumer
{
private ConcurrentDictionary<string, IExecutableAsyncFifoQueue<bool>> groupStateChangeExecutors = new ConcurrentDictionary<string, IExecutableAsyncFifoQueue<bool>>();
private readonly ConcurrentDictionary<string, CancellationTokenSource> userStateChangeAborters = new ConcurrentDictionary<string, CancellationTokenSource>();
protected CancellationTokenSource serverShutDownSource;
private readonly int operationDuration = 1000;
internal SimpleLeakyConsumer(CancellationTokenSource serverShutDownSource, int operationDuration)
{
this.serverShutDownSource = serverShutDownSource;
this.operationDuration = operationDuration * 1000; // convert from seconds to milliseconds
}
internal async Task<bool> ProcessStateChange(string userId)
{
var executor = groupStateChangeExecutors.GetOrAdd(userId, new AsyncCollectionAbortableFifoQueue<bool>(serverShutDownSource.Token));
CancellationTokenSource oldSource = null;
using (var cancelSource = userStateChangeAborters.AddOrUpdate(userId, new CancellationTokenSource(), (key, existingValue) =>
{
oldSource = existingValue;
return new CancellationTokenSource();
}))
{
if (oldSource != null && !oldSource.IsCancellationRequested)
{
oldSource.Cancel();
_ = delayedDispose(oldSource);
}
try
{
var executionTask = executor.EnqueueTask(async () => { await Task.Delay(operationDuration, cancelSource.Token).ConfigureAwait(false); return true; }, cancelSource.Token);
var result = await executionTask.ConfigureAwait(false);
userStateChangeAborters.TryRemove(userId, out var aborter);
return result;
}
catch (Exception e)
{
if (e is TaskCanceledException || e is OperationCanceledException)
return true;
else
{
userStateChangeAborters.TryRemove(userId, out var aborter);
return false;
}
}
}
}
private async Task delayedDispose(CancellationTokenSource src)
{
try
{
await Task.Delay(20 * 1000).ConfigureAwait(false);
}
finally
{
try
{
src.Dispose();
}
catch (ObjectDisposedException) { }
}
}
}
In this sample implementation, all that is being done is wait, then return true.
To test this mechanism, I wrote the following Data producer class:
internal class SimpleProducer
{
//variables defining the test
readonly int nbOfusers = 10;
readonly int minimumDelayBetweenTest = 1; // seconds
readonly int maximumDelayBetweenTests = 6; // seconds
readonly int operationDuration = 3; // number of seconds an operation takes in the tester
private readonly Random rand;
private List<User> users;
private readonly SimpleLeakyConsumer consumer;
protected CancellationTokenSource serverShutDownSource, testAbortSource;
private CancellationToken internalToken = CancellationToken.None;
internal SimpleProducer()
{
rand = new Random();
testAbortSource = new CancellationTokenSource();
serverShutDownSource = new CancellationTokenSource();
generateTestObjects(nbOfusers, 0, false);
consumer = new SimpleLeakyConsumer(serverShutDownSource, operationDuration);
}
internal void StartTests()
{
if (internalToken == CancellationToken.None || internalToken.IsCancellationRequested)
{
internalToken = testAbortSource.Token;
foreach (var user in users)
_ = setNewUserPresence(internalToken, user);
}
}
internal void StopTests()
{
testAbortSource.Cancel();
try
{
testAbortSource.Dispose();
}
catch (ObjectDisposedException) { }
testAbortSource = new CancellationTokenSource();
}
internal void Shutdown()
{
serverShutDownSource.Cancel();
}
private async Task setNewUserPresence(CancellationToken token, User user)
{
while (!token.IsCancellationRequested)
{
var nextInterval = rand.Next(minimumDelayBetweenTest, maximumDelayBetweenTests);
try
{
await Task.Delay(nextInterval * 1000, testAbortSource.Token).ConfigureAwait(false);
}
catch (TaskCanceledException)
{
break;
}
//now randomly generate a new state and submit it to the tester class
UserState? status;
var nbStates = Enum.GetValues(typeof(UserState)).Length;
if (user.CurrentStatus == null)
{
var newInt = rand.Next(nbStates);
status = (UserState)newInt;
}
else
{
do
{
var newInt = rand.Next(nbStates);
status = (UserState)newInt;
}
while (status == user.CurrentStatus);
}
_ = sendUserStatus(user, status.Value);
}
}
private async Task sendUserStatus(User user, UserState status)
{
await consumer.ProcessStateChange(user.UserId).ConfigureAwait(false);
}
private void generateTestObjects(int nbUsers, int nbTeams, bool addAllUsersToTeams = false)
{
users = new List<User>();
for (int i = 0; i < nbUsers; i++)
{
var usr = new User
{
UserId = $"User_{i}",
Groups = new List<Team>()
};
users.Add(usr);
}
}
}
It uses the variables at the beginning of the class to control the test. You can define the number of users (nbOfusers - every user is a producer that produces new data), the minimum (minimumDelayBetweenTest) and maximum (maximumDelayBetweenTests) delay between a user producing the next data and how long it takes the consumer to process the data (operationDuration).
