How to avoid SetResult after task cancellation when using CancelAfter - c#

I converted an EAP into TAP. However, the event which is handled, may not be fired at all, which is why I add a timeout. See example code
class Request<T> {
TaskCompletionSource<T> tcs;
CancellationTokenSource cts;
public int Timeout { get; }
public bool IsCanceled => tcs.Task.IsCanceled;
public Request(int timeout = System.Threading.Timeout.Infinite) => Timeout = timeout;
public Task<T> StartRequestAsync() {
cts.Token.Register(() => tcs.SetCanceled());
cts.CancelAfter(Timeout);
return tcs.Task;
}
public void OnEvent(T result) {
tcs.SetResult(result);
}
}
Note that the CancellationTokenSource and CancellationTokenRegistration are both properly Disposed, in the implementation of IDisposable of the current class. The StartRequestAsync method is also thread-safely prevented from running more than once. The code is simplified for brevity.
Now, I'm externally setting the result of the task.
var req = new Request<int>();
if(!req.IsCanceled)
{
req.SetResult(5);
}
But I think there is a race condition. I assume the cancellation token CancelAfter works as an interrupt. If the token gets cancelled exactly after execution enters the if block, we could get InvalidOperationException: An attempt was made to transition a task to a final state when it had already completed.
Documentation states that TaskCompletionSource is thread-safe, so does that mean that TrySetResult is the atomic version of what I'm trying to achieve here? Is that what I should use instead?
Is there any other way to solve this?

It might help to see how the SetResult and SetCanceled methods are implemented:
public void SetResult(TResult result)
{
if (!TrySetResult(result))
throw new InvalidOperationException(
Environment.GetResourceString("TaskT_TransitionToFinal_AlreadyCompleted"));
}
public void SetCanceled()
{
if(!TrySetCanceled())
throw new InvalidOperationException(
Environment.GetResourceString("TaskT_TransitionToFinal_AlreadyCompleted"));
}
As you can see, both methods delegate to their Try counterparts. You need them in order to detect errors in your code, in case your scenario is deterministic. If it's not, and race conditions are inherent in the scenario, just use the Try versions.

Related

How to Pause/Resume an asynchronous worker, without incurring memory allocation overhead?

I have an asynchronous method that contains an endless while loop. This loop is paused and resumed frequently by the main thread of the program. For this purpose I am using currently the PauseTokenSource class from the Nito.AsyncEx package:
private readonly PauseTokenSource _pausation = new();
private async Task StartWorker()
{
while (true)
{
await _pausation.Token.WaitWhilePausedAsync();
DoSomething();
}
}
This works pretty well, but I noticed that around 100 bytes are allocated each time the PauseTokenSource is paused and resumed. Since this happens many times per second, I am searching for a way to eliminate this overhead. My idea is to replace the PauseTokenSource with a home-made pausation mechanism that has a WaitWhilePausedAsync method that returns a ValueTask instead of Task. To make the implementation allocation-free, the ValueTask should be backed by something that implements the IValueTaskSource interface. Here is my current (failed) attempt to implement this mechanism:
public class Pausation : IValueTaskSource
{
private ManualResetValueTaskSourceCore<bool> _source;
private bool _paused;
public Pausation() => _source.RunContinuationsAsynchronously = true;
public void Pause()
{
_paused = true;
_source.Reset();
}
public void Resume()
{
_paused = false;
_source.SetResult(default);
}
public ValueTask WaitWhilePausedAsync()
{
if (!_paused) return ValueTask.CompletedTask;
return new ValueTask(this, _source.Version);
}
void IValueTaskSource.GetResult(short token)
{
_source.GetResult(token);
}
ValueTaskSourceStatus IValueTaskSource.GetStatus(short token)
{
return _source.GetStatus(token);
}
void IValueTaskSource.OnCompleted(Action<object> continuation, object state,
short token, ValueTaskSourceOnCompletedFlags flags)
{
_source.OnCompleted(continuation, state, token, flags);
}
}
My Pausation class is based on the ManualResetValueTaskSourceCore<T> struct, which is supposed to simplify the most common IValueTaskSource implementations. Apparently I am doing something wrong, because when my worker awaits the WaitWhilePausedAsync method, it crashes with an InvalidOperationException.
My question is: How can I fix the Pausation class, so that it works correctly? Should I add more state beyond the _paused field? Am I calling the ManualResetValueTaskSourceCore<T> methods in the wrong places? I am asking either for detailed fixing instructions, or for a complete and working implementation.
Specifics: The Pausation class is intended to be used in a single worker - single controller scenario. There is only one asynchronous worker (the StartWorker method), and only one controller thread issues Pause and Resume commands. Also there is no need for cancellation support. The termination of the worker is handled independently by a CancellationTokenSource (removed from the above snippet for brevity). The only functionality that is needed is the Pause, Resume and WaitWhilePausedAsync methods. The only requirement is that it works correctly, and it doesn't allocate memory.
A runnable online demo of my worker - controller scenario can be found here.
Output with the Nito.AsyncEx.PauseTokenSource class:
Controller loops: 112,748
Worker loops: 84, paused: 36 times
Output with my Pausation class:
Controller loops: 117,397
Unhandled exception. System.InvalidOperationException: Operation is not valid due to the current state of the object.
at System.Threading.Tasks.Sources.ManualResetValueTaskSourceCore`1.GetStatus(Int16 token)
at Program.Pausation.System.Threading.Tasks.Sources.IValueTaskSource.GetStatus(Int16 token)
at Program.<>c__DisplayClass0_0.<<Main>g__StartWorker|0>d.MoveNext()
I believe you're misunderstanding Reset. ManualResetValueTaskSourceCore<T>.Reset is nothing at all like ManualResetEvent.Reset. For ManualResetValueTaskSourceCore<T>, Reset means "the previous operation has completed, and now I want to reuse the value task, so change the version". So, it should be called after GetResult (i.e., after the paused code is done awaiting), not within Pause. The easiest way to encapsulate this IMO is to Reset the state immediately before returning the ValueTask.
Similarly, your code shouldn't call SetResult unless there's a value task already returned. ManualResetValueTaskSourceCore<T> is really designed around sequential operations pretty strictly, and having a separate "controller" complicates things. You could probably get it working by keeping track of whether or not the consumer is waiting, and only attempting to complete if there is one:
public class Pausation : IValueTaskSource
{
private ManualResetValueTaskSourceCore<bool> _source;
private readonly object _mutex = new();
private bool _paused;
private bool _waiting;
public Pausation() => _source.RunContinuationsAsynchronously = true;
public void Pause()
{
lock (_mutex)
_paused = true;
}
public void Resume()
{
var wasWaiting = false;
lock (_mutex)
{
wasWaiting = _waiting;
_paused = _waiting = false;
}
if (wasWaiting)
_source.SetResult(default);
}
public ValueTask WaitWhilePausedAsync()
{
lock (_mutex)
{
if (!_paused) return ValueTask.CompletedTask;
_waiting = true;
_source.Reset();
return new ValueTask(this, _source.Version);
}
}
void IValueTaskSource.GetResult(short token)
{
_source.GetResult(token);
}
ValueTaskSourceStatus IValueTaskSource.GetStatus(short token)
{
return _source.GetStatus(token);
}
void IValueTaskSource.OnCompleted(Action<object> continuation, object state, short token, ValueTaskSourceOnCompletedFlags flags)
{
_source.OnCompleted(continuation, state, token, flags);
}
}
I fixed some of the obvious race conditions using a mutex, but I can't guarantee there aren't more subtle ones remaining. It will certainly be limited to a single controller and single consumer, at least.
You may have misunderstood the purpose of ValueTask. Stephen Toub breaks down why it was introduced here: https://devblogs.microsoft.com/dotnet/understanding-the-whys-whats-and-whens-of-valuetask/
But the most relevant bit of information is that ValueTask does not allocate iff the asynchronous method completes synchronously and successfully.
If it does need to complete asynchronously, there is no getting around needing to allocate a Task class due to the state machine in the background. So this may need another solution entirely.

how to call an async method synchronously? [duplicate]

