How to wait forever until an event is raised? [duplicate] - c#

This question already has answers here:
How to block until an event is fired in c#
(5 answers)
Closed 1 year ago.
I'm pretty sure that this has a relatively easy answer, but somehow I cannot find it.
In examples of console applications that handle events (e.g. https://www.rabbitmq.com/tutorials/tutorial-six-dotnet.html but I've seen many others as well) I see code like this:
public static void Main()
{
var someObject = new MyClassWithEvents();
someObject.SomeEventFired += () =>
{
// do whatever
};
Console.WriteLine(" Press [enter] to exit.");
Console.ReadLine();
}
}
Now the obvious problem with this is that if you go beyond example code (where you can wait for a key to be pressed) and remove the Console.ReadLine() the thread exits (or if you're not in Main(), you go out of context) and the events are no longer processed.
I guess I could use an eternal while(true) { Sleep() } but wouldn't that also block the thread from receiving the events?
What would be the correct way of writing this kind of program? The idea is that it looks much like a service, waiting there doing nothing until an event is fired.
To see what I mean, try the following code:
public static void Main()
{
var someObject = new MyClassWithEvents();
someObject.SomeEventFired += () =>
{
// do whatever
};
}
This exits immediately!
TIA,
Jim

Haven't tested this, but I'd try this as the simplest approach:
public static ManualResetEventSlim waiter = new ManualResetEventSlim(false);
public static void Main()
{
var someObject = new MyClassWithEvents();
someObject.SomeEventFired += () =>
{
// do whatever
};
// Just an example for an "Exit-Trigger"
someObject.ExitProgramEventFired += () =>
{
waiter.Set(); // Signal the MRE to stop blocking.
};
waiter.Wait(); // Blocks until signalled.
Console.WriteLine("Exit Program has been triggered.");
// Cleanup resources ...
}
}
Mind: The Wait method also comes with overloads to support cancellation and timeout, so you can really harden your design.
For reference: ManualResetEventSlim

If you're using a newer version of .Net, you can make your entry point a Task Main instead of void Main. Then you can use a TaskCompletionSource to return a task that will finish when the cancel key is pressed.
Doing it this way should free up the main thread back into the Thread pool, which means it should use less resources.
public static Task Main(string[] args)
{
// Set up TaskCompletionSource that completes when the CancelKey is Pressed
var taskCompletionSource = new TaskCompletionSource<bool>();
Console.CancelKeyPress += (_, args) =>
{
args.Cancel = true;
taskCompletionSource.TrySetResult(true);
};
var someObject = new MyClassWithEvents();
someObject.SomeEventFired += () =>
{
// do whatever
};
return taskCompletionSource.Task;
}
Should mention though, you asked 'wouldn't that also block the thread from receiving the events', but that shouldn't be an issue. Callbacks usually don't come back on the main thread, they are usually handled by a random free thread from the thread pool. So even if the main thread is blocked by something, callbacks like that will usually still run.

Related

How to keep cancelling the task until a condition is met (TaskCanceledException)

I want to call a method after some delay when an event is raised, but any subsequent events should "restart" this delay. Quick example to illustrate, the view should be updated when scrollbar position changes, but only 1 second after the user has finished scrolling.
Now I can see many ways of implementing that, but the most intuitive would be to use Task.Delay + ContinueWith + cancellation token. However, I am experiencing some issues, more precisely subsequent calls to my function cause the TaskCanceledException exception and I started to wonder how I could get rid of that. Here is my code:
private CancellationTokenSource? _cts;
private async void Update()
{
_cts?.Cancel();
_cts = new();
await Task.Delay(TimeSpan.FromSeconds(1), _cts.Token)
.ContinueWith(o => Debug.WriteLine("Update now!"),
TaskContinuationOptions.OnlyOnRanToCompletion);
}
I have found a workaround that works pretty nicely, but I would like to make the first idea work.
private CancellationTokenSource? _cts;
private CancellationTokenRegistration? _cancellationTokenRegistration;
private void Update()
{
_cancellationTokenRegistration?.Unregister();
_cts = new();
_cancellationTokenRegistration = _cts.Token.Register(() => Debug.WriteLine("Update now!"));
_cts.CancelAfter(1000);
}
You should consider using Microsoft's Reactive Framework (aka Rx) - NuGet System.Reactive and add using System.Reactive.Linq;.
You didn't say hat UI you're using, so for Windows Forms also add System.Reactive.Windows.Forms and for WPF System.Reactive.Windows.Threading.
Then you can do this:
Panel panel = new Panel(); // assuming this is a scrollable control
IObservable<EventPattern<ScrollEventArgs>> query =
Observable
.FromEventPattern<ScrollEventHandler, ScrollEventArgs>(
h => panel.Scroll += h,
h => panel.Scroll -= h)
.Select(sea => Observable.Timer(TimeSpan.FromSeconds(1.0)).Select(_ => sea))
.Switch();
IDisposable subscription = query.Subscribe(sea => Console.WriteLine("Hello"));
The query is firing for every Scroll event and starts a one second timer. The Switch operator watches for every Timer produces and only connects to the latest one produced, thus ignoring the previous Scroll events.
And that's it.
After scrolling has a 1 second pause the word "Hello" is written to the console. If you begin scrolling again then after every further 1 second pause it fires again.
In my own experience I've dealt with lots of scenarios just like the one you describe, e.g. update something one second after the mouse stops moving etc.
For a long time I would do timer restarts just the way you describe, by cancelling an old task and starting a new one. But I never really liked how messy that was, so I came up with an alternative that I use in production code. Long-term it has proven quite reliable. It takes advantage of the captured context associated with a task. Multiple instances of TaskCanceledException no longer occur.
class WatchDogTimer
{
int _wdtCount = 0;
public TimeSpan Interval { get; set; } = TimeSpan.FromSeconds(1);
public void Restart(Action onRanToCompletion)
{
_wdtCount++;
var capturedCount = _wdtCount;
Task
.Delay(Interval)
.GetAwaiter()
.OnCompleted(() =>
{
// If the 'captured' localCount has not changed after awaiting the Interval,
// it indicates that no new 'bones' have been thrown during that interval.
if (capturedCount.Equals(_wdtCount))
{
onRanToCompletion();
}
});
}
}
Another nice perk is that it doesn't rely on platform timers and works just as well in iOS/Android as it does in WinForms/WPF.
For purposes of demonstration, this can be exercised in a quick console demo where the MockUpdateView() action is sent to the WDT 10 times at 500 ms intervals. It will only execute one time, 500 ms after the last restart is received.
static void Main(string[] args)
{
Console.Title = "Test WDT";
var wdt = new WatchDogTimer { Interval = TimeSpan.FromMilliseconds(500) };
Console.WriteLine(DateTime.Now.ToLongTimeString());
// "Update view 500 ms after the last restart."
for (int i = 0; i < 10; i++)
{
wdt.Restart(onRanToCompletion: ()=>MockUpdateView());
Thread.Sleep(TimeSpan.FromMilliseconds(500));
}
Console.ReadKey();
}
static void MockUpdateView()
{
Console.WriteLine($"Update now! WDT expired {DateTime.Now.ToLongTimeString()}");
}
}
So, with 500 ms times 10 restarts this verifies one event at 5 seconds from the start.
You can combine a state variable and a delay to avoid messing with timers or task cancelation. This is far simpler IMO.
Add this state variable to your class/form:
private DateTime _nextRefresh = DateTime.MaxValue;
And here's how you refresh:
private async void Update()
{
await RefreshInOneSecond();
}
private async Task RefreshInOneSecond()
{
_nextRefresh = DateTime.Now.AddSeconds(1);
await Task.Delay(1000);
if (_nextRefresh <= DateTime.Now)
{
_nextRefresh = DateTime.MaxValue;
Refresh();
}
}
If you call RefreshInOneSecond repeatedly, it pushes out the _nextRefresh timestamp until later, so any refreshes already in flight will do nothing.
Demo on DotNetFiddle
One approach is to create a timer and reset this whenever the user does something. For example using System.Timers.Timer
timer = new Timer(1000);
timer.SynchronizingObject = myControl; // Needs a winforms object for synchronization
timer.Elapsed += OnElapsed;
timer.Start(); // Don't forget to stop the timer whenever you are done
...
private void OnUserUpdate(){
timer.Interval = 1000; // Setting the interval will reset the timer
}
There are multiple timers to chose from, I believe the same pattern is possible with the other timers. DispatchTimer might be most suitable if you use WPF.
Note that both System.Timers.Timer and Task.Delay uses System.Threading.Timer in the background. It is possible to use this directly, just call the .Change method to reset it. But be aware that this raises the event on a taskpool thread, so you need to provide your own synchronization.
I implemented the same scenario in a JavaScript application using Timer. I believe it's the same in the .NET world. Anyway handling this use-case when the user calls a method repeatedly with Task.Delay() will put more pressure on GC & thread pool
var timer = new Timer()
{
Enabled = true,
Interval = TimeSpan.FromSeconds(5).TotalMilliseconds,
};
timer.Elapsed += (sender, eventArgs) =>
{
timer.Stop();
// do stuff
}
void OnKeyUp()
{
timer.Stop();
timer.Start();
}