StartTests starts the actual test, and StopTests stops the tests again.
I'm calling these as follows
static void Main(string[] args)
{
var tester = new SimpleProducer();
Console.WriteLine("Test successfully started, type exit to stop");
string str;
do
{
str = Console.ReadLine();
if (str == "start")
tester.StartTests();
else if (str == "stop")
tester.StopTests();
}
while (str != "exit");
tester.Shutdown();
}
So, if I run my tester and type 'start', the Producer class starts producing states that are consumed by Consumer. And memory usage starts to grow and grow and grow. The sample is configured to the extreme, the real-life scenario I'm dealing with is less intensive, but one action of the producer could trigger multiple actions on the consumer side which also have to be executed in the same asynchronous abortable fifo fashion - so worst case, one set of data produced triggers an action for ~10 consumers (that last part I stripped out for brevity).
When I'm having a 100 producers, and each producer produces a new data item every 1-6 seconds (randomly, also the data produces is random). Consuming the data takes 3 seconds.. so there's plenty of cases where there's a new set of data before the old one has been properly processed.
Looking at two consecutive memory dumps, it's obvious where the memory usage is coming from.. it's all fragments that have to do with the queue. Given that I'm disposing every TaskCancellationSource and not keeping any references to the produced data (and the AsyncWorkItem they're put into), I'm at a loss to explain why this keeps eating up my memory and I'm hoping somebody else can show me the errors of my way. You can also abort testing by typing 'stop'.. you'll see that no longer is memory being eaten, but even if you pause and trigger GC, memory is not being freed either.
The source code of the project in runnable form is on Github. After starting it, you have to type start (plus enter) in the console to tell the producer to start producing data. And you can stop producing data by typing stop (plus enter)
Your code has so many issues making it impossible to find a leak through debugging. But here are several things that already are an issue and should be fixed first:
Looks like getQueue creates a new queue for the same user each time processUseStateUpdateAsync gets called and does not reuse existing queues:
var executor = groupStateChangeExecutors.GetOrAdd(user.UserId, getQueue());
CancellationTokenSource is leaking on each call of the code below, as new value created each time the method AddOrUpdate is called, it should not be passed there that way:
userStateChangeAborters.AddOrUpdate(user.UserId, new CancellationTokenSource(), (key, existingValue
Also code below should use the same cts as you pass as new cts, if dictionary has no value for specific user.UserId:
return new CancellationTokenSource();
Also there is a potential leak of cancelSource variable as it gets bound to a delegate which can live for a time longer than you want, it's better to pass concrete CancellationToken there:
executor.EnqueueTask(() => processUserStateUpdateAsync(user, state, previousState,
cancelSource.Token));
By some reason you do not dispose aborter here and in one more place:
userStateChangeAborters.TryRemove(user.UserId, out var aborter);
Creation of Channel can have potential leaks:
taskQueue = Channel.CreateBounded<AsyncWorkItem<T>>(new BoundedChannelOptions(1)
You picked option FullMode = BoundedChannelFullMode.DropOldest which should remove oldest values if there are any, so I assume that that stops queued items from processing as they would not be read. It's a hypotheses, but I assume that if an old item is removed without being handled, then processUserStateUpdateAsync won't get called and all resources won't be freed.
You can start with these found issues and it should be easier to find the real cause after that.

How to use unity "JobSystem" Without main thread , And not freeze?

I want to use that load some in backgound , But Jobsystem probably use the main thread , So how to do use jobsystem Wituhot Freezes , is it impossible ??