I have a public async void Foo() method that I want to call from synchronous method. So far all I have seen from MSDN documentation is calling async methods via async methods, but my whole program is not built with async methods.
Is this even possible?
Here's one example of calling these methods from an asynchronous method:
Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)
Now I'm looking into calling these async methods from sync methods.
Asynchronous programming does "grow" through the code base. It has been compared to a zombie virus. The best solution is to allow it to grow, but sometimes that's not possible.
I have written a few types in my Nito.AsyncEx library for dealing with a partially-asynchronous code base. There's no solution that works in every situation, though.
Solution A
If you have a simple asynchronous method that doesn't need to synchronize back to its context, then you can use Task.WaitAndUnwrapException:
var task = MyAsyncMethod();
var result = task.WaitAndUnwrapException();
You do not want to use Task.Wait or Task.Result because they wrap exceptions in AggregateException.
This solution is only appropriate if MyAsyncMethod does not synchronize back to its context. In other words, every await in MyAsyncMethod should end with ConfigureAwait(false). This means it can't update any UI elements or access the ASP.NET request context.
Solution B
If MyAsyncMethod does need to synchronize back to its context, then you may be able to use AsyncContext.RunTask to provide a nested context:
var result = AsyncContext.RunTask(MyAsyncMethod).Result;
*Update 4/14/2014: In more recent versions of the library the API is as follows:
var result = AsyncContext.Run(MyAsyncMethod);
(It's OK to use Task.Result in this example because RunTask will propagate Task exceptions).
The reason you may need AsyncContext.RunTask instead of Task.WaitAndUnwrapException is because of a rather subtle deadlock possibility that happens on WinForms/WPF/SL/ASP.NET:
A synchronous method calls an async method, obtaining a Task.
The synchronous method does a blocking wait on the Task.
The async method uses await without ConfigureAwait.
The Task cannot complete in this situation because it only completes when the async method is finished; the async method cannot complete because it is attempting to schedule its continuation to the SynchronizationContext, and WinForms/WPF/SL/ASP.NET will not allow the continuation to run because the synchronous method is already running in that context.
This is one reason why it's a good idea to use ConfigureAwait(false) within every async method as much as possible.
Solution C
AsyncContext.RunTask won't work in every scenario. For example, if the async method awaits something that requires a UI event to complete, then you'll deadlock even with the nested context. In that case, you could start the async method on the thread pool:
var task = Task.Run(async () => await MyAsyncMethod());
var result = task.WaitAndUnwrapException();
However, this solution requires a MyAsyncMethod that will work in the thread pool context. So it can't update UI elements or access the ASP.NET request context. And in that case, you may as well add ConfigureAwait(false) to its await statements, and use solution A.
Update, 2019-05-01: The current "least-worst practices" are in an MSDN article here.
Adding a solution that finally solved my problem, hopefully saves somebody's time.
Firstly read a couple articles of Stephen Cleary:
Async and Await
Don't Block on Async Code
From the "two best practices" in "Don't Block on Async Code", the first one didn't work for me and the second one wasn't applicable (basically if I can use await, I do!).
So here is my workaround: wrap the call inside a Task.Run<>(async () => await FunctionAsync()); and hopefully no deadlock anymore.
Here is my code:
public class LogReader
{
ILogger _logger;
public LogReader(ILogger logger)
{
_logger = logger;
}
public LogEntity GetLog()
{
Task<LogEntity> task = Task.Run<LogEntity>(async () => await GetLogAsync());
return task.Result;
}
public async Task<LogEntity> GetLogAsync()
{
var result = await _logger.GetAsync();
// more code here...
return result as LogEntity;
}
}
Microsoft built an AsyncHelper (internal) class to run Async as Sync. The source looks like:
internal static class AsyncHelper
{
private static readonly TaskFactory _myTaskFactory = new
TaskFactory(CancellationToken.None,
TaskCreationOptions.None,
TaskContinuationOptions.None,
TaskScheduler.Default);
public static TResult RunSync<TResult>(Func<Task<TResult>> func)
{
return AsyncHelper._myTaskFactory
.StartNew<Task<TResult>>(func)
.Unwrap<TResult>()
.GetAwaiter()
.GetResult();
}
public static void RunSync(Func<Task> func)
{
AsyncHelper._myTaskFactory
.StartNew<Task>(func)
.Unwrap()
.GetAwaiter()
.GetResult();
}
}
The Microsoft.AspNet.Identity base classes only have Async methods and in order to call them as Sync there are classes with extension methods that look like (example usage):
public static TUser FindById<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<TUser>(() => manager.FindByIdAsync(userId));
}
public static bool IsInRole<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId, string role) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<bool>(() => manager.IsInRoleAsync(userId, role));
}
For those concerned about the licensing terms of code, here is a link to very similar code (just adds support for culture on the thread) that has comments to indicate that it is MIT Licensed by Microsoft. https://github.com/aspnet/AspNetIdentity/blob/master/src/Microsoft.AspNet.Identity.Core/AsyncHelper.cs
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).Result? AFAIK, Microsoft is now discouraging from calling TaskFactory.StartNew, since they are both equivalent and one is more readable than the other.
Absolutely not.
The easy answer is that
.Unwrap().GetAwaiter().GetResult() != .Result
First off the
Is Task.Result the same as .GetAwaiter.GetResult()?
Secondly .Unwrap() causes the setup of the Task not to block the wrapped task.
Which should lead anyone to ask
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).GetAwaiter().GetResult()
Which would then be a It Depends.
Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
Excerpt:
Task.Run uses TaskCreationOptions.DenyChildAttach which means that children's tasks can not be attached to the parent and it uses TaskScheduler.Default which means that the one that runs tasks on Thread Pool will always be used to run tasks.
Task.Factory.StartNew uses TaskScheduler.Current which means scheduler of the current thread, it might be TaskScheduler.Default but not always.
Additional Reading:
Specifying a synchronization context
ASP.NET Core SynchronizationContext
For extra safety, wouldn't it be better to call it like this AsyncHelper.RunSync(async () => await AsyncMethod().ConfigureAwait(false)); This way we're telling the "inner" method "please don't try to sync to upper context and dealock"
Really great point and as most object architectural questions go it depends.
As an extension method do you want to force that for absolutely every call, or do you let the programmer using the function configure that on their own async calls? I could see a use case for call three scenarios; it most likely is not something you want in WPF, certainly makes sense in most cases, but considering there is no Context in ASP.Net Core if you could guarantee it was say internal for a ASP.Net Core, then it wouldn't matter.
async Main is now part of C# 7.2 and can be enabled in the projects advanced build settings.
For C# < 7.2, the correct way is:
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
/*await stuff here*/
}
You'll see this used in a lot of Microsoft documentation, for example:
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
I'm not 100% sure, but I believe the technique described in this blog should work in many circumstances:
You can thus use task.GetAwaiter().GetResult() if you want to directly invoke this propagation logic.
public async Task<string> StartMyTask()
{
await Foo()
// code to execute once foo is done
}
static void Main()
{
var myTask = StartMyTask(); // call your method which will return control once it hits await
// now you can continue executing code here
string result = myTask.Result; // wait for the task to complete to continue
// use result
}
You read the 'await' keyword as "start this long running task, then return control to the calling method". Once the long-running task is done, then it executes the code after it. The code after the await is similar to what used to be CallBack methods. The big difference being the logical flow is not interrupted which makes it much easier to write and read.