Deadlock when updating a UI control from a worker thread

To simplify the explanation of the strange behavior I am experiencing, I have this simple class named Log which fires 1 log events every 1000msec.
public static class Log
{
public delegate void LogDel(string msg);
public static event LogDel logEvent;
public static void StartMessageGeneration ()
{
for (int i = 0; i < 1000; i++)
{
logEvent.Invoke(i.ToString());
Task.Delay(1000);
}
}
}
I have the Form class below which is subscribed to the log events of the Log class so it can handle them and display in a simple text box.
Once a log message arrives, it is added to a list. Every 500msec, a timer object access that list so its content can be displayed in a text box.
public partial class Form1 : Form
{
private SynchronizationContext context;
private System.Threading.Timer guiTimer = null;
private readonly object syncLock = new object();
private List<string> listOfMessages = new List<string>();
public Form1()
{
InitializeComponent();
context = SynchronizationContext.Current;
guiTimer = new System.Threading.Timer(TimerProcessor, this, 0, 500);
Log.logEvent += Log_logEvent;
}
private void Log_logEvent(string msg)
{
lock (syncLock)
listOfMessages.Add(msg);
}
private void TimerProcessor(object obj)
{
Form1 myForm = obj as Form1;
lock (myForm.syncLock)
{
if (myForm.listOfMessages.Count == 0)
return;
myForm.context.Send(new SendOrPostCallback(delegate
{
foreach (string item in myForm.listOfMessages)
myForm.textBox1.AppendText(item + "\n");
}), null);
listOfMessages.Clear();
}
}
private void button1_Click(object sender, EventArgs e)
{
Log.StartMessageGeneration();
}
}
The problem I see is that sometimes, there is a dead lock (application stuck). Seems that the 2 locks (1st one for adding to the list and the 2nd one for "retrieving" from the list) are somehow blocking each others.
Hints:
1) reducing the rate of sending the messages from 1 sec to 200msec seems to help (not sure why)
2) Somehow something happens when returning to the GUI thread (using the synchronization context) and accessing the GUI control. If I don't return to the GUI thread, the 2 locks are working fine together...
Thanks everyone!
There's a few problems with your code, and a few... silly things.
First, your Log.StartMessageGeneration doesn't actually produce a log message every second, because you're not awaiting the task returned by Task.Delay - you're basically just creating a thousand timers very quickly (and pointlessly). The log generation is limited only by the Invoke. Using Thread.Sleep is a blocking alternative to Task.Delay if you don't want to use Tasks, await etc. Of course, therein lies your biggest problem - StartMessageGeneration is not asynchronous with respect to the UI thread!
Second, there's little point in using System.Threading.Timer on your form. Instead, just use the windows forms timer - it's entirely on the UI thread so there's no need for marshalling your code back to the UI thread. Since your TimerProcessor doesn't do any CPU work and it only blocks for a very short time, it's the more straight-forward solution.
If you decide to keep using System.Threading.Timer anyway, there's no point in manually dealing with synchronization contexts - just use BeginInvoke on the form; the same way, there's no point in passing the form as an argument to the method, since the method isn't static. this is your form. You can actually see this is the case since you omitted myForm in listOfMessages.Clear() - the two instances are the same, myForm is superfluous.
A simple pause in the debugger will easily tell you where the program is hung - learn to use the debugger well, and it will save you a lot of time. But let's just look at this logically. StartMessageGeneration runs on the UI thread, while System.Threading.Timer uses a thread-pool thread. When the timer locks syncLock, StartMessageGeneration can't enter the same lock, of course - that's fine. But then you Send to the UI thread, and... the UI thread can't do anything, since it's blocked by StartMessageGeneration, which never gives the UI an opportunity to do anything. And StartMessageGeneration can't proceed, because it's waiting on the lock. The only case where this "works" is when StartMessageGeneration runs fast enough to complete before your timer fires (thus freeing the UI thread to do its work) - which is very much possible due to your incorrect use of Task.Delay.
Now let's look on your "hints" with all we know. 1) is simply your bias in measurements. Since you never wait on the Task.Delay in any way, changing the interval does absolutely nothing (with a tiny change in case the delay is zero). 2) of course - that's where your deadlock is. Two pieces of code that depend on a shared resource, while they both require to take posession of another resource. It's a very typical case of a deadlock. Thread 1 is waiting for A to release B, and thread 2 is waiting for B to release A (in this case, A being syncLock and B being the UI thread). When you remove the Send (or replace it with Post), thread 1 no longer has to wait on B, and the deadlock disappears.
There's other things that make writing code like this simpler. There's little point in declaring your own delegate when you can just use Action<string>, for example; using await helps quite a bit when dealing with mixed UI/non-UI code, as well as managing any kind of asynchronous code. You don't need to use event where a simple function will suffice - you can just pass that delegate to a function that needs it if that makes sense, and it may make perfect sense not to allow multiple event handlers to be called. If you decide to keep with the event, at least make sure it conforms to the EventHandler delegate.
To show how your code can be rewritten to be a bit more up-to-date and actually work:
void Main()
{
Application.Run(new LogForm());
}
public static class Log
{
public static async Task GenerateMessagesAsync(Action<string> logEvent,
CancellationToken cancel)
{
for (int i = 0; i < 1000; i++)
{
cancel.ThrowIfCancellationRequested();
logEvent(i.ToString());
await Task.Delay(1000, cancel);
}
}
}
public partial class LogForm : Form
{
private readonly List<string> messages;
private readonly Button btnStart;
private readonly Button btnStop;
private readonly TextBox tbxLog;
private readonly System.Windows.Forms.Timer timer;
public LogForm()
{
messages = new List<string>();
btnStart = new Button { Text = "Start" };
btnStart.Click += btnStart_Click;
Controls.Add(btnStart);
btnStop =
new Button { Text = "Stop", Location = new Point(80, 0), Enabled = false };
Controls.Add(btnStop);
tbxLog = new TextBox { Height = 200, Multiline = true, Dock = DockStyle.Bottom };
Controls.Add(tbxLog);
timer = new System.Windows.Forms.Timer { Interval = 500 };
timer.Tick += TimerProcessor;
timer.Start();
}
private void TimerProcessor(object sender, EventArgs e)
{
foreach (var message in messages)
{
tbxLog.AppendText(message + Environment.NewLine);
}
messages.Clear();
}
private async void btnStart_Click(object sender, EventArgs e)
{
btnStart.Enabled = false;
var cts = new CancellationTokenSource();
EventHandler stopAction = (_, __) => cts.Cancel();
btnStop.Click += stopAction;
btnStop.Enabled = true;
try
{
await Log.GenerateMessagesAsync(message => messages.Add(message), cts.Token);
}
catch (TaskCanceledException)
{
messages.Add("Cancelled.");
}
finally
{
btnStart.Enabled = true;
btnStop.Click -= stopAction;
btnStop.Enabled = false;
}
}
protected override void Dispose(bool disposing)
{
if (disposing)
{
timer.Dispose();
btnStart.Dispose();
btnStop.Dispose();
tbxLog.Dispose();
}
base.Dispose(disposing);
}
}
SynchronizationContext.Send is run synchronously. When you call it, you actually block the UI thread until the operation is complete. But if UI thread is already in lock state, then it just make sense that you are in deadlock.
You can use SynchronizationContext.Post to avoid this.
I just answer on your question, but the truth is that your code need a "little" refactoring..

C# run a thread every X minutes, but only if that thread is not running already

I have a C# program that needs to dispatch a thread every X minutes, but only if the previously dispatched thread (from X minutes) ago is not currently still running.
A plain old Timer alone will not work (because it dispatches an event every X minutes regardless or whether or not the previously dispatched process has finished yet).
The process that's going to get dispatched varies wildly in the time it takes to perform it's task - sometimes it might take a second, sometimes it might take several hours. I don't want to start the process again if it's still processing from the last time it was started.
Can anyone provide some working C# sample code?
In my opinion the way to go in this situation is to use System.ComponentModel.BackgroundWorker class and then simply check its IsBusy property each time you want to dispatch (or not) the new thread. The code is pretty simple; here's an example:
class MyClass
{
private BackgroundWorker worker;
public MyClass()
{
worker = new BackgroundWorker();
worker.DoWork += worker_DoWork;
Timer timer = new Timer(1000);
timer.Elapsed += timer_Elapsed;
timer.Start();
}
void timer_Elapsed(object sender, ElapsedEventArgs e)
{
if(!worker.IsBusy)
worker.RunWorkerAsync();
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
//whatever You want the background thread to do...
}
}
In this example I used System.Timers.Timer, but I believe it should also work with other timers. The BackgroundWorker class also supports progress reporting and cancellation, and uses event-driven model of communication with the dispatching thread, so you don't have to worry about volatile variables and the like...
EDIT
Here's more elaborate example including cancelling and progress reporting:
class MyClass
{
private BackgroundWorker worker;
public MyClass()
{
worker = new BackgroundWorker()
{
WorkerSupportsCancellation = true,
WorkerReportsProgress = true
};
worker.DoWork += worker_DoWork;
worker.ProgressChanged += worker_ProgressChanged;
worker.RunWorkerCompleted += worker_RunWorkerCompleted;
Timer timer = new Timer(1000);
timer.Elapsed += timer_Elapsed;
timer.Start();
}
void timer_Elapsed(object sender, ElapsedEventArgs e)
{
if(!worker.IsBusy)
worker.RunWorkerAsync();
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker w = (BackgroundWorker)sender;
while(/*condition*/)
{
//check if cancellation was requested
if(w.CancellationPending)
{
//take any necessary action upon cancelling (rollback, etc.)
//notify the RunWorkerCompleted event handler
//that the operation was cancelled
e.Cancel = true;
return;
}
//report progress; this method has an overload which can also take
//custom object (usually representing state) as an argument
w.ReportProgress(/*percentage*/);
//do whatever You want the background thread to do...
}
}
void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//display the progress using e.ProgressPercentage and/or e.UserState
}
void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if(e.Cancelled)
{
//do something
}
else
{
//do something else
}
}
}
Then, in order to cancel further execution simply call worker.CancelAsync(). Note that this is completely user-handled cancellation mechanism (it does not support thread aborting or anything like that out-of-the-box).
You can just maintain a volatile bool to achieve what you asked:
private volatile bool _executing;
private void TimerElapsed(object state)
{
if (_executing)
return;
_executing = true;
try
{
// do the real work here
}
catch (Exception e)
{
// handle your error
}
finally
{
_executing = false;
}
}
You can disable and enable your timer in its elapsed callback.
public void TimerElapsed(object sender, EventArgs e)
{
_timer.Stop();
//Do Work
_timer.Start();
}
You can just use the System.Threading.Timer and just set the Timeout to Infinite before you process your data/method, then when it completes restart the Timer ready for the next call.
private System.Threading.Timer _timerThread;
private int _period = 2000;
public MainWindow()
{
InitializeComponent();
_timerThread = new System.Threading.Timer((o) =>
{
// Stop the timer;
_timerThread.Change(-1, -1);
// Process your data
ProcessData();
// start timer again (BeginTime, Interval)
_timerThread.Change(_period, _period);
}, null, 0, _period);
}
private void ProcessData()
{
// do stuff;
}
Using the PeriodicTaskFactory from my post here
CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
Task task = PeriodicTaskFactory.Start(() =>
{
Console.WriteLine(DateTime.Now);
Thread.Sleep(5000);
}, intervalInMilliseconds: 1000, synchronous: true, cancelToken: cancellationTokenSource.Token);
Console.WriteLine("Press any key to stop iterations...");
Console.ReadKey(true);
cancellationTokenSource.Cancel();
Console.WriteLine("Waiting for the task to complete...");
Task.WaitAny(task);
The output below shows that even though the interval is set 1000 milliseconds, each iteration doesn't start until the work of the task action is complete. This is accomplished using the synchronous: true optional parameter.
Press any key to stop iterations...
9/6/2013 1:01:52 PM
9/6/2013 1:01:58 PM
9/6/2013 1:02:04 PM
9/6/2013 1:02:10 PM
9/6/2013 1:02:16 PM
Waiting for the task to complete...
Press any key to continue . . .
UPDATE
If you want the "skipped event" behavior with the PeriodicTaskFactory simply don't use the synchronous option and implement the Monitor.TryEnter like what Bob did here https://stackoverflow.com/a/18665948/222434
Task task = PeriodicTaskFactory.Start(() =>
{
if (!Monitor.TryEnter(_locker)) { return; } // Don't let multiple threads in here at the same time.
try
{
Console.WriteLine(DateTime.Now);
Thread.Sleep(5000);
}
finally
{
Monitor.Exit(_locker);
}
}, intervalInMilliseconds: 1000, synchronous: false, cancelToken: cancellationTokenSource.Token);
The nice thing about the PeriodicTaskFactory is that a Task is returned that can be used with all the TPL API, e.g. Task.Wait, continuations, etc.
This question already has a number of good answers, including a slightly newer one that is based on some of the features in the TPL. But I feel a lack here:
The TPL-based solution a) isn't really contained wholly here, but rather refers to another answer, b) doesn't show how one could use async/await to implement the timing mechanism in a single method, and c) the referenced implementation is fairly complicated, which somewhat obfuscates the underlying relevant point to this particular question.
The original question here is somewhat vague on the specific parameters of the desired implementation (though some of that is clarified in comments). At the same time, other readers may have similar but not identical needs, and no one answer addresses the variety of design options that might be desired.
I particularly like implementing periodic behavior using Task and async/await this way, because of the way it simplifies the code. The async/await feature in particular is so valuable in taking code that would otherwise be fractured by a continuation/callback implementation detail, and preserving its natural, linear logic in a single method. But no answer here demonstrates that simplicity.
So, with that rationale motivating me to add yet another answer to this question…
To me, the first thing to consider is "what exact behavior is desired here?" The question here starts with a basic premise: that the period task initiated by the timer should not run concurrently, even if the task takes longer than the timer period. But there are multiple ways that premise can be fulfilled, including:
Don't even run the timer while the task is running.
Run the timer (this and the remaining options I'm presenting here all assume the timer continues to run during the execution of the task), but if the task takes longer than the timer period, run the task again immediately after it's completed from the previous timer tick.
Only ever initiate execution of the task on a timer tick. If the task takes longer than the timer period, don't start a new task while the current one is executed, and even once the current one has completed, don't start a new one until the next timer tick.
If the task takes longer than the timer interval, not only run the task again immediately after it's completed, but run it as many times as necessary until the task has "caught up". I.e. over time, make a best effort to execute the task once for every timer tick.
Based on the comments, I have the impression that the #3 option most closely matches the OP's original request, though it sounds like the #1 option possibly would work too. But options #2 and #4 might be preferable to someone else.
In the following code example, I have implemented these options with five different methods (two of them implement option #3, but in slightly different ways). Of course, one would select the appropriate implementation for one's needs. You likely don't need all five in one program! :)
The key point is that in all of these implementations, they naturally and in a very simple way, execute the task in a period-but-non-concurrent way. That is, they effectively implement a timer-based execution model, while ensuring that the task is only ever being executed by one thread at a time, per the primary request of the question.
This example also illustrates how CancellationTokenSource can be used to interrupt the period task, taking advantage of await to handle the exception-based model in a clean, simple way.
class Program
{
const int timerSeconds = 5, actionMinSeconds = 1, actionMaxSeconds = 7;
static Random _rnd = new Random();
static void Main(string[] args)
{
Console.WriteLine("Press any key to interrupt timer and exit...");
Console.WriteLine();
CancellationTokenSource cancelSource = new CancellationTokenSource();
new Thread(() => CancelOnInput(cancelSource)).Start();
Console.WriteLine(
"Starting at {0:HH:mm:ss.f}, timer interval is {1} seconds",
DateTime.Now, timerSeconds);
Console.WriteLine();
Console.WriteLine();
// NOTE: the call to Wait() is for the purpose of this
// specific demonstration in a console program. One does
// not normally use a blocking wait like this for asynchronous
// operations.
// Specify the specific implementation to test by providing the method
// name as the second argument.
RunTimer(cancelSource.Token, M1).Wait();
}
static async Task RunTimer(
CancellationToken cancelToken, Func<Action, TimeSpan, Task> timerMethod)
{
Console.WriteLine("Testing method {0}()", timerMethod.Method.Name);
Console.WriteLine();
try
{
await timerMethod(() =>
{
cancelToken.ThrowIfCancellationRequested();
DummyAction();
}, TimeSpan.FromSeconds(timerSeconds));
}
catch (OperationCanceledException)
{
Console.WriteLine();
Console.WriteLine("Operation cancelled");
}
}
static void CancelOnInput(CancellationTokenSource cancelSource)
{
Console.ReadKey();
cancelSource.Cancel();
}
static void DummyAction()
{
int duration = _rnd.Next(actionMinSeconds, actionMaxSeconds + 1);
Console.WriteLine("dummy action: {0} seconds", duration);
Console.Write(" start: {0:HH:mm:ss.f}", DateTime.Now);
Thread.Sleep(TimeSpan.FromSeconds(duration));
Console.WriteLine(" - end: {0:HH:mm:ss.f}", DateTime.Now);
}
static async Task M1(Action taskAction, TimeSpan timer)
{
// Most basic: always wait specified duration between
// each execution of taskAction
while (true)
{
await Task.Delay(timer);
await Task.Run(() => taskAction());
}
}
static async Task M2(Action taskAction, TimeSpan timer)
{
// Simple: wait for specified interval, minus the duration of
// the execution of taskAction. Run taskAction immediately if
// the previous execution too longer than timer.
TimeSpan remainingDelay = timer;
while (true)
{
if (remainingDelay > TimeSpan.Zero)
{
await Task.Delay(remainingDelay);
}
Stopwatch sw = Stopwatch.StartNew();
await Task.Run(() => taskAction());
remainingDelay = timer - sw.Elapsed;
}
}
static async Task M3a(Action taskAction, TimeSpan timer)
{
// More complicated: only start action on time intervals that
// are multiples of the specified timer interval. If execution
// of taskAction takes longer than the specified timer interval,
// wait until next multiple.