Or I just use C# Thread?? Dont Use JobSystem ??
struct SleepJob : IJobParallelFor
{
public void Execute(int index)
{
Debug.LogFormat("[SleepJob.Execute] Thread Id {0}", Thread.CurrentThread.ManagedThreadId);
Thread.Sleep(1);
}
}
struct SleepJob2 : IJobParallelFor
{
public void Execute(int index)
{
Debug.LogFormat("[SleepJob2.Execute] Thread Id {0}", Thread.CurrentThread.ManagedThreadId);
Thread.Sleep(1);
}
}
[ContextMenu("JobSleep")]
public void JobSleep()
{
Debug.LogFormat("[JobSleep.Execute] Thread Id {0}", Thread.CurrentThread.ManagedThreadId);
SleepJob job = new SleepJob() { };
SleepJob2 job2 = new SleepJob2() { };
JobHandle jh = job.Schedule(100, 64);
JobHandle jh2 = job2.Schedule(100, 64, jh);
JobHandle.ScheduleBatchedJobs();
jh2.Complete(); // freezes
Debug.LogFormat("[JobSleep.Execute] jh.Complete();");
}
Note that Complete makes your execution freeze because:
The JobSystem automatically prioritizes the job and any of its dependencies to run first in the queue, then attempts to execute the job itself on the thread which calls the Complete function.
I think this is not the method you want to use.
Rather try waiting for the Job to complete in a Coroutine like e.g.
[ContextMenu("JobSleep")]
public void JobSleep()
{
Debug.LogFormat("[JobSleep.Execute] Thread Id {0}", Thread.CurrentThread.ManagedThreadId);
SleepJob job = new SleepJob() { };
SleepJob2 job2 = new SleepJob2() { };
JobHandle jh = job.Schedule(100, 64);
JobHandle jh2 = job2.Schedule(100, 64, jh);
JobHandle.ScheduleBatchedJobs();
StartCoroutine(WaitFor(jh2));
}
IEnumerator WaiFor(JobHandle job)
{
yield return new WaitUntil(() => job.IsComplete);
Debug.LogFormat("[JobSleep.Execute] job IsComplete");
}
Unfortunately you didn't add the code you actually want to be executed in background.
In general maybe simply using a Thread or async might already solve your problem.
e.g. with a Thread
// for sending back responses to the main thread
private ConcurrentQueue<Action> callbacks = new ConcurrentQueue<Action>;
// work the callbacks in the main thread
private void Update()
{
while(callbacks.Count > 0)
{
Action callback;
if(callbacks.TryDequeue(out callback)) callback?.Invoke();
}
}
// optional callback on success
public void StartBackgroundTask(Action onSuccess = null)
{
var thread = new Thread(new ParameterizedThreadStart(TheTaskThatTakesAWhile);
// pass in parameters here
thread.Start(onSuccess);
}
// Will be running in a background thread
private void TheTaskThatTakesAWhile(Action onSuccess)
{
// hand this back to the main thread
callbacks.Enqueue(() => Debug.Log("Long task started ..."));
// TODO whatever takes so long
// Note btw that sleep is in milliseconds!
Thread.Sleep(1000);
hand this back to the mainthread
callbacks.Enqueue(() =>
{
Debug.Log("Long task started ..."));
onSuccess?.Invoke();
}
}
e.g. using async (which internally also runs in a Thread)
private async Task TheTaskThatTakesAWhile()
{
// do whatever takes long here
}
// usually you should avoid having async void
// but when including an Action as callback this is fine
public async void StartBackgroundTask(Action onSuccess = null)
{
await TheTaskThatTakesAWhile();
onSuccess?.Invoke();
}
Both you could call like e.g.
StartBackgroundTask(() => {
// what should happen when done?
Debug.Log("I'm done!");
});
Make JobHandle jh2 global variable. Check JobHandle.isComplete in Update method or in Coroutine

ASP.NET - async programming

I am trying to understand async programming, and I had a question. It is regarding the following functions below.
public async void TestAsyncCall() {
Task<string> TaskResult1 = DoSomethingAsync();
string Result2 = DoSomething();
string Result1 = await TaskResult1;
}
public string DoSomething() {
return "synch";
}
public async Task<string> DoSomethingAsync() {
await Task.Delay(10000);
return "asynch";
}
In the function call TestAsyncCall(), would one thread be used to execute DoSomethingAsync(), and another thread to execute DoSomething()?
Then when await is encountered, it would wait for DoSomethingAsync() to complete and release that thread (while also not blocking the original thread)?
Or will this not warrant any new threads being created? In that case will the DoSomethingAsync call be relevant only if it were to deal with some external resource?