There is, however, a good solution that works in (almost: see comments) every situation: an ad-hoc message pump (SynchronizationContext).
The calling thread will be blocked as expected, while still ensuring that all continuations called from the async function don't deadlock as they'll be marshaled to the ad-hoc SynchronizationContext (message pump) running on the calling thread.
The code of the ad-hoc message pump helper:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Microsoft.Threading
{
/// <summary>Provides a pump that supports running asynchronous methods on the current thread.</summary>
public static class AsyncPump
{
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Action asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(true);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function
syncCtx.OperationStarted();
asyncMethod();
syncCtx.OperationCompleted();
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Func<Task> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static T Run<T>(Func<Task<T>> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
return t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Provides a SynchronizationContext that's single-threaded.</summary>
private sealed class SingleThreadSynchronizationContext : SynchronizationContext
{
/// <summary>The queue of work items.</summary>
private readonly BlockingCollection<KeyValuePair<SendOrPostCallback, object>> m_queue =
new BlockingCollection<KeyValuePair<SendOrPostCallback, object>>();
/// <summary>The processing thread.</summary>
private readonly Thread m_thread = Thread.CurrentThread;
/// <summary>The number of outstanding operations.</summary>
private int m_operationCount = 0;
/// <summary>Whether to track operations m_operationCount.</summary>
private readonly bool m_trackOperations;
/// <summary>Initializes the context.</summary>
/// <param name="trackOperations">Whether to track operation count.</param>
internal SingleThreadSynchronizationContext(bool trackOperations)
{
m_trackOperations = trackOperations;
}
/// <summary>Dispatches an asynchronous message to the synchronization context.</summary>
/// <param name="d">The System.Threading.SendOrPostCallback delegate to call.</param>
/// <param name="state">The object passed to the delegate.</param>
public override void Post(SendOrPostCallback d, object state)
{
if (d == null) throw new ArgumentNullException("d");
m_queue.Add(new KeyValuePair<SendOrPostCallback, object>(d, state));
}
/// <summary>Not supported.</summary>
public override void Send(SendOrPostCallback d, object state)
{
throw new NotSupportedException("Synchronously sending is not supported.");
}
/// <summary>Runs an loop to process all queued work items.</summary>
public void RunOnCurrentThread()
{
foreach (var workItem in m_queue.GetConsumingEnumerable())
workItem.Key(workItem.Value);
}
/// <summary>Notifies the context that no more work will arrive.</summary>
public void Complete() { m_queue.CompleteAdding(); }
/// <summary>Invoked when an async operation is started.</summary>
public override void OperationStarted()
{
if (m_trackOperations)
Interlocked.Increment(ref m_operationCount);
}
/// <summary>Invoked when an async operation is completed.</summary>
public override void OperationCompleted()
{
if (m_trackOperations &&
Interlocked.Decrement(ref m_operationCount) == 0)
Complete();
}
}
}
}
Usage:
AsyncPump.Run(() => FooAsync(...));
More detailed description of the async pump is available here.
To anyone paying attention to this question anymore...
If you look in Microsoft.VisualStudio.Services.WebApi there's a class called TaskExtensions. Within that class you'll see the static extension method Task.SyncResult(), which like totally just blocks the thread till the task returns.
Internally it calls task.GetAwaiter().GetResult() which is pretty simple, however it's overloaded to work on any async method that return Task, Task<T> or Task<HttpResponseMessage>... syntactic sugar, baby... daddy's got a sweet tooth.
It looks like ...GetAwaiter().GetResult() is the MS-official way to execute async code in a blocking context. Seems to work very fine for my use case.
var result = Task.Run(async () => await configManager.GetConfigurationAsync()).ConfigureAwait(false);
OpenIdConnectConfiguration config = result.GetAwaiter().GetResult();
Or use this:
var result=result.GetAwaiter().GetResult().AccessToken
You can call any asynchronous method from synchronous code, that is, until you need to await on them, in which case they have to be marked as async too.
As a lot of people are suggesting here, you could call Wait() or Result on the resulting task in your synchronous method, but then you end up with a blocking call in that method, which sort of defeats the purpose of async.
If you really can't make your method async and you don't want to lock up the synchronous method, then you're going to have to use a callback method by passing it as parameter to the ContinueWith() method on task.
Inspired by some of the other answers, I created the following simple helper methods:
public static TResult RunSync<TResult>(Func<Task<TResult>> method)
{
var task = method();
return task.GetAwaiter().GetResult();
}
public static void RunSync(Func<Task> method)
{
var task = method();
task.GetAwaiter().GetResult();
}
They can be called as follows (depending on whether you are returning a value or not):
RunSync(() => Foo());
var result = RunSync(() => FooWithResult());
Note that the signature in the original question public async void Foo() is incorrect. It should be public async Task Foo() as you should return Task not void for async methods that don't return a value (yes, there are some rare exceptions).
Stephen Cleary's Answer;
That approach shouldn't cause a deadlock (assuming that
ProblemMethodAsync doesn't send updates to the UI thread or anything
like that). It does assume that ProblemMethodAsync can be called on a
thread pool thread, which is not always the case.
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
And here is the approach;
The Thread Pool Hack A similar approach to the Blocking Hack is to
offload the asynchronous work to the thread pool, then block on the
resulting task. The code using this hack would look like the code
shown in Figure 7.
Figure 7 Code for the Thread Pool Hack
C#
public sealed class WebDataService : IDataService
{
public string Get(int id)
{
return Task.Run(() => GetAsync(id)).GetAwaiter().GetResult();
}
public async Task<string> GetAsync(int id)
{
using (var client = new WebClient())
return await client.DownloadStringTaskAsync(
"https://www.example.com/api/values/" + id);
}
}
The call to Task.Run executes the asynchronous method on a thread pool
thread. Here it will run without a context, thus avoiding the
deadlock. One of the problems with this approach is the asynchronous
method can’t depend on executing within a specific context. So, it
can’t use UI elements or the ASP.NET HttpContext.Current.
Here is the simplest solution. I saw it somewhere on the Internet, I didn't remember where, but I have been using it successfully. It will not deadlock the calling thread.
void SynchronousFunction()
{
Task.Run(Foo).Wait();
}
string SynchronousFunctionReturnsString()
{
return Task.Run(Foo).Result;
}
string SynchronousFunctionReturnsStringWithParam(int id)
{
return Task.Run(() => Foo(id)).Result;
}
After hours of trying different methods, with more or less success, this is what I ended with. It doesn't end in a deadlock while getting result and it also gets and throws the original exception and not the wrapped one.
private ReturnType RunSync()
{
var task = Task.Run(async () => await myMethodAsync(agency));
if (task.IsFaulted && task.Exception != null)
{
throw task.Exception;
}
return task.Result;
}
You can now use source generators to create a sync version of your method using Sync Method Generator library (nuget).
Use it as follows:
[Zomp.SyncMethodGenerator.CreateSyncVersion]
public async void FooAsync()
Which will generate Foo method which you can call synchronously.
Those windows async methods have a nifty little method called AsTask(). You can use this to have the method return itself as a task so that you can manually call Wait() on it.
For example, on a Windows Phone 8 Silverlight application, you can do the following:
private void DeleteSynchronous(string path)
{
StorageFolder localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
Task t = localFolder.DeleteAsync(StorageDeleteOption.PermanentDelete).AsTask();
t.Wait();
}
private void FunctionThatNeedsToBeSynchronous()
{
// Do some work here
// ....
// Delete something in storage synchronously
DeleteSynchronous("pathGoesHere");
// Do other work here
// .....
}
Hope this helps!
If you want to run it Sync
MethodAsync().RunSynchronously()

Make a sync method from async method [duplicate]

I have a public async void Foo() method that I want to call from synchronous method. So far all I have seen from MSDN documentation is calling async methods via async methods, but my whole program is not built with async methods.
Is this even possible?
Here's one example of calling these methods from an asynchronous method:
Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)
Now I'm looking into calling these async methods from sync methods.
Asynchronous programming does "grow" through the code base. It has been compared to a zombie virus. The best solution is to allow it to grow, but sometimes that's not possible.
I have written a few types in my Nito.AsyncEx library for dealing with a partially-asynchronous code base. There's no solution that works in every situation, though.
Solution A
If you have a simple asynchronous method that doesn't need to synchronize back to its context, then you can use Task.WaitAndUnwrapException:
var task = MyAsyncMethod();
var result = task.WaitAndUnwrapException();
You do not want to use Task.Wait or Task.Result because they wrap exceptions in AggregateException.
This solution is only appropriate if MyAsyncMethod does not synchronize back to its context. In other words, every await in MyAsyncMethod should end with ConfigureAwait(false). This means it can't update any UI elements or access the ASP.NET request context.
Solution B
If MyAsyncMethod does need to synchronize back to its context, then you may be able to use AsyncContext.RunTask to provide a nested context:
var result = AsyncContext.RunTask(MyAsyncMethod).Result;
*Update 4/14/2014: In more recent versions of the library the API is as follows:
var result = AsyncContext.Run(MyAsyncMethod);
(It's OK to use Task.Result in this example because RunTask will propagate Task exceptions).
The reason you may need AsyncContext.RunTask instead of Task.WaitAndUnwrapException is because of a rather subtle deadlock possibility that happens on WinForms/WPF/SL/ASP.NET:
A synchronous method calls an async method, obtaining a Task.
The synchronous method does a blocking wait on the Task.
The async method uses await without ConfigureAwait.
The Task cannot complete in this situation because it only completes when the async method is finished; the async method cannot complete because it is attempting to schedule its continuation to the SynchronizationContext, and WinForms/WPF/SL/ASP.NET will not allow the continuation to run because the synchronous method is already running in that context.
This is one reason why it's a good idea to use ConfigureAwait(false) within every async method as much as possible.
Solution C
AsyncContext.RunTask won't work in every scenario. For example, if the async method awaits something that requires a UI event to complete, then you'll deadlock even with the nested context. In that case, you could start the async method on the thread pool:
var task = Task.Run(async () => await MyAsyncMethod());
var result = task.WaitAndUnwrapException();
However, this solution requires a MyAsyncMethod that will work in the thread pool context. So it can't update UI elements or access the ASP.NET request context. And in that case, you may as well add ConfigureAwait(false) to its await statements, and use solution A.
Update, 2019-05-01: The current "least-worst practices" are in an MSDN article here.
Adding a solution that finally solved my problem, hopefully saves somebody's time.
Firstly read a couple articles of Stephen Cleary:
Async and Await
Don't Block on Async Code
From the "two best practices" in "Don't Block on Async Code", the first one didn't work for me and the second one wasn't applicable (basically if I can use await, I do!).
So here is my workaround: wrap the call inside a Task.Run<>(async () => await FunctionAsync()); and hopefully no deadlock anymore.
Here is my code:
public class LogReader
{
ILogger _logger;
public LogReader(ILogger logger)
{
_logger = logger;
}
public LogEntity GetLog()
{
Task<LogEntity> task = Task.Run<LogEntity>(async () => await GetLogAsync());
return task.Result;
}
public async Task<LogEntity> GetLogAsync()
{
var result = await _logger.GetAsync();
// more code here...
return result as LogEntity;
}
}
Microsoft built an AsyncHelper (internal) class to run Async as Sync. The source looks like:
internal static class AsyncHelper
{
private static readonly TaskFactory _myTaskFactory = new
TaskFactory(CancellationToken.None,
TaskCreationOptions.None,
TaskContinuationOptions.None,
TaskScheduler.Default);
public static TResult RunSync<TResult>(Func<Task<TResult>> func)
{
return AsyncHelper._myTaskFactory
.StartNew<Task<TResult>>(func)
.Unwrap<TResult>()
.GetAwaiter()
.GetResult();
}
public static void RunSync(Func<Task> func)
{
AsyncHelper._myTaskFactory
.StartNew<Task>(func)
.Unwrap()
.GetAwaiter()
.GetResult();
}
}
The Microsoft.AspNet.Identity base classes only have Async methods and in order to call them as Sync there are classes with extension methods that look like (example usage):
public static TUser FindById<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<TUser>(() => manager.FindByIdAsync(userId));
}
public static bool IsInRole<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId, string role) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<bool>(() => manager.IsInRoleAsync(userId, role));
}
For those concerned about the licensing terms of code, here is a link to very similar code (just adds support for culture on the thread) that has comments to indicate that it is MIT Licensed by Microsoft. https://github.com/aspnet/AspNetIdentity/blob/master/src/Microsoft.AspNet.Identity.Core/AsyncHelper.cs
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).Result? AFAIK, Microsoft is now discouraging from calling TaskFactory.StartNew, since they are both equivalent and one is more readable than the other.
Absolutely not.
The easy answer is that
.Unwrap().GetAwaiter().GetResult() != .Result
First off the
Is Task.Result the same as .GetAwaiter.GetResult()?
Secondly .Unwrap() causes the setup of the Task not to block the wrapped task.
Which should lead anyone to ask
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).GetAwaiter().GetResult()
Which would then be a It Depends.
Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
Excerpt:
Task.Run uses TaskCreationOptions.DenyChildAttach which means that children's tasks can not be attached to the parent and it uses TaskScheduler.Default which means that the one that runs tasks on Thread Pool will always be used to run tasks.
Task.Factory.StartNew uses TaskScheduler.Current which means scheduler of the current thread, it might be TaskScheduler.Default but not always.
Additional Reading:
Specifying a synchronization context
ASP.NET Core SynchronizationContext
For extra safety, wouldn't it be better to call it like this AsyncHelper.RunSync(async () => await AsyncMethod().ConfigureAwait(false)); This way we're telling the "inner" method "please don't try to sync to upper context and dealock"
Really great point and as most object architectural questions go it depends.
As an extension method do you want to force that for absolutely every call, or do you let the programmer using the function configure that on their own async calls? I could see a use case for call three scenarios; it most likely is not something you want in WPF, certainly makes sense in most cases, but considering there is no Context in ASP.Net Core if you could guarantee it was say internal for a ASP.Net Core, then it wouldn't matter.
async Main is now part of C# 7.2 and can be enabled in the projects advanced build settings.
For C# < 7.2, the correct way is:
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
/*await stuff here*/
}
You'll see this used in a lot of Microsoft documentation, for example:
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
I'm not 100% sure, but I believe the technique described in this blog should work in many circumstances:
You can thus use task.GetAwaiter().GetResult() if you want to directly invoke this propagation logic.
public async Task<string> StartMyTask()
{
await Foo()
// code to execute once foo is done
}
static void Main()
{
var myTask = StartMyTask(); // call your method which will return control once it hits await
// now you can continue executing code here
string result = myTask.Result; // wait for the task to complete to continue
// use result
}
You read the 'await' keyword as "start this long running task, then return control to the calling method". Once the long-running task is done, then it executes the code after it. The code after the await is similar to what used to be CallBack methods. The big difference being the logical flow is not interrupted which makes it much easier to write and read.