// NOTE: this implementation may drift over time relative to the
// initial start time, as it considers only the time for the executed
// action and there is a small amount of overhead in the loop. See
// M3b() for an implementation that always executes on multiples of
// the interval relative to the original start time.
TimeSpan remainingDelay = timer;
while (true)
{
await Task.Delay(remainingDelay);
Stopwatch sw = Stopwatch.StartNew();
await Task.Run(() => taskAction());
long remainder = sw.Elapsed.Ticks % timer.Ticks;
remainingDelay = TimeSpan.FromTicks(timer.Ticks - remainder);
}
}
static async Task M3b(Action taskAction, TimeSpan timer)
{
// More complicated: only start action on time intervals that
// are multiples of the specified timer interval. If execution
// of taskAction takes longer than the specified timer interval,
// wait until next multiple.
// NOTE: this implementation computes the intervals based on the
// original start time of the loop, and thus will not drift over
// time (not counting any drift that exists in the computer's clock
// itself).
TimeSpan remainingDelay = timer;
Stopwatch swTotal = Stopwatch.StartNew();
while (true)
{
await Task.Delay(remainingDelay);
await Task.Run(() => taskAction());
long remainder = swTotal.Elapsed.Ticks % timer.Ticks;
remainingDelay = TimeSpan.FromTicks(timer.Ticks - remainder);
}
}
static async Task M4(Action taskAction, TimeSpan timer)
{
// More complicated: this implementation is very different from
// the others, in that while each execution of the task action
// is serialized, they are effectively queued. In all of the others,
// if the task is executing when a timer tick would have happened,
// the execution for that tick is simply ignored. But here, each time
// the timer would have ticked, the task action will be executed.
//
// If the task action takes longer than the timer for an extended
// period of time, it will repeatedly execute. If and when it
// "catches up" (which it can do only if it then eventually
// executes more quickly than the timer period for some number
// of iterations), it reverts to the "execute on a fixed
// interval" behavior.
TimeSpan nextTick = timer;
Stopwatch swTotal = Stopwatch.StartNew();
while (true)
{
TimeSpan remainingDelay = nextTick - swTotal.Elapsed;
if (remainingDelay > TimeSpan.Zero)
{
await Task.Delay(remainingDelay);
}
await Task.Run(() => taskAction());
nextTick += timer;
}
}
}
One final note: I came across this Q&A after following it as a duplicate of another question. In that other question, unlike here, the OP had specifically noted they were using the System.Windows.Forms.Timer class. Of course, this class is used mainly because it has the nice feature that the Tick event is raised in the UI thread.
Now, both it and this question involve a task that is actually executed in a background thread, so the UI-thread-affinitied behavior of that timer class isn't really of particular use in those scenarios. The code here is implemented to match that "start a background task" paradigm, but it can easily be changed so that the taskAction delegate is simply invoked directly, rather than being run in a Task and awaited. The nice thing about using async/await, in addition to the structural advantage I noted above, is that it preserves the thread-affinitied behavior that is desirable from the System.Windows.Forms.Timer class.
You can stop timer before the task and start it again after task completion this can make your take perform periodiacally on even interval of time.
public void myTimer_Elapsed(object sender, EventArgs e)
{
myTimer.Stop();
// Do something you want here.
myTimer.Start();
}
If you want the timer's callback to fire on a background thread, you could use a System.Threading.Timer. This Timer class allows you to "Specify Timeout.Infinite to disable periodic signaling." as part of the constructor, which causes the timer to fire only a single time.
You can then construct a new timer when your first timer's callback fires and completes, preventing multiple timers from being scheduled until you are ready for them to occur.
The advantage here is you don't create timers, then cancel them repeatedly, as you're never scheduling more than your "next event" at a time.
There are at least 20 different ways to accomplish this, from using a timer and a semaphore, to volatile variables, to using the TPL, to using an opensource scheduling tool like Quartz etc al.
Creating a thread is an expensive exercise, so why not just create ONE and leave it running in the background, since it will spend the majority of its time IDLE, it causes no real drain on the system. Wake up periodically and do work, then go back to sleep for the time period. No matter how long the task takes, you will always wait at least the "waitForWork" timespan after completing before starting a new one.
//wait 5 seconds for testing purposes
static TimeSpan waitForWork = new TimeSpan(0, 0, 0, 5, 0);
static ManualResetEventSlim shutdownEvent = new ManualResetEventSlim(false);
static void Main(string[] args)
{
System.Threading.Thread thread = new Thread(DoWork);
thread.Name = "My Worker Thread, Dude";
thread.Start();
Console.ReadLine();
shutdownEvent.Set();
thread.Join();
}
public static void DoWork()
{
do
{
//wait for work timeout or shudown event notification
shutdownEvent.Wait(waitForWork);
//if shutting down, exit the thread
if(shutdownEvent.IsSet)
return;
//TODO: Do Work here
} while (true);
}
You can use System.Threading.Timer. Trick is to set the initial time only. Initial time is set again when previous interval is finished or when job is finished (this will happen when job is taking longer then the interval). Here is the sample code.
class Program
{
static System.Threading.Timer timer;
static bool workAvailable = false;
static int timeInMs = 5000;
static object o = new object();
static void Main(string[] args)
{
timer = new Timer((o) =>
{
try
{
if (workAvailable)
{
// do the work, whatever is required.
// if another thread is started use Thread.Join to wait for the thread to finish
}
}
catch (Exception)
{
// handle
}
finally
