ServiceStack OnDeserialized Equivalent - c#

I am deserialize a websocket message in real time. In the message (string of json) I receive there is a unix timestamp (long). As soon as each object is deserialized I need it to call a method ASAP so that I can capture the delay between the time the message was sent and received. With Json.NET that was simple I just added this method to my DataContract class:
[OnDeserialized]
private void OnDeserialized(StreamingContext context)
{
Timestamp = DateTimeOffset.FromUnixTimeMilliseconds(TimestampLong).LocalDateTime;
Delay = DateTime.Now - Timestamp;
}
I would much prefer to use ServiceStack's deserializer going forward for various reasons but I can't seem to figure out a way to do this. I did find this StackOverflow post from almost 10 years ago but I'm hoping that's changed or that there is a workaround that I can use.

ServiceStack.Text doesn't support these attributes by default, but you can implement serialization callbacks with Custom Type Configuration, e.g:
JsConfig<MyType>.OnDeserializedFn = o =>
{
o.OnDeserialized(null);
return o;
};
The SerializationHookTests.cs shows how you can use the Type Filters to wire up these callbacks for a type using this helper:
