I have a console app,
{
StartThread();
//must be true, windows system wants to know it is started
return true;
}
I'm trying to create a safety timeout function for this Task. But the task keeps running...
The method DoSomething calls other async methods and awaits their result
Do anyone have an idea why my task don't stop? Maybe a good code example on what to do
public async void StartThread()
{
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
try
{
var timeout = 1000;
Task task = new Task(() => DoSomething(token), token);
task.Start();
if (await Task.WhenAny(task, Task.Delay(timeout, token)) == task)
{
if (token.IsCancellationRequested)
task.Dispose();
await task;
if (task.IsCompleted)
{
task.Dispose();
tokenSource.Cancel();
tokenSource.Dispose();
}
else
{
log.WriteToFile("Timeout_ ");
}
}
else
tokenSource.Cancel();
}
catch (Exception e)
{
Console.WriteLine("--StartThread ...there is an exception----");
}
finally
{
Thread.Sleep(300000); // 5 minutter
StartThread();
}
}
While not create CancellationTokenSource from given timeout?
var timeout = 1000;
//DONE: don't forget to dispose CancellationTokenSource instance
using (var tokenSource = new CancellationTokenSource(timeout)) {
try {
var token = tokenSource.Token;
//TODO: May be you'll want to add .ConfigureAwait(false);
Task task = Task.Run(() => DoSomething(token), token);
await task;
// Completed
}
catch (TaskCanceledException) {
// Cancelled due to timeout
log.WriteToFile("Timeout_ ");
}
catch (Exception e) {
// Failed to complete due to e exception
Console.WriteLine("--StartThread ...there is an exception----");
//DONE: let's be nice and don't swallow the exception
throw;
}
}
You should hardly ever Dispose a Task, since iot is managed by C# internals and it is taken care of. Also, you Dispose way too eagerly, for example:
if (token.IsCancellationRequested)
task.Dispose();
await task;
I do not think so you want still await task if it cancelled and disposed. I guess it will not work at all.
Also if you use async, do not mix blocking calls such as Thread.Sleep - that can lead to disaster...
After all, you use cancellation token with some delay task to imitate a timeout - that's OK, but why do put unnecessary code, when you have great API at hand. Just make use of special contructor of CancellationTokenSource:
public CancellationTokenSource (int millisecondsDelay);
Here's the docs
After a timeout you are setting the CancellationToken and then immediately sleeping the thread for 5 minutes. Thus DoSomething() never gets a chance to continue running and react to the token being cancelled.
Related
I am creating a mqtt client in C# with the libray MQTTNet.
I wan't my client to connect to a broker and stop after 1 second if doesn't succeed.
Here is the function I made below.
private async Task TryConnect(MqttClientOptions options)
{
CancellationTokenSource tokenSource = new CancellationTokenSource();
mqttClient!.ConnectAsync(options, tokenSource.Token);
await Task.Delay(1000);
tokenSource.Cancel();
}
The method is working but it gives me a warning when I call the method ConnectAsync because I am not using an await operator before the call. And if I use the await operator the method will continue until it will raise an error.
Is there a way to do this without warnings ? Because even if it is working I have the feeling that this is not the better way to do it and that there is a cleaner way.
Thank you for your help,
Emmanuel
You should probably use CancelAfter:
CancellationTokenSource tokenSource = new CancellationTokenSource();
tokenSource.CancelAfter(TimeSpan.FromSeconds(1));
await mqttClient!.ConnectAsync(options, tokenSource.Token);
An alternative would be to store the task from connectAsync and await if after the cancel call.
Note that in either case you are not guaranteed that the connection will actually cancel, it entirely depends on the ConnectAsync-implementation. In some cases it might be approrpiate to use Task.WhenAny to await either the connection, or a Task.Delay, i.e. you do no longer care about the connection after the timeout. You should probably also catch OperationCancelledException, since that is the standard method to communicate that the operation actually was cancelled.
You can specify a timeout for a cancellation token:
var tokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(1));
If you're cancelling it like this you will need to catch a TaskCanceledException, but you can ignore the cancellation if you want.
private async Task TryConnect(MqttClientOptions options)
{
var tokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(1));
try
{
mqttClient!.ConnectAsync(options, tokenSource.Token);
}
catch (TaskCanceledException)
{
// Do nothing.
}
}
Alternatively you could return a bool to indicate whether the connection was successful:
private async Task<bool> TryConnect(MqttClientOptions options)
{
var tokenSource = new CancellationTokenSource(TimeSpan.FromSeconds(1));
try
{
mqttClient!.ConnectAsync(options, tokenSource.Token);
}
catch (TaskCanceledException)
{
return false;
}
return true;
}
So I'm spinning up a HttpListener to wait for an OAuth2 response. In an ideal world, this is only going to be alive for a few seconds while the user logs in in the browser and we get posted the token.