There is, however, a good solution that works in (almost: see comments) every situation: an ad-hoc message pump (SynchronizationContext).
The calling thread will be blocked as expected, while still ensuring that all continuations called from the async function don't deadlock as they'll be marshaled to the ad-hoc SynchronizationContext (message pump) running on the calling thread.
The code of the ad-hoc message pump helper:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Microsoft.Threading
{
/// <summary>Provides a pump that supports running asynchronous methods on the current thread.</summary>
public static class AsyncPump
{
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Action asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(true);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function
syncCtx.OperationStarted();
asyncMethod();
syncCtx.OperationCompleted();
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Func<Task> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static T Run<T>(Func<Task<T>> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
return t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Provides a SynchronizationContext that's single-threaded.</summary>
private sealed class SingleThreadSynchronizationContext : SynchronizationContext
{
/// <summary>The queue of work items.</summary>
private readonly BlockingCollection<KeyValuePair<SendOrPostCallback, object>> m_queue =
new BlockingCollection<KeyValuePair<SendOrPostCallback, object>>();
/// <summary>The processing thread.</summary>
private readonly Thread m_thread = Thread.CurrentThread;
/// <summary>The number of outstanding operations.</summary>
private int m_operationCount = 0;
/// <summary>Whether to track operations m_operationCount.</summary>
private readonly bool m_trackOperations;
/// <summary>Initializes the context.</summary>
/// <param name="trackOperations">Whether to track operation count.</param>
internal SingleThreadSynchronizationContext(bool trackOperations)
{
m_trackOperations = trackOperations;
}
/// <summary>Dispatches an asynchronous message to the synchronization context.</summary>
/// <param name="d">The System.Threading.SendOrPostCallback delegate to call.</param>
/// <param name="state">The object passed to the delegate.</param>
public override void Post(SendOrPostCallback d, object state)
{
if (d == null) throw new ArgumentNullException("d");
m_queue.Add(new KeyValuePair<SendOrPostCallback, object>(d, state));
}
/// <summary>Not supported.</summary>
public override void Send(SendOrPostCallback d, object state)
{
throw new NotSupportedException("Synchronously sending is not supported.");
}
/// <summary>Runs an loop to process all queued work items.</summary>
public void RunOnCurrentThread()
{
foreach (var workItem in m_queue.GetConsumingEnumerable())
workItem.Key(workItem.Value);
}
/// <summary>Notifies the context that no more work will arrive.</summary>
public void Complete() { m_queue.CompleteAdding(); }
/// <summary>Invoked when an async operation is started.</summary>
public override void OperationStarted()
{
if (m_trackOperations)
Interlocked.Increment(ref m_operationCount);
}
/// <summary>Invoked when an async operation is completed.</summary>
public override void OperationCompleted()
{
if (m_trackOperations &&
Interlocked.Decrement(ref m_operationCount) == 0)
Complete();
}
}
}
}
Usage:
AsyncPump.Run(() => FooAsync(...));
More detailed description of the async pump is available here.
To anyone paying attention to this question anymore...
If you look in Microsoft.VisualStudio.Services.WebApi there's a class called TaskExtensions. Within that class you'll see the static extension method Task.SyncResult(), which like totally just blocks the thread till the task returns.
Internally it calls task.GetAwaiter().GetResult() which is pretty simple, however it's overloaded to work on any async method that return Task, Task<T> or Task<HttpResponseMessage>... syntactic sugar, baby... daddy's got a sweet tooth.
It looks like ...GetAwaiter().GetResult() is the MS-official way to execute async code in a blocking context. Seems to work very fine for my use case.
var result = Task.Run(async () => await configManager.GetConfigurationAsync()).ConfigureAwait(false);
OpenIdConnectConfiguration config = result.GetAwaiter().GetResult();
Or use this:
var result=result.GetAwaiter().GetResult().AccessToken
You can call any asynchronous method from synchronous code, that is, until you need to await on them, in which case they have to be marked as async too.
As a lot of people are suggesting here, you could call Wait() or Result on the resulting task in your synchronous method, but then you end up with a blocking call in that method, which sort of defeats the purpose of async.
If you really can't make your method async and you don't want to lock up the synchronous method, then you're going to have to use a callback method by passing it as parameter to the ContinueWith() method on task.
Inspired by some of the other answers, I created the following simple helper methods:
public static TResult RunSync<TResult>(Func<Task<TResult>> method)
{
var task = method();
return task.GetAwaiter().GetResult();
}
public static void RunSync(Func<Task> method)
{
var task = method();
task.GetAwaiter().GetResult();
}
They can be called as follows (depending on whether you are returning a value or not):
RunSync(() => Foo());
var result = RunSync(() => FooWithResult());
Note that the signature in the original question public async void Foo() is incorrect. It should be public async Task Foo() as you should return Task not void for async methods that don't return a value (yes, there are some rare exceptions).
Stephen Cleary's Answer;
That approach shouldn't cause a deadlock (assuming that
ProblemMethodAsync doesn't send updates to the UI thread or anything
like that). It does assume that ProblemMethodAsync can be called on a
thread pool thread, which is not always the case.
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
And here is the approach;
The Thread Pool Hack A similar approach to the Blocking Hack is to
offload the asynchronous work to the thread pool, then block on the
resulting task. The code using this hack would look like the code
shown in Figure 7.
Figure 7 Code for the Thread Pool Hack
C#
public sealed class WebDataService : IDataService
{
public string Get(int id)
{
return Task.Run(() => GetAsync(id)).GetAwaiter().GetResult();
}
public async Task<string> GetAsync(int id)
{
using (var client = new WebClient())
return await client.DownloadStringTaskAsync(
"https://www.example.com/api/values/" + id);
}
}
The call to Task.Run executes the asynchronous method on a thread pool
thread. Here it will run without a context, thus avoiding the
deadlock. One of the problems with this approach is the asynchronous
method can’t depend on executing within a specific context. So, it
can’t use UI elements or the ASP.NET HttpContext.Current.
Here is the simplest solution. I saw it somewhere on the Internet, I didn't remember where, but I have been using it successfully. It will not deadlock the calling thread.
void SynchronousFunction()
{
Task.Run(Foo).Wait();
}
string SynchronousFunctionReturnsString()
{
return Task.Run(Foo).Result;
}
string SynchronousFunctionReturnsStringWithParam(int id)
{
return Task.Run(() => Foo(id)).Result;
}
After hours of trying different methods, with more or less success, this is what I ended with. It doesn't end in a deadlock while getting result and it also gets and throws the original exception and not the wrapped one.
private ReturnType RunSync()
{
var task = Task.Run(async () => await myMethodAsync(agency));
if (task.IsFaulted && task.Exception != null)
{
throw task.Exception;
}
return task.Result;
}
You can now use source generators to create a sync version of your method using Sync Method Generator library (nuget).
Use it as follows:
[Zomp.SyncMethodGenerator.CreateSyncVersion]
public async void FooAsync()
Which will generate Foo method which you can call synchronously.
Those windows async methods have a nifty little method called AsTask(). You can use this to have the method return itself as a task so that you can manually call Wait() on it.
For example, on a Windows Phone 8 Silverlight application, you can do the following:
private void DeleteSynchronous(string path)
{
StorageFolder localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
Task t = localFolder.DeleteAsync(StorageDeleteOption.PermanentDelete).AsTask();
t.Wait();
}
private void FunctionThatNeedsToBeSynchronous()
{
// Do some work here
// ....
// Delete something in storage synchronously
DeleteSynchronous("pathGoesHere");
// Do other work here
// .....
}
Hope this helps!
If you want to run it Sync
MethodAsync().RunSynchronously()