{
// only set the initial time, do not set the recurring time
timer.Change(timeInMs, Timeout.Infinite);
}
});
// only set the initial time, do not set the recurring time
timer.Change(timeInMs, Timeout.Infinite);
}
Why not use a timer with Monitor.TryEnter()? If OnTimerElapsed() is called again before the previous thread finishes, it will just be discarded and another attempt won't happen again until the timer fires again.
private static readonly object _locker = new object();
private void OnTimerElapsed(object sender, ElapsedEventArgs e)
{
if (!Monitor.TryEnter(_locker)) { return; } // Don't let multiple threads in here at the same time.
try
{
// do stuff
}
finally
{
Monitor.Exit(_locker);
}
}
I had the same problem some time ago and all I had done was using the lock{} statement. With this, even if the Timer wants to do anything, he is forced to wait, until the end of the lock-Block.
i.e.
lock
{
// this code will never be interrupted or started again until it has finished
}
This is a great way to be sure, your process will work until the end without interrupting.
If I understand you correctly, you actually just want to ensure your thread is not running before you dispatch another thread. Let's say you have a thread defined in your class like so.
private System.Threading.Thread myThread;
You can do:
//inside some executed method
System.Threading.Timer t = new System.Threading.Timer(timerCallBackMethod, null, 0, 5000);
then add the callBack like so
private void timerCallBackMethod(object state)
{
if(myThread.ThreadState == System.Threading.ThreadState.Stopped || myThread.ThreadState == System.Threading.ThreadState.Unstarted)
{
//dispatch new thread
}
}
This should do what you want. It executes a thread, then joins the thread until it has finished. Goes into a timer loop to make sure it is not executing a thread prematurely, then goes off again and executes.
using System.Threading;
public class MyThread
{
public void ThreadFunc()
{
// do nothing apart from sleep a bit
System.Console.WriteLine("In Timer Function!");
Thread.Sleep(new TimeSpan(0, 0, 5));
}
};
class Program
{
static void Main(string[] args)
{
bool bExit = false;
DateTime tmeLastExecuted;
// while we don't have a condition to exit the thread loop
while (!bExit)
{
// create a new instance of our thread class and ThreadStart paramter
MyThread myThreadClass = new MyThread();
Thread newThread = new Thread(new ThreadStart(myThreadClass.ThreadFunc));
// just as well join the thread until it exits
tmeLastExecuted = DateTime.Now; // update timing flag
newThread.Start();
newThread.Join();
// when we are in the timing threshold to execute a new thread, we can exit
// this loop
System.Console.WriteLine("Sleeping for a bit!");
// only allowed to execute a thread every 10 seconds minimum
while (DateTime.Now - tmeLastExecuted < new TimeSpan(0, 0, 10));
{
Thread.Sleep(100); // sleep to make sure program has no tight loops
}
System.Console.WriteLine("Ok, going in for another thread creation!");
}
}
}
Should produce something like:
In Timer Function!
Sleeping for a bit!
Ok, going in for another thread creation!
In Timer Function!
Sleeping for a bit!
Ok, going in for another thread creation!
In Timer Function!
...
...
Hope this helps!
SR
The guts of this is the ExecuteTaskCallback method. This bit is charged with doing some work, but only if it is not already doing so. For this I have used a ManualResetEvent (canExecute) that is initially set to be signalled in the StartTaskCallbacks method.
Note the way I use canExecute.WaitOne(0). The zero means that WaitOne will return immediately with the state of the WaitHandle (MSDN). If the zero is omitted, you would end up with every call to ExecuteTaskCallback eventually running the task, which could be fairly disastrous.
The other important thing is to be able to end processing cleanly. I have chosen to prevent the Timer from executing any further methods in StopTaskCallbacks because it seems preferable to do so while other work may be ongoing. This ensures that both no new work will be undertaken, and that the subsequent call to canExecute.WaitOne(); will indeed cover the last task if there is one.
private static void ExecuteTaskCallback(object state)
{
ManualResetEvent canExecute = (ManualResetEvent)state;
if (canExecute.WaitOne(0))
{
canExecute.Reset();
Console.WriteLine("Doing some work...");
//Simulate doing work.
Thread.Sleep(3000);
Console.WriteLine("...work completed");
canExecute.Set();
}
else
{
Console.WriteLine("Returning as method is already running");
}
}
private static void StartTaskCallbacks()
{
ManualResetEvent canExecute = new ManualResetEvent(true),
stopRunning = new ManualResetEvent(false);
int interval = 1000;
//Periodic invocations. Begins immediately.
Timer timer = new Timer(ExecuteTaskCallback, canExecute, 0, interval);
//Simulate being stopped.
Timer stopTimer = new Timer(StopTaskCallbacks, new object[]
{
canExecute, stopRunning, timer
}, 10000, Timeout.Infinite);
stopRunning.WaitOne();
//Clean up.
timer.Dispose();
stopTimer.Dispose();
}
private static void StopTaskCallbacks(object state)
{
object[] stateArray = (object[])state;
ManualResetEvent canExecute = (ManualResetEvent)stateArray[0];
ManualResetEvent stopRunning = (ManualResetEvent)stateArray[1];
Timer timer = (Timer)stateArray[2];
//Stop the periodic invocations.
timer.Change(Timeout.Infinite, Timeout.Infinite);
Console.WriteLine("Waiting for existing work to complete");
canExecute.WaitOne();
stopRunning.Set();
}
I recommend to use Timer instead of thread, as it's lighter object. To achieve your goal you can do following.
using System.Timers;
namespace sample_code_1
{
public class ClassName
{
Timer myTimer;
static volatile bool isRunning;
public OnboardingTaskService()
{
myTimer= new Timer();
myTimer.Interval = 60000;
myTimer.Elapsed += myTimer_Elapsed;
myTimer.Start();
}
private void myTimer_Elapsed(object sender, ElapsedEventArgs e)
{
if (isRunning) return;
isRunning = true;
try
{
//Your Code....
}
catch (Exception ex)
{
//Handle Exception
}
finally { isRunning = false; }
}
}
}
Let me know if it helps.