I recommend you read my article on async ASP.NET.
Or will this not warrant any new threads being created?
This won't create any new threads. In particular, async and await by themselves won't create any new threads.
On ASP.NET, it's likely that the code after an await will run on a different thread than the code before that await. This is just exchanging one thread for another, though; no new threads are created.
In that case will the DoSomethingAsync call be relevant only if it were to deal with some external resource?
The primary use case for async is to deal with I/O, yes. This is particularly true on ASP.NET.
As #Stepehen-cleary said, "In particular, async and await by themselves won't create any new threads."
This next example is taken from the book: "C sharp in Depth" by John Skeet, chapter 15 pp.465:
class AsyncForm : Form
{
/* The first part of listing 15.1 simply creates the UI and hooks up an event handler for
the button in a straightforward way */
Label label;
Button button;
public AsyncForm()
{
label = new Label {
Location = new Point(10, 20),
Text = "Length"
};
button = new Button {
Location = new Point(10, 50),
Text = "Click"
};
button.Click += DisplayWebSiteLength;
AutoSize = true;
Controls.Add(label);
Controls.Add(button);
}
/* When you click on the button, the text of the book’s home page is fetched
and the label is updated to display the HTML lenght in characters */
async void DisplayWebSiteLength(object sender, EventArgs e)
{
label.Text = "Fetching...";
using (HttpClient client = new HttpClient())
{
string text =
await client.GetStringAsync("http://csharpindepth.com");
label.Text = text.Length.ToString();
}
}
/* The label is updated to display the HTML length in characters D. The
HttpClient is also disposed appropriately, whether the operation succeeds or fails—
something that would be all too easy to forget if you were writing similar asynchronous
code in C# 4 */
}
With this in mind, let's take a look to your code, you have Result1 and Result2, there's no point in having one asynchronous task waiting for a synchronous task to be finished. I would use Parallelism so you can perform both methods but to return something like two sets of Data, performing LINQ queries at the same time.
Take a look to this short example about Parallelism with Async Tasks:
public class StudentDocs
{
//some code over here
string sResult = ProcessDocs().Result;
//If string sResult is not empty there was an error
if (!sResult.Equals(string.Empty))
throw new Exception(sResult);
//some code over there
##region Methods
public async Task<string> ProcessDocs()
{
string sResult = string.Empty;
try
{
var taskStuDocs = GetStudentDocumentsAsync(item.NroCliente);
var taskStuClasses = GetStudentSemesterClassesAsync(item.NroCliente, vencimientoParaProductos);
//We Wait for BOTH TASKS to be accomplished...
await Task.WhenAll(taskStuDocs, taskStuClasses);
//Get the IList<Class>
var docsStudent = taskStuDocs.Result;
var docsCourses = taskStuClasses.Result;
/*
You can do something with this data ... here
*/
}
catch (Exception ex)
{
sResult = ex.Message;
Loggerdb.LogInfo("ERROR:" + ex.Message);
}
}
public async Task<IList<classA>> GetStudentDocumentsAsync(long studentId)
{
return await Task.Run(() => GetStudentDocuments(studentId)).ConfigureAwait(false);
}
public async Task<IList<classB>> GetStudentSemesterCoursessAsync(long studentId)
{
return await Task.Run(() => GetStudentSemesterCourses(studentId)).ConfigureAwait(false);
}
//Performs task to bring Student Documents
public IList<ClassA> GetStudentDocuments(long studentId)
{
IList<ClassA> studentDocs = new List<ClassA>();
//Let's execute a Stored Procedured map on Entity Framework
using (ctxUniversityData oQuery = new ctxUniversityData())
{
//Since both TASKS are running at the same time we use AsParallel for performing parallels LINQ queries
foreach (var item in oQuery.GetStudentGrades(Convert.ToDecimal(studentId)).AsParallel())
{
//These are every element of IList
studentDocs.Add(new ClassA(
(int)(item.studentId ?? 0),
item.studentName,
item.studentLastName,
Convert.ToInt64(item.studentAge),
item.studentProfile,
item.studentRecord
));
}
}
return studentDocs;
}
//Performs task to bring Student Courses per Semester
public IList<ClassB> GetStudentSemesterCourses(long studentId)
{
IList<ClassB> studentCourses = new List<ClassB>();
//Let's execute a Stored Procedured map on Entity Framework
using (ctxUniversityData oQuery = new ctxUniversityData())
{
//Since both TASKS are running at the same time we use AsParallel for performing parallels LINQ queries
foreach (var item in oQuery.GetStudentCourses(Convert.ToDecimal(studentId)).AsParallel())
{
//These are every element of IList
studentCourses.Add(new ClassB(
(int)(item.studentId ?? 0),
item.studentName,
item.studentLastName,
item.carreerName,
item.semesterNumber,
Convert.ToInt64(item.Year),
item.course ,
item.professorName
));
}
}
return studentCourses;
}
#endregion
}

Infinity Looping using task data flow but still Blocking UI WPF

I have a windows page wpf, it has 3 datagrid. they are in an infinity loop using Task data flow. every data populate through binding the window freeze about 1-3 second. after i try to discard the binding from each datagrid. the window page run properly without freeze. below is part of my code, the flow of my code is start from start service method, the method createneverendingtask is the bottom of the code, i want there is no freezing if the data load to datagrid through binding.i use mvvm light.