Async version of Monitor.Pulse/Wait

I'm trying to optimize an async version of something similar (in basic funcionality) to the Monitor.Wait and Monitor.Pulse methods. The idea is to use this over an async method.
Requirements:
1) I have one Task running, that it is in charge of waiting until someone pulses my monitor.
2) That task may compute a complex (ie: time consuming) operation. In the meanwhile, the pulse method could be called several times without doing anything (as the main task is already doing some processing).
3) Once the main task finishes, it starts to Wait again until another Pulse comes in.
Worst case scenario is Wait>Pulse>Wait>Pulse>Wait..., but usually I have tenths/hundreds of pulses for every wait.
So, I have the following class (working, but I think it can be optimized a bit based on my requirements)
internal sealed class Awaiter
{
private readonly ConcurrentQueue<TaskCompletionSource<byte>> _waiting = new ConcurrentQueue<TaskCompletionSource<byte>>();
public void Pulse()
{
TaskCompletionSource<byte> tcs;
if (_waiting.TryDequeue(out tcs))
{
tcs.TrySetResult(1);
}
}
public Task Wait()
{
TaskCompletionSource<byte> tcs;
if (_waiting.TryPeek(out tcs))
{
return tcs.Task;
}
tcs = new TaskCompletionSource<byte>();
_waiting.Enqueue(tcs);
return tcs.Task;
}
}
The problem with the above class is the baggage I'm using just for synchronization. Since I will be waiting from one and only one thread, there is really no need to have a ConcurrentQueue, as I always have only one item in it.
So, I simplified it a bit and wrote the following:
internal sealed class Awaiter2
{
private readonly object _mutex = new object();
private TaskCompletionSource<byte> _waiting;
public void Pulse()
{
var w = _waiting;
if (w == null)
{
return;
}
lock (_mutex)
{
w = _waiting;
if (w == null)
{
return;
}
_waiting = null;
w.TrySetResult(1);
}
}
public Task Wait()
{
var w = _waiting;
if (w != null)
{
return w.Task;
}
lock (_mutex)
{
w = _waiting;
if (w != null)
{
return w.Task;
}
w = _waiting = new TaskCompletionSource<byte>();
return w.Task;
}
}
}
That new version is also working ok, but I'm still thinking it can be optimized a bit more, by removing the locks.
I'm looking for suggestions on how I can optimize the second version. Any ideas?
If you don't need the Wait() call to return a Task but are content with being able to await Wait() then you can implement a custom awaiter/awaitable.
See this link for an overview of the await pattern used by the compiler.
When implementing custom awaitables you will just be dealing with delegates and the actual "waiting" is left up to you. When you want to "await" for a condition it is often possible to keep a list of pending continuations and whenever the condition comes true you can invoke those continuations. You just need to deal with the synchronization coming from the fact that await can be called from arbitrary threads. If you know that you'll only ever await from one thread (say the UI thread) then you don't need any synchronization at all!
I'll try to give you a lock-free implementation but no guarantees that it is correct. If you don't understand why all race conditions are safe you should not use it and implement the async/await protocol using lock-statements or other techniques which you know how to debug.
public sealed class AsyncMonitor
{
private PulseAwaitable _currentWaiter;
public AsyncMonitor()
{
_currentWaiter = new PulseAwaitable();
}
public void Pulse()
{
// Optimize for the case when calling Pulse() when nobody is waiting.
//
// This has an inherent race condition when calling Pulse() and Wait()
// at the same time. The question this was written for did not specify
// how to resolve this, so it is a valid answer to tolerate either
// result and just allow the race condition.
//
if (_currentWaiter.HasWaitingContinuations)
Interlocked.Exchange(ref _currentWaiter, new PulseAwaitable()).Complete();
}
public PulseAwaitable Wait()
{
return _currentWaiter;
}
}
// This class maintains a list of waiting continuations to be executed when
// the owning AsyncMonitor is pulsed.
public sealed class PulseAwaitable : INotifyCompletion
{
// List of pending 'await' delegates.
private Action _pendingContinuations;
// Flag whether we have been pulsed. This is the primary variable
// around which we build the lock free synchronization.
private int _pulsed;
// AsyncMonitor creates instances as required.
internal PulseAwaitable()
{
}
// This check has a race condition which is tolerated.
// It is used to optimize for cases when the PulseAwaitable has no waiters.
internal bool HasWaitingContinuations
{
get { return Volatile.Read(ref _pendingContinuations) != null; }
}
// Called by the AsyncMonitor when it is pulsed.
internal void Complete()
{
// Set pulsed flag first because that is the variable around which
// we build the lock free protocol. Everything else this method does
// is free to have race conditions.
Interlocked.Exchange(ref _pulsed, 1);
// Execute pending continuations. This is free to race with calls
// of OnCompleted seeing the pulsed flag first.
Interlocked.Exchange(ref _pendingContinuations, null)?.Invoke();
}
#region Awaitable
// There is no need to separate the awaiter from the awaitable
// so we use one class to implement both parts of the protocol.
public PulseAwaitable GetAwaiter()
{
return this;
}
#endregion
#region Awaiter
public bool IsCompleted
{
// The return value of this property does not need to be up to date so we could omit the 'Volatile.Read' if we wanted to.
// What is not allowed is returning "true" even if we are not completed, but this cannot happen since we never transist back to incompleted.
get { return Volatile.Read(ref _pulsed) == 1; }
}
public void OnCompleted(Action continuation)
{
// Protected against manual invocations. The compiler-generated code never passes null so you can remove this check in release builds if you want to.
if (continuation == null)
throw new ArgumentNullException(nameof(continuation));
// Standard pattern of maintaining a lock free immutable variable: read-modify-write cycle.
// See for example here: https://blogs.msdn.microsoft.com/oldnewthing/20140516-00/?p=973
// Again the 'Volatile.Read' is not really needed since outdated values will be detected at the first iteration.
var oldContinuations = Volatile.Read(ref _pendingContinuations);
for (;;)
{
var newContinuations = (oldContinuations + continuation);
var actualContinuations = Interlocked.CompareExchange(ref _pendingContinuations, newContinuations, oldContinuations);
if (actualContinuations == oldContinuations)
break;
oldContinuations = actualContinuations;
}
// Now comes the interesting part where the actual lock free synchronization happens.
// If we are completed then somebody needs to clean up remaining continuations.
// This happens last so the first part of the method can race with pulsing us.
if (IsCompleted)
Interlocked.Exchange(ref _pendingContinuations, null)?.Invoke();
}
public void GetResult()
{
// This is just to check against manual calls. The compiler will never call this when IsCompleted is false.
// (Assuming your OnCompleted implementation is bug-free and you don't execute continuations before IsCompleted becomes true.)
if (!IsCompleted)
throw new NotSupportedException("Synchronous waits are not supported. Use 'await' or OnCompleted to wait asynchronously");
}
#endregion
}
You usually don't bother on which thread the continuations run because if they are async methods the compiler has already inserted code (in the continuation) to switch back to the right thread, no need to do it manually in every awaitable implementation.
[edit]
As a starting point for how a locking implementation can look I'll provide one using a lock-statement. It should be easy to replace it by a spinlock or some other locking technique. By using a struct as the awaitable it even has the advantage that it does no additional allocation except for the initial object. (There are of course allocations in the async/await framework in the compiler magic on the calling side, but you can't get rid of these.)
Note that the iteration counter will increment only for every Wait+Pulse pair and will eventually overflow into negative, but that is ok. We just need to bridge the time from the continuation beeing invoked until it can call GetResult. 4 billion Wait+Pulse pairs should be plenty of time for any pending continuations to call its GetResult method. If you don't want that risk you could use a long or Guid for a more unique iteration counter, but IMHO an int is good for almost all scenarios.
public sealed class AsyncMonitor
{
public struct Awaitable : INotifyCompletion
{
// We use a struct to avoid allocations. Note that this means the compiler will copy
// the struct around in the calling code when doing 'await', so for your own debugging
// sanity make all variables readonly.
private readonly AsyncMonitor _monitor;
private readonly int _iteration;
public Awaitable(AsyncMonitor monitor)
{
lock (monitor)
{
_monitor = monitor;
_iteration = monitor._iteration;
}
}
public Awaitable GetAwaiter()
{
return this;
}
public bool IsCompleted
{
get
{
// We use the iteration counter as an indicator when we should be complete.
lock (_monitor)
{
return _monitor._iteration != _iteration;
}
}
}
public void OnCompleted(Action continuation)
{
// The compiler never passes null, but someone may call it manually.
if (continuation == null)
throw new ArgumentNullException(nameof(continuation));
lock (_monitor)
{
// Not calling IsCompleted since we already have a lock.
if (_monitor._iteration == _iteration)
{
_monitor._waiting += continuation;
// null the continuation to indicate the following code
// that we completed and don't want it executed.
continuation = null;
}
}
// If we were already completed then we didn't null the continuation.
// (We should invoke the continuation outside of the lock because it
// may want to Wait/Pulse again and we want to avoid reentrancy issues.)
continuation?.Invoke();
}
public void GetResult()
{
lock (_monitor)
{
// Not calling IsCompleted since we already have a lock.
if (_monitor._iteration == _iteration)
throw new NotSupportedException("Synchronous wait is not supported. Use await or OnCompleted.");
}
}
}
private Action _waiting;
private int _iteration;
public AsyncMonitor()
{
}
public void Pulse(bool executeAsync)
{
Action execute = null;
lock (this)
{
// If nobody is waiting we don't need to increment the iteration counter.
if (_waiting != null)
{
_iteration++;
execute = _waiting;
_waiting = null;
}
}
// Important: execute the callbacks outside the lock because they might Pulse or Wait again.
if (execute != null)
{
// If the caller doesn't want inlined execution (maybe he holds a lock)
// then execute it on the thread pool.
if (executeAsync)
Task.Run(execute);
else
execute();
}
}
public Awaitable Wait()
{
return new Awaitable(this);
}
}
Here is my simple async implementation that I use in my projects:
internal sealed class Pulsar
{
private static TaskCompletionSource<bool> Init() => new TaskCompletionSource<bool>();
private TaskCompletionSource<bool> _tcs = Init();
public void Pulse()
{
Interlocked.Exchange(ref _tcs, Init()).SetResult(true);
}
public Task AwaitPulse(CancellationToken token)
{
return token.CanBeCanceled ? _tcs.Task.WithCancellation(token) : _tcs.Task;
}
}
Add TaskCreationOptions.RunContinuationsAsynchronously to the TCS for async continuations.
The WithCancellation can be omitted of course, if you do not need cancellations.
Because you only have one task ever waiting your function can be simplified to
internal sealed class Awaiter3
{
private volatile TaskCompletionSource<byte> _waiting;
public void Pulse()
{
var w = _waiting;
if (w == null)
{
return;
}
_waiting = null;
#if NET_46_OR_GREATER
w.TrySetResult(1);
#else
Task.Run(() => w.TrySetResult(1));
#endif
}
//This method is not thread safe and can only be called by one thread at a time.
// To make it thread safe put a lock around the null check and the assignment,
// you do not need to have a lock on Pulse, "volatile" takes care of that side.
public Task Wait()
{
if(_waiting != null)
throw new InvalidOperationException("Only one waiter is allowed to exist at a time!");
#if NET_46_OR_GREATER
_waiting = new TaskCompletionSource<byte>(TaskCreationOptions.RunContinuationsAsynchronously);
#else
_waiting = new TaskCompletionSource<byte>();
#endif
return _waiting.Task;
}
}
One behavior I did change. If you are using .NET 4.6 or newer use the code in the #if NET_46_OR_GREATER blocks, if under use the else blocks. When you call TrySetResult you could have the continuation synchronously run, this can cause Pulse() to take a long time to complete. By using TaskCreationOptions.RunContinuationsAsynchronously in .NET 4.6 or wrapping the TrySetResult in a Task.Run for pre 4.6 will make sure that Puse() is not blocked by the continuation of the task.
See the SO question Detect target framework version at compile time on how to make a NET_46_OR_GREATER definition that works in your code.
A simple way to do this is to use SemaphoreSlim which uses Monitor.
public class AsyncMonitor
{
private readonly SemaphoreSlim signal = new SemaphoreSlim(0, 1);
public void Pulse()
{
try
{
signal.Release();
}
catch (SemaphoreFullException) { }
}
public async Task WaitAsync(CancellationToken cancellationToken)
{
await signal.WaitAsync(cancellationToken).ConfigureAwait(false);
}
}