I'd also like for this to have a CancellationToken so that the user can stop listening after a delay should they so wish.
My initial idea was to use something along the lines of:
_listener.Start();
Task<HttpListenerContext> t = _listener.GetContextAsync();
while (!cancelled.IsCancellationRequested)
{
if (t.IsCompleted)
{
break;
}
await Task.Run(() => Thread.Sleep(100));
}
HttpListenerContext ctx = t.Result;
//...
_listener.Stop();
But that doesn't sit right with me for so many reasons (weird async usage, polling, etc.).
So then I thought I might be able to use the synchronous version _listener.GetContext() in conjunction with Task.Run(func<T>, CancellationToken):
_listener.Start()
HttpListenerContext ctx = await Task.Run(() => _listener.GetContext(), cancelled);
//...
_listener.Stop();
This is a little better, the code's at least tidier, although it seems hacky using a synchronous version of the method asynchronously with a Task...
However this doesn't behave how I'd expect (aborting the running task when the token is cancelled).
This strikes me as something that really ought to be fairly simple to do so I assume I'm missing something.
So my question is thus... How do I listen asynchronously with a HttpListener in a cancellable fashion?
Because the GetContextAsync method does not support cancellation, it basically means that it is unlikely you can cancel the actual IO operation, yet unlikely to cancel the Task returned by the method, until you Abort or Stop the HttpListener. So the main focus here is always a hack that returns the control flow to your code.
While both the answers from #guru-stron and #peter-csala should do the trick, I just wanted to share another way without having to use Task.WhenAny.
You could wrap the task with a TaskCompletionSource like this:
public static class TaskExtensions
{
public static Task<T> AsCancellable<T>(this Task<T> task, CancellationToken token)
{
if (!token.CanBeCanceled)
{
return task;
}
var tcs = new TaskCompletionSource<T>();
// This cancels the returned task:
// 1. If the token has been canceled, it cancels the TCS straightaway
// 2. Otherwise, it attempts to cancel the TCS whenever
// the token indicates cancelled
token.Register(() => tcs.TrySetCanceled(token),
useSynchronizationContext: false);
task.ContinueWith(t =>
{
// Complete the TCS per task status
// If the TCS has been cancelled, this continuation does nothing
if (task.IsCanceled)
{
tcs.TrySetCanceled();
}
else if (task.IsFaulted)
{
tcs.TrySetException(t.Exception);
}
else
{
tcs.TrySetResult(t.Result);
}
},
CancellationToken.None,
TaskContinuationOptions.ExecuteSynchronously,
TaskScheduler.Default);
return tcs.Task;
}
}
And flow the control like this:
var cts = new CancellationTokenSource();
cts.CancelAfter(3000);
try
{
var context = await listener.GetContextAsync().AsCancellable(cts.Token);
}
catch (TaskCanceledException)
{
// ...
}
I would suggest creating cancelable infinite task (Task.Delay(Timeout.Infinite, token) for example) and use Task.WhenAny. Something like that:
var cts = new CancellationTokenSource(); // token source controled by consumer "outside"
var token = cts.Token;
var httpListener = new HttpListener();
httpListener.Start();
var t = httpListener.GetContextAsync();
// to cancel the infinite delay task if listener finishes first
var localCts = CancellationTokenSource.CreateLinkedTokenSource(token);
var completed = await Task.WhenAny(t, Task.Delay(Timeout.Infinite, localCts.Token));
if (completed == t) // check that completed task is one from listener
{
localCts.Cancel(); // cancel the infinite task
HttpListenerContext ctx = t.Result;
//...
}
httpListener.Stop();
Here is yet another solution:
var cancellationSignal = new TaskCompletionSource<object>();
var contextTask = _listener.GetContextAsync();
using (cancelled.Register(state => ((TaskCompletionSource<object>)state).TrySetResult(null), cancellationSignal))
{
if (contextTask != await Task.WhenAny(contextTask, cancellationSignal.Task).ConfigureAwait(false))
break; //task is cancelled
}
Because we can't await the CancellationToken that's why have to apply the following trick
The CancellationToken does expose a Register method, where we can define a callback which will be called whenever the cancellation occurs
Here we can provide a delegate which sets an awaitable to completed
So, we can await that task
In order to create a Task which is set to completed whenever the cancellation occurs I've used TaskCompletionSource. You could also use SemaphoreSlim or any other signalling object which has async wait, like AsyncManualResetEvent.
So, we pass the cancellationSignal to the Register as a state parameter
Inside the delegate we have to cast it back to TCS to be able to call the TrySetResult on it
Inside the using block we await a Task.WhenAny
It will return that Task which finishes first
If that Task is the cancellation then we can break / return / throw ...