public void StartService()
{
StartContent = "Stop Service";
StartToggle = false;
wtoken = new CancellationTokenSource();
task = CreateNeverEndingTaskAsync((now, ct) => DoWorkAsync(ct), wtoken.Token);
// Start the task. Post the time.
task.Post(DateTimeOffset.Now);
}
private Task DoWorkAsync(CancellationToken ct)
{
return Task.Run(() => DoWork());
}
private async void DoWork()
{
LoadGrid();
Helper.UiInvoke(() =>
{
if (NewAssignmentList.Count > 0)
{
several operations
}
});
}
private void LoadGrid()
{
AssigneeList = new ObservableCollection<Assignee>(
Helper.DataReaderMapToList<Assignee>(
cda.ExecuteReader("sp_AT_LoadAssignee")));
NewAssignmentList = new ObservableCollection<Assignment>(
Helper.DataReaderMapToList<Assignment>(
cda.ExecuteReader("sp_AT_LoadAssignment 'NEW'")));
DistributedAssignmentList = new ObservableCollection<Assignment>(
Helper.DataReaderMapToList<Assignment>(
cda.ExecuteReader("sp_AT_LoadAssignment '!NEW'")));
ParameterList = new ObservableCollection<Parameter>();
AssigneeHeader = string.Format("Assignee : {0}",AssigneeList.Count);
NewAssHeader = string.Format("New Assignment : {0}", NewAssignmentList.Count);
DistAssHeader = string.Format("Distributed Assignment : {0}", DistributedAssignmentList.Count);
}
ITargetBlock<DateTimeOffset> CreateNeverEndingTaskAsync(
Func<DateTimeOffset, CancellationToken, Task> action,
CancellationToken cancellationToken)
{
// Validate parameters.
if (action == null) throw new ArgumentNullException("action");
// Declare the block variable, it needs to be captured.
ActionBlock<DateTimeOffset> block = null;
// Create the block, it will call itself, so
// you need to separate the declaration and
// the assignment.
// Async so you can wait easily when the
// delay comes.
block = new ActionBlock<DateTimeOffset>(async now => {
// Perform the action. Wait on the result.
await action(now, cancellationToken).
// Doing this here because synchronization context more than
// likely *doesn't* need to be captured for the continuation
// here. As a matter of fact, that would be downright
// dangerous.
ConfigureAwait(false);
// Wait.
await Task.Delay(TimeSpan.FromSeconds(Convert.ToInt32(DelayService)), cancellationToken).
// Same as above.
ConfigureAwait(false);
// Post the action back to the block.
block.Post(DateTimeOffset.Now);
}, new ExecutionDataflowBlockOptions
{
CancellationToken = cancellationToken
});
// Return the block.
return block;
}

Using Dispatcher correctly in event to update UI

I'm using dispatchers to update a bound collection from an event. I just ran into a nasty issue where I had two different dispatchers in the same event and it wasn't working. Using the debugger it was completely skipping over the code in the first dispatcher. Putting the entire event in a single dispatcher fixed it. I assume it's because of how the compiler handles it, can anyone confirm this - only one dispatcher per event, at least when dealing with the same elements?