c# thread and a waiting form

I connect to a webserive. While the webservice is connected i want to have a waiting form with an animated gif inside of it. The waiting form is correctly displayed but the animated give is not animated it is fixed.
Can anybody help me. I have already tried : DoEvents but the gif is still not animated.
// Create the new thread object
Thread NewThread = new Thread(new ThreadStart(RunThread));
// Start the new thread.
NewThread.Start();
// Inform everybody that the main thread is waiting
FRM_Wait waitingDialog = new FRM_Wait();
waitingDialog.Show();
waitingDialog.Activate();
Application.DoEvents();
// Wait for NewThread to terminate.
NewThread.Join();
// And it's done.
waitingDialog.Close();
MessageBox.Show("Upload erfolgreich erledigt.", "Upload Erfolgreich",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
}
public void RunThread()
{
mfsportservicedev.ServiceSoapClient servicedev = new mfsportservicedev.ServiceSoapClient();
int status = servicedev.addEvent(videosNames, videos);
}
Don't call Join on a thread from within the UI thread. Instead, disable any controls you don't want to act on until the task has completed (e.g. buttons) and then call back into the UI thread when the operation has completed - so move the "And it's done" code into a new method which is invoked at the end of the operation. If you're using .NET 4, I'd suggest using the TPL for this, as it makes it easier to represent "a task which is in progress" and to add a continuation to it. (It's also a good start for what will become the idiomatic way of doing async operations in .NET 4.5.)
The problem is coming from your join. join is synchronous, so basically you are making your UI wait till the thread finishes its work.
You want to use a callback function to come back to your UI.
Edit : ive been skeetified
You problem is here:
NewThread.Join();
This blocks the UI thread until NewThread ends.
Here's one way to do it:
private myDelegate;
// ...
myDelegate = new Action(RunThread);
myDelegate.BeginInvoke(new AsyncCallback(MyCallback),null);
// You RunThread method is now running on a separate thread
// Open your wait form here
// ...
// This callback function will be called when you delegate ends
private void MyCallback(IAsyncResult ar)
{
myDelegate.EndInvoke(ar);
// Note this is still not the UI thread, so if you want to do something with the UI you'll need to do it on the UI thread.
// using either Control.Invoke (for WinForms) or Dispatcher.Invoke (for WPF)
}
Thread.Join is a blocking call that does not pump messages so that is your problem. It is typically advised to avoid calling any kind of synchronization mechanism that causes the UI thread to block.
Here is a solution using the Task class and the Invoke marshaling technique.
private void async InitiateWebService_Click(object sender, EventArgs args)
{
FRM_Wait waitingDialog = new FRM_Wait();
waitingDialog.Show();
Task.Factory.StartNew(
() =>
{
mfsportservicedev.ServiceSoapClient servicedev = new mfsportservicedev.ServiceSoapClient();
int status = servicedev.addEvent(videosNames, videos);
waitingDialog.Invoke(
(Action)(() =>
{
waitingDialog.Close();
}));
});
}
Here is a solution using a raw Thread.
private void async InitiateWebService_Click(object sender, EventArgs args)
{
FRM_Wait waitingDialog = new FRM_Wait();
waitingDialog.Show();
var thread = new Thread(
() =>
{
mfsportservicedev.ServiceSoapClient servicedev = new mfsportservicedev.ServiceSoapClient();
int status = servicedev.addEvent(videosNames, videos);
waitingDialog.Invoke(
(Action)(() =>
{
waitingDialog.Close();
}));
});
thread.Start();
}
C# 5.0 makes this kind of pattern even easier with its new async and await keywords1.
private void async InitiateWebService_Click(object sender, EventArgs args)
{
FRM_Wait waitingDialog = new FRM_Wait();
waitingDialog.Show();
await Task.Run(
() =>
{
mfsportservicedev.ServiceSoapClient servicedev = new mfsportservicedev.ServiceSoapClient();
int status = servicedev.addEvent(videosNames, videos);
});
waitingDialog.Close();
}
1Not yet released.

Implementing a thread queue/wait, how?