If that Task is the contextTask then we can continue the normal flow
I have a Windows Service that monitors my application by running a couple of tests every second. A bug report has been submitted that said that the service stoppes running after a while, and I'm trying to figure out why.
I suspect that the code below is the culprit, but I have trouble understanding exactly how it works. The ContinueWith statement has recently been commented out, but I dont know if it is needed
private Task CreateTask(Action action)
{
var ct = _cts.Token;
return Task.Run(async () =>
{
ct.ThrowIfCancellationRequested();
var sw = new Stopwatch();
while (true)
{
sw.Restart();
action();
if (ct.IsCancellationRequested)
{
_logger.Debug("Cancellation requested");
break;
}
var wait = _settings.loopStepFrequency - sw.ElapsedMilliseconds;
if (wait <= 0) // No need to delay
continue;
// If ContinueWith is needed wrap this in an ugly try/catch
// handling the exception
await Task.Delay(
(int)(_settings.loopStepFrequency - sw.ElapsedMilliseconds),
ct); //.ContinueWith(tsk => { }, ct);
}
_logger.Debug("Task was cancelled");
}, _cts.Token);
}
Are there any obvious problems with this code?
Are there any obvious problems with this code?
The one that jumps out to me is the calculation for the number of milliseconds to delay. Specifically, there's no floor. If action() takes an unusually long time, then the task could fail in a possibly unexpected way.
There are several ways for the task to complete in either a cancelled or failed state, or it can delay forever:
The task can be cancelled before the delegate begins, due to the cancellation token passed to Task.Run.
The task can be cancelled by the ThrowIfCancellationRequested call.
The task can complete successfully after being cancelled, due to the IsCancellationRequested logic.
The task can be cancelled by the cancellation token passed to Task.Delay.
The task may fail with an ArgumentOutOfRangeException if _settings.loopStepFrequency - sw.ElapsedMilliseconds is less than -1. This is probably a bug.
The task may delay indefinitely (until cancelled) if _settings.loopStepFrequency - sw.ElapsedMilliseconds happens to be exactly -1. This is probably a bug.
To fix this code, I recommend two things:
The code is probably intending to do await Task.Delay((int) wait, ct); instead of await Task.Delay((int)(_settings.loopStepFrequency - sw.ElapsedMilliseconds), ct);. This will remove the last two conditions above.
Choose one method of cancellation. The standard pattern to express cancellation is via OperationCanceledExcpetion; this is the pattern used by ThrowIfCancellationRequested and by Task.Delay. The IsCancellationRequested check is using a different pattern; it will successfully complete the task on cancellation, instead of cancelling it.
There are so many problems with this code, that makes more sense to rewrite it than attempt to fix it. Here is a possible way to rewrite this method, with some (possibly superfluous) argument validation added:
private Task CreateTask(Action action)
{
if (action == null) throw new ArgumentNullException(nameof(action));
var ct = _cts.Token;
var delayMsec = _settings.loopStepFrequency;
if (delayMsec <= 0) throw new ArgumentOutOfRangeException("loopStepFrequency");
return Task.Run(async () =>
{
while (true)
{
var delayTask = Task.Delay(delayMsec, ct);
action();
await delayTask;
}
}, ct);
}
The responsibility for logging a possible exception/cancellation belongs now to the caller of the method, that (hopefully) awaits the created task.
var task = CreateTask(TheAction);
try
{
await task; // If the caller is async
//task.GetAwaiter().GetResult(); // If the caller is sync
_logger.Info("The task completed successfully");
}
catch (OperationCanceledException)
{
_logger.Info("The task was canceled");
}
catch (Exception ex)
{
_logger.Error("The task failed", ex);
}
I have code which calls an external lib synchronous operation, which can take a very long time to finish. I can't rewrite this lib, and there is not a method to stop the operation. Is there any solution to stop this task after some timeout?
I have tried this code, but it does not work not as I expected. It awaits until the calculation is not completed.
How can I solve this task?
private static async Task<ResultData> GetResultAsync(string fileName)
{
var timeoutSource = new CancellationTokenSource(new TimeSpan(0, 5, 0));
try
{
return await Task.Run(() =>
{
var result = ExternLib.Calculate(fileName);
if (result == null)
{
throw new CalculationException(fileName);
}
return result;
},
timeoutSource.Token
).ConfigureAwait(false);
}
catch (AggregateException e)
{
SomeCode(e);
}
catch (OperationCanceledException e)
{
SomeCode2(e);
}
catch (Exception e)
{
SomeCode3(e);
}
return await Task.FromResult<ResultData>(null).ConfigureAwait(false);
}
Create two tasks, one which does the work, and one which acts as a timer:
var workTask = Task.Run(() => // etc );
var timerTask = Task.Delay(TimeSpan.FromMinutes(10));
The wait for either task to complete:
var completedTask = Task.WaitAny(new[] { workTask, timerTask });
Then, if completedTask is the timer task, your timeout has expired, and you can take appropriate action: whether or not you can stop the long running task depends on how it's structured, but you do know you can stop waiting for it.