How to call asynchronous method from synchronous method in C#?

I have a public async void Foo() method that I want to call from synchronous method. So far all I have seen from MSDN documentation is calling async methods via async methods, but my whole program is not built with async methods.
Is this even possible?
Here's one example of calling these methods from an asynchronous method:
Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)
Now I'm looking into calling these async methods from sync methods.
Asynchronous programming does "grow" through the code base. It has been compared to a zombie virus. The best solution is to allow it to grow, but sometimes that's not possible.
I have written a few types in my Nito.AsyncEx library for dealing with a partially-asynchronous code base. There's no solution that works in every situation, though.
Solution A
If you have a simple asynchronous method that doesn't need to synchronize back to its context, then you can use Task.WaitAndUnwrapException:
var task = MyAsyncMethod();
var result = task.WaitAndUnwrapException();
You do not want to use Task.Wait or Task.Result because they wrap exceptions in AggregateException.
This solution is only appropriate if MyAsyncMethod does not synchronize back to its context. In other words, every await in MyAsyncMethod should end with ConfigureAwait(false). This means it can't update any UI elements or access the ASP.NET request context.
Solution B
If MyAsyncMethod does need to synchronize back to its context, then you may be able to use AsyncContext.RunTask to provide a nested context:
var result = AsyncContext.RunTask(MyAsyncMethod).Result;
*Update 4/14/2014: In more recent versions of the library the API is as follows:
var result = AsyncContext.Run(MyAsyncMethod);
(It's OK to use Task.Result in this example because RunTask will propagate Task exceptions).
The reason you may need AsyncContext.RunTask instead of Task.WaitAndUnwrapException is because of a rather subtle deadlock possibility that happens on WinForms/WPF/SL/ASP.NET:
A synchronous method calls an async method, obtaining a Task.
The synchronous method does a blocking wait on the Task.
The async method uses await without ConfigureAwait.
The Task cannot complete in this situation because it only completes when the async method is finished; the async method cannot complete because it is attempting to schedule its continuation to the SynchronizationContext, and WinForms/WPF/SL/ASP.NET will not allow the continuation to run because the synchronous method is already running in that context.
This is one reason why it's a good idea to use ConfigureAwait(false) within every async method as much as possible.
Solution C
AsyncContext.RunTask won't work in every scenario. For example, if the async method awaits something that requires a UI event to complete, then you'll deadlock even with the nested context. In that case, you could start the async method on the thread pool:
var task = Task.Run(async () => await MyAsyncMethod());
var result = task.WaitAndUnwrapException();
However, this solution requires a MyAsyncMethod that will work in the thread pool context. So it can't update UI elements or access the ASP.NET request context. And in that case, you may as well add ConfigureAwait(false) to its await statements, and use solution A.
Update, 2019-05-01: The current "least-worst practices" are in an MSDN article here.
Adding a solution that finally solved my problem, hopefully saves somebody's time.
Firstly read a couple articles of Stephen Cleary:
Async and Await
Don't Block on Async Code
From the "two best practices" in "Don't Block on Async Code", the first one didn't work for me and the second one wasn't applicable (basically if I can use await, I do!).
So here is my workaround: wrap the call inside a Task.Run<>(async () => await FunctionAsync()); and hopefully no deadlock anymore.
Here is my code:
public class LogReader
{
ILogger _logger;
public LogReader(ILogger logger)
{
_logger = logger;
}
public LogEntity GetLog()
{
Task<LogEntity> task = Task.Run<LogEntity>(async () => await GetLogAsync());
return task.Result;
}
public async Task<LogEntity> GetLogAsync()
{
var result = await _logger.GetAsync();
// more code here...
return result as LogEntity;
}
}
Microsoft built an AsyncHelper (internal) class to run Async as Sync. The source looks like:
internal static class AsyncHelper
{
private static readonly TaskFactory _myTaskFactory = new
TaskFactory(CancellationToken.None,
TaskCreationOptions.None,
TaskContinuationOptions.None,
TaskScheduler.Default);
public static TResult RunSync<TResult>(Func<Task<TResult>> func)
{
return AsyncHelper._myTaskFactory
.StartNew<Task<TResult>>(func)
.Unwrap<TResult>()
.GetAwaiter()
.GetResult();
}
public static void RunSync(Func<Task> func)
{
AsyncHelper._myTaskFactory
.StartNew<Task>(func)
.Unwrap()
.GetAwaiter()
.GetResult();
}
}
The Microsoft.AspNet.Identity base classes only have Async methods and in order to call them as Sync there are classes with extension methods that look like (example usage):
public static TUser FindById<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<TUser>(() => manager.FindByIdAsync(userId));
}
public static bool IsInRole<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId, string role) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<bool>(() => manager.IsInRoleAsync(userId, role));
}
For those concerned about the licensing terms of code, here is a link to very similar code (just adds support for culture on the thread) that has comments to indicate that it is MIT Licensed by Microsoft. https://github.com/aspnet/AspNetIdentity/blob/master/src/Microsoft.AspNet.Identity.Core/AsyncHelper.cs
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).Result? AFAIK, Microsoft is now discouraging from calling TaskFactory.StartNew, since they are both equivalent and one is more readable than the other.
Absolutely not.
The easy answer is that
.Unwrap().GetAwaiter().GetResult() != .Result
First off the
Is Task.Result the same as .GetAwaiter.GetResult()?
Secondly .Unwrap() causes the setup of the Task not to block the wrapped task.
Which should lead anyone to ask
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).GetAwaiter().GetResult()
Which would then be a It Depends.
Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
Excerpt:
Task.Run uses TaskCreationOptions.DenyChildAttach which means that children's tasks can not be attached to the parent and it uses TaskScheduler.Default which means that the one that runs tasks on Thread Pool will always be used to run tasks.
Task.Factory.StartNew uses TaskScheduler.Current which means scheduler of the current thread, it might be TaskScheduler.Default but not always.
Additional Reading:
Specifying a synchronization context
ASP.NET Core SynchronizationContext
For extra safety, wouldn't it be better to call it like this AsyncHelper.RunSync(async () => await AsyncMethod().ConfigureAwait(false)); This way we're telling the "inner" method "please don't try to sync to upper context and dealock"
Really great point and as most object architectural questions go it depends.
As an extension method do you want to force that for absolutely every call, or do you let the programmer using the function configure that on their own async calls? I could see a use case for call three scenarios; it most likely is not something you want in WPF, certainly makes sense in most cases, but considering there is no Context in ASP.Net Core if you could guarantee it was say internal for a ASP.Net Core, then it wouldn't matter.
async Main is now part of C# 7.2 and can be enabled in the projects advanced build settings.
For C# < 7.2, the correct way is:
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
/*await stuff here*/
}
You'll see this used in a lot of Microsoft documentation, for example:
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
I'm not 100% sure, but I believe the technique described in this blog should work in many circumstances:
You can thus use task.GetAwaiter().GetResult() if you want to directly invoke this propagation logic.
public async Task<string> StartMyTask()
{
await Foo()
// code to execute once foo is done
}
static void Main()
{
var myTask = StartMyTask(); // call your method which will return control once it hits await
// now you can continue executing code here
string result = myTask.Result; // wait for the task to complete to continue
// use result
}
You read the 'await' keyword as "start this long running task, then return control to the calling method". Once the long-running task is done, then it executes the code after it. The code after the await is similar to what used to be CallBack methods. The big difference being the logical flow is not interrupted which makes it much easier to write and read.