I have a timer calling a function every 15 minutes, this function counts the amount of lines in my DGV and starts a thread for each lines (of yet another function), said thread parse a web page which can take anywhere from 1 second to 10 second to finish.
Whilst it does work fine as it is with 1-6 rows, anymore will cause the requests to time-out.
I want it to wait for the newly created thread to finish processing before getting back in the loop to create another thread without locking the main UI
for (int x = 0; x <= dataGridFollow.Rows.Count - 1; x++)
{
string getID = dataGridFollow.Rows[x].Cells["ID"].Value.ToString();
int ID = int.Parse(getID);
Thread t = new Thread(new ParameterizedThreadStart(UpdateLo));
t.Start(ID);
// <- Wait for thread to finish here before getting back in the for loop
}
I have googled a lot in the past 24 hours, read a lot about this specific issue and its implementations (Thread.Join, ThreadPools, Queuing, and even SmartThreadPool).
It's likely that I've read the correct answer somewhere but I'm not at ease enough with C# to decypher those Threading tools
Thanks for your time
to avoid the UI freeze the framework provide a class expressly for these purposes: have a look at the BackgroundWorker class (executes an operation on a separate thread), here's some infos : http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx
http://msdn.microsoft.com/en-us/magazine/cc300429.aspx
Btw looks if I understand correctly you don't want to parallelize any operation so just wait for the method parsing the page to be completed. Basically for each (foreach look) row of your grid you get the id and call the method. If you want to go parallel just reuse the same foreach loop and add make it Parallel
http://msdn.microsoft.com/en-us/library/dd460720.aspx
What you want is to set off a few workers that do some task.
When one finishes you can start a new one off.
I'm sure there is a better way using thread pools or whatever.. but I was bored so i came up with this.
using System;
using System.Collections.Generic;
using System.Linq;
using System.ComponentModel;
using System.Threading;
namespace WorkerTest
{
class Program
{
static void Main(string[] args)
{
WorkerGroup workerGroup = new WorkerGroup();
Console.WriteLine("Starting...");
for (int i = 0; i < 100; i++)
{
var work = new Action(() =>
{
Thread.Sleep(1000); //somework
});
workerGroup.AddWork(work);
}
while (workerGroup.WorkCount > 0)
{
Console.WriteLine(workerGroup.WorkCount);
Thread.Sleep(1000);
}
Console.WriteLine("Fin");
Console.ReadLine();
}
}
public class WorkerGroup
{
private List<Worker> workers;
private Queue<Action> workToDo;
private object Lock = new object();
public int WorkCount { get { return workToDo.Count; } }
public WorkerGroup()
{
workers = new List<Worker>();
workers.Add(new Worker());
workers.Add(new Worker());
foreach (var w in workers)
{
w.WorkCompleted += (OnWorkCompleted);
}
workToDo = new Queue<Action>();
}
private void OnWorkCompleted(object sender, EventArgs e)
{
FindWork();
}
public void AddWork(Action work)
{
workToDo.Enqueue(work);
FindWork();
}
private void FindWork()
{
lock (Lock)
{
if (workToDo.Count > 0)
{
var availableWorker = workers.FirstOrDefault(x => !x.IsBusy);
if (availableWorker != null)
{
var work = workToDo.Dequeue();
availableWorker.StartWork(work);
}
}
}
}
}
public class Worker
{
private BackgroundWorker worker;
private Action work;
public bool IsBusy { get { return worker.IsBusy; } }
public event EventHandler WorkCompleted;
public Worker()
{
worker = new BackgroundWorker();
worker.DoWork += new DoWorkEventHandler(OnWorkerDoWork);
worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(OnWorkerRunWorkerCompleted);
}
private void OnWorkerRunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (WorkCompleted != null)
{
WorkCompleted(this, EventArgs.Empty);
}
}
public void StartWork(Action work)
{
if (!IsBusy)
{
this.work = work;
worker.RunWorkerAsync();
}
else
{
throw new InvalidOperationException("Worker is busy");
}
}
private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
work.Invoke();
work = null;
}
}
}
This would be just a starting point.
You could start it off with a list of Actions and then have a completed event for when that group of actions is finished.
then at least you can use a ManualResetEvent to wait for the completed event.. or whatever logic you want really.
Call a method directly or do a while loop (with sleep calls) to check the status of the thread.
There are also async events but the would call another method, and you want to continue from the same point.
I have no idea why the requests would timeout. That sounds like a different issue. However, I can make a few suggestions regarding your current approach.
Avoid creating threads in loops with nondeterministic bounds. There is a lot of overhead in creating threads. If the number of operations is not known before hand then use the ThreadPool or the Task Parallel Library instead.
You are not going to get the behavior you want by blocking the UI thread with Thread.Join. The cause the UI to become unresponsive and it will effectively serialize the operations and cancel out any advantage you were hoping to gain with threads.
If you really want to limit the number of concurrent operations then a better solution is to create a separate dedicated thread for kicking off the operations. This thread will spin around a loop indefinitely waiting for items to appear in a queue and when they do it will dequeue them and use that information to kick off an operation asynchronously (again using the ThreadPool or TPL). The dequeueing thread can contain the logic for limiting the number of concurrent operations. Search for information regarding the producer-consumer pattern to get a better understand of how you can implement this.
There is a bit of a learning curve, but who said threading was easy right?
If I understand correctly, what you're currently doing is looping through a list of IDs in the UI thread, starting a new thread to handle each one. The blocking issue you're seeing then could well be that it's taking too many resources to create unique threads. So, personally (without knowing more) would redesign the process like so:
//Somewhere in the UI Thread
Thread worker = new Thread(new ParameterizedThreadStart(UpdateLoWorker));
worker.Start(dataGridFollow.Rows);
//worker thread
private void UpdateLoWorker(DataRowCollection rows)
{
foreach(DataRow r in rows){
string getID = r.Cells["ID"].Value.ToString();
int ID = int.Parse(getID);
UpdateLo(ID);
}
}
Here you'd have a single non-blocking worker which sequentially handles each ID.
Consider using Asynchronous CTP. It's an asynch pattern Microsoft recently released for download. It should simplify asynch programming tremendouesly. The link is http://msdn.microsoft.com/en-us/vstudio/async.aspx. (Read the whitepaper first)
Your code would look something like the following. (I've not verified my syntax yet, sorry).
private async Task DoTheWork()
{
for(int x = 0; x <= dataGridFollow.Rows.Count - 1; x++)
{
string getID = dataGridFollow.Rows[x].Cells["ID"].Value.ToString();
int ID = int.Parse(getID);
task t = new Task(new Action<object>(UpdateLo), ID);
t.Start();
await t;
}
}
This method returns a Task that can be checked periodically for completion. This follows the pattern of "fire and forget" meaning you just call it and presumably, you don't care when it completes (as long as it does complete before 15 minutes).
EDIT
I corrected the syntax above, you would need to change UpdateLo to take an object instead of an Int.
For a simple background thread runner that will run one thread from a queue at a time you can do something like this:
private List<Thread> mThreads = new List<Thread>();
public static void Main()
{
Thread t = new Thread(ThreadMonitor);
t.IsBackground = true;
t.Start();
}
private static void ThreadMonitor()
{
while (true)
{
foreach (Thread t in mThreads.ToArray())
{
// Runs one thread in the queue and waits for it to finish
t.Start();
mThreads.Remove(t);
t.Join();
}
Thread.Sleep(2000); // Wait before checking for new threads
}
}
// Called from the UI or elsewhere to create any number of new threads to run
public static void DoStuff()
{
Thread t = new Thread(DoCorestuff);
t.IsBackground = true;
mActiveThreads.Add(t);
}
public static void DoStuffCore()
{
// Your code here
}

Categories

Resources