I have a doubt with cancellation token source which I am using as shown in the below code:
void Process()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
MainTaskRoutine();
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
void MainTaskRoutine()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
//this method shows that a nested task is created
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
Edit: further elaboration
End objective is: when a user cancels the operation, all the immediate pending tasks(either children or grand children) should cancel.
Scenario:
As per above code:
1. I first check whether user has asked for cancellation
2. If user has not asked for cancellation then only continue with the task (Please see Process method).
sample code shows only one task here but actually there can be three or more
Lets say that CPU started processing Task1 while other tasks are still in the Task queue waiting for some CPU to come and execute them.
User requests cancellation: Task 2,3 in Process method are immediately cancelled, but Task 1 will continue to work since it is already undergoing processing.
In Task 1 it calls method MainTaskRoutine, which in turn creates more tasks.
In the function of MainTaskRoutine I have written: cancellationToken.ThrowIfCancellationRequested();
So the question is: is it correct way of using CancellationTokenSource as it is dependent on Task.WaitAll()?
[EDITED] As you use an array in your code, I assume there could be multiple tasks, not just one. I also assume that within each task that you're starting from Process you want to do some CPU-bound work first (//do some work here), and then run MainTaskRoutine.
How you handle task cancellation exceptions is determined by your project design workflow. E.g., you could do it inside Process method, or from where you call Process. If your only concern is to remove Task objects from the array where you keep track of the pending tasks, this can be done using Task.ContinueWith. The continuation will be executed regardless of the task's completion status (Cancelled, Faulted or RanToCompletion):
Task Process(CancellationToken cancellationToken)
{
var tArray = new List<Task>();
var tArrayLock = new Object();
var task = Task.Run(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
return MainTaskRoutine(cancellationToken);
}, cancellationToken);
// add the task to the array,
// use lock as we may remove tasks from this array on a different thread
lock (tArrayLock)
tArray.Add(task);
task.ContinueWith((antecedentTask) =>
{
if (antecedentTask.IsCanceled || antecedentTask.IsFaulted)
{
// handle cancellation or exception inside the task
// ...
}
// remove task from the array,
// could be on a different thread from the Process's thread, use lock
lock (tArrayLock)
tArray.Remove(antecedentTask);
}, TaskContinuationOptions.ExecuteSynchronously);
// add more tasks like the above
// ...
// Return aggregated task
Task[] allTasks = null;
lock (tArrayLock)
allTasks = tArray.ToArray();
return Task.WhenAll(allTasks);
}
Your MainTaskRoutine can be structured in exactly the same way as Process, and have the same method signature (return a Task).
Then you may want to perform a blocking wait on the aggregated task returned by Process, or handle its completion asynchronously, e.g:
// handle the completion asynchronously with a blocking wait
void RunProcessSync()
{
try
{
Process(_cancellationTokenSource.Token).Wait();
MessageBox.Show("Process complete");
}
catch (Exception e)
{
MessageBox.Show("Process cancelled (or faulted): " + e.Message);
}
}
// handle the completion asynchronously using ContinueWith
Task RunProcessAync()
{
return Process(_cancellationTokenSource.Token).ContinueWith((task) =>
{
// check task.Status here
MessageBox.Show("Process complete (or cancelled, or faulted)");
}, TaskScheduler.FromCurrentSynchronizationContext());
}
// handle the completion asynchronously with async/await
async Task RunProcessAync()
{
try
{
await Process(_cancellationTokenSource.Token);
MessageBox.Show("Process complete");
}
catch (Exception e)
{
MessageBox.Show("Process cancelled (or faulted): " + e.Message);
}
}
After doing some research I found this link.
The code now looks like this:
see the usage of CancellationTokenSource.CreateLinkedTokenSource in below code
void Process()
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
var cancellationToken = _cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancellationToken.ThrowIfCancellationRequested();
//do some work here
MainTaskRoutine(cancellationToken);
}, cancellationToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
void MainTaskRoutine(CancellationToken cancellationToken)
{
//for the sake of simplicity I am taking 1, in original implementation it is more than 1
//this method shows that a nested task is created
using (var cancellationTokenSource = CancellationTokenSource.CreateLinkedTokenSource(cancellationToken))
{
var cancelToken = cancellationTokenSource.Token;
Task[] tArray = new Task[1];
tArray[0] = Task.Factory.StartNew(() =>
{
cancelToken.ThrowIfCancellationRequested();
//do some work here
}, cancelToken);
try
{
Task.WaitAll(tArray);
}
catch (Exception ex)
{
//do error handling here
}
}
}
Note: I haven't used it, but I will let You know once it is done :)