There is, however, a good solution that works in (almost: see comments) every situation: an ad-hoc message pump (SynchronizationContext).
The calling thread will be blocked as expected, while still ensuring that all continuations called from the async function don't deadlock as they'll be marshaled to the ad-hoc SynchronizationContext (message pump) running on the calling thread.
The code of the ad-hoc message pump helper:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Microsoft.Threading
{
/// <summary>Provides a pump that supports running asynchronous methods on the current thread.</summary>
public static class AsyncPump
{
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Action asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(true);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function
syncCtx.OperationStarted();
asyncMethod();
syncCtx.OperationCompleted();
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Func<Task> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static T Run<T>(Func<Task<T>> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
return t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Provides a SynchronizationContext that's single-threaded.</summary>
private sealed class SingleThreadSynchronizationContext : SynchronizationContext
{
/// <summary>The queue of work items.</summary>
private readonly BlockingCollection<KeyValuePair<SendOrPostCallback, object>> m_queue =
new BlockingCollection<KeyValuePair<SendOrPostCallback, object>>();
/// <summary>The processing thread.</summary>
private readonly Thread m_thread = Thread.CurrentThread;
/// <summary>The number of outstanding operations.</summary>
private int m_operationCount = 0;
/// <summary>Whether to track operations m_operationCount.</summary>
private readonly bool m_trackOperations;
/// <summary>Initializes the context.</summary>
/// <param name="trackOperations">Whether to track operation count.</param>
internal SingleThreadSynchronizationContext(bool trackOperations)
{
m_trackOperations = trackOperations;
}
/// <summary>Dispatches an asynchronous message to the synchronization context.</summary>
/// <param name="d">The System.Threading.SendOrPostCallback delegate to call.</param>
/// <param name="state">The object passed to the delegate.</param>
public override void Post(SendOrPostCallback d, object state)
{
if (d == null) throw new ArgumentNullException("d");
m_queue.Add(new KeyValuePair<SendOrPostCallback, object>(d, state));
}
/// <summary>Not supported.</summary>
public override void Send(SendOrPostCallback d, object state)
{
throw new NotSupportedException("Synchronously sending is not supported.");
}
/// <summary>Runs an loop to process all queued work items.</summary>
public void RunOnCurrentThread()
{
foreach (var workItem in m_queue.GetConsumingEnumerable())
workItem.Key(workItem.Value);
}
/// <summary>Notifies the context that no more work will arrive.</summary>
public void Complete() { m_queue.CompleteAdding(); }
/// <summary>Invoked when an async operation is started.</summary>
public override void OperationStarted()
{
if (m_trackOperations)
Interlocked.Increment(ref m_operationCount);
}
/// <summary>Invoked when an async operation is completed.</summary>
public override void OperationCompleted()
{
if (m_trackOperations &&
Interlocked.Decrement(ref m_operationCount) == 0)
Complete();
}
}
}
}
Usage:
AsyncPump.Run(() => FooAsync(...));
More detailed description of the async pump is available here.
To anyone paying attention to this question anymore...
If you look in Microsoft.VisualStudio.Services.WebApi there's a class called TaskExtensions. Within that class you'll see the static extension method Task.SyncResult(), which like totally just blocks the thread till the task returns.
Internally it calls task.GetAwaiter().GetResult() which is pretty simple, however it's overloaded to work on any async method that return Task, Task<T> or Task<HttpResponseMessage>... syntactic sugar, baby... daddy's got a sweet tooth.
It looks like ...GetAwaiter().GetResult() is the MS-official way to execute async code in a blocking context. Seems to work very fine for my use case.
var result = Task.Run(async () => await configManager.GetConfigurationAsync()).ConfigureAwait(false);
OpenIdConnectConfiguration config = result.GetAwaiter().GetResult();
Or use this:
var result=result.GetAwaiter().GetResult().AccessToken
You can call any asynchronous method from synchronous code, that is, until you need to await on them, in which case they have to be marked as async too.
As a lot of people are suggesting here, you could call Wait() or Result on the resulting task in your synchronous method, but then you end up with a blocking call in that method, which sort of defeats the purpose of async.
If you really can't make your method async and you don't want to lock up the synchronous method, then you're going to have to use a callback method by passing it as parameter to the ContinueWith() method on task.
Inspired by some of the other answers, I created the following simple helper methods:
public static TResult RunSync<TResult>(Func<Task<TResult>> method)
{
var task = method();
return task.GetAwaiter().GetResult();
}
public static void RunSync(Func<Task> method)
{
var task = method();
task.GetAwaiter().GetResult();
}
They can be called as follows (depending on whether you are returning a value or not):
RunSync(() => Foo());
var result = RunSync(() => FooWithResult());
Note that the signature in the original question public async void Foo() is incorrect. It should be public async Task Foo() as you should return Task not void for async methods that don't return a value (yes, there are some rare exceptions).
Stephen Cleary's Answer;
That approach shouldn't cause a deadlock (assuming that
ProblemMethodAsync doesn't send updates to the UI thread or anything
like that). It does assume that ProblemMethodAsync can be called on a
thread pool thread, which is not always the case.
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
And here is the approach;
The Thread Pool Hack A similar approach to the Blocking Hack is to
offload the asynchronous work to the thread pool, then block on the
resulting task. The code using this hack would look like the code
shown in Figure 7.
Figure 7 Code for the Thread Pool Hack
C#
public sealed class WebDataService : IDataService
{
public string Get(int id)
{
return Task.Run(() => GetAsync(id)).GetAwaiter().GetResult();
}
public async Task<string> GetAsync(int id)
{
using (var client = new WebClient())
return await client.DownloadStringTaskAsync(
"https://www.example.com/api/values/" + id);
}
}
The call to Task.Run executes the asynchronous method on a thread pool
thread. Here it will run without a context, thus avoiding the
deadlock. One of the problems with this approach is the asynchronous
method can’t depend on executing within a specific context. So, it
can’t use UI elements or the ASP.NET HttpContext.Current.
Here is the simplest solution. I saw it somewhere on the Internet, I didn't remember where, but I have been using it successfully. It will not deadlock the calling thread.
void SynchronousFunction()
{
Task.Run(Foo).Wait();
}
string SynchronousFunctionReturnsString()
{
return Task.Run(Foo).Result;
}
string SynchronousFunctionReturnsStringWithParam(int id)
{
return Task.Run(() => Foo(id)).Result;
}
After hours of trying different methods, with more or less success, this is what I ended with. It doesn't end in a deadlock while getting result and it also gets and throws the original exception and not the wrapped one.
private ReturnType RunSync()
{
var task = Task.Run(async () => await myMethodAsync(agency));
if (task.IsFaulted && task.Exception != null)
{
throw task.Exception;
}
return task.Result;
}
You can now use source generators to create a sync version of your method using Sync Method Generator library (nuget).
Use it as follows:
[Zomp.SyncMethodGenerator.CreateSyncVersion]
public async void FooAsync()
Which will generate Foo method which you can call synchronously.
Those windows async methods have a nifty little method called AsTask(). You can use this to have the method return itself as a task so that you can manually call Wait() on it.
For example, on a Windows Phone 8 Silverlight application, you can do the following:
private void DeleteSynchronous(string path)
{
StorageFolder localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
Task t = localFolder.DeleteAsync(StorageDeleteOption.PermanentDelete).AsTask();
t.Wait();
}
private void FunctionThatNeedsToBeSynchronous()
{
// Do some work here
// ....
// Delete something in storage synchronously
DeleteSynchronous("pathGoesHere");
// Do other work here
// .....
}
Hope this helps!
If you want to run it Sync
MethodAsync().RunSynchronously()

Categories

Resources