Here is the code, when it gets to the await after (line == 0), it exits the function completely. Later, when line !=0 it runs the "Old style menu" fine. If I put all of the code in a single dispatcher, everything works fine.
private async void ProcessNLS(string parameters) // NET/USB List Info
{
if (parameters.Substring(0, 1) == "A" || (parameters.Substring(0, 1) == "U")) // ASCII x08/2010 Only
{
int line = Convert.ToInt32(parameters.Substring(1, 1));
string text = parameters.Substring(3);
// New Menu, Clear Old - Use Last Received/Holding Menu: See NLT bug
if (line == 0)
{
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
{
State.Menu.ServiceType = State.holdingMenu.ServiceType;
...
State.Menu.Items.Clear();
});
OnMenuTitleInfoChanged(new MenuTitleInfoChangedArgs(State.Menu));
// Replace Network Top with custom menu
if (State.Menu.LayerInfo == LayerTypes.NetworkTop)
{
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
{
State.Menu.Items.Clear();
});
...
}
// Get 1st Advanced Menu
if (Device.SupportsAdvancedMenus & State.Menu.LayerInfo != LayerTypes.NetworkTop)
{
...
}
}
// Old style menu
if (!Device.SupportsAdvancedMenus && State.Menu.LayerInfo != LayerTypes.NetworkTop)
{
NetworkMenuItem menuItem = new NetworkMenuItem(line, text);
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
{
State.Menu.Items.Add(menuItem);
});
OnMenuLoading(new MenuLoadingArgs(menuItem));
}
}
// C - Track Cursor
if (parameters.Substring(0,1) == "C")
{
if (parameters.Substring(1, 1)== "-")
{
// No Cursor
// Sent when entering player screen
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
{
...
State.Menu.Items.Clear();
OnMenuTitleInfoChanged(new MenuTitleInfoChangedArgs(State.Menu));
}
}
});
}
Like this it would just jump over the dispatcher for no apparent reason. If I put the entire thing in a single dispatcher it works fine.
A second question, if I have another event with a dispatcher, something like this:
foreach (xxx)
{
if (xxx == yyy)
{
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, async () =>
{
State.Menu.Items.Add(menuItem);
});
}
}
Would it be preferable to instead wrap the entire foreach loop in a dispatcher rather then calling it when needed each iteration?
Since my original question has changed I've made a new post with more specifics and another possible solution by just wrapping the original socket listener task in a dispatcher
Possible solution to issue with multiple UI dispatchers in the same method?
*** Update:
I think Raymond is on the right track, though adding Task didn't fix it, I noticed although it starts processing line "0" of the menu, before it sets up the new menu it tries to process the next line "1" command which is ignored because it doesn't have the right menu state yet, it still hasn't been set by the previous command yet.
I'm not sure how to fix it, it seems like I have to do an await at a lower level so be sure sure it full finishes one command before starting the next (and not sure why putting the whole ProcessNLS in UI dispatcher works), it's a little complicated since I go through multiple levels but here is the flow:
socket = new StreamSocket();
try
{
await socket.ConnectAsync(new HostName(HostName), Port);
OnConnect(new EventArgs());
await Task.Factory.StartNew(WaitForMessage);
}
catch (Exception ex)
{
OnConnectionFail(new EventArgs());
}
Goes to:
private async void WaitForMessage()
{
...
foreach (var message in messages)
{
if (string.IsNullOrWhiteSpace(message))
continue;
ProcessMessage(message);
}
}
Goes to
private void ProcessMessage(string message, string optionalFlags = "")
{
...
case "NLS": // NET/USB List Info
ProcessNLS(parameters);
break;
}
to finally
private async void ProcessNLS(string parameters) // NET/USB List Info
My alternate solution is to put to ProcessMessage call under WaitForMessage in a UI dispatcher
*** Update #2
I think this may be working, here is the updated flow, have to await multiple steps, use task instead of void
private async void WaitForMessage()
{
...
foreach (var message in messages)
{
if (string.IsNullOrWhiteSpace(message))
continue;
await ProcessMessage(message);
}
}
}
catch (Exception ex)
{
Debug.WriteLine("WaitForMessage Error: " + ex.Message);
OnDisconnect(new EventArgs());
}
}
to
private async Task ProcessMessage(string message, string optionalFlags = "")
{
...
case "NLS": // NET/USB List Info
await ProcessNLS(parameters);
break;
}
to
private async Task ProcessNLS(string parameters) // NET/USB List Info
The problem is here:
private async void ProcessNLS(...)
^^^^^^^^^^
You declared an async void function, which means "When the first await happens, return from the function immediately, and let the rest of the work run asynchronously." If you want the caller to be able to await on completion of your function, change the signature to private async Task ProcessNLS(...).

Categories

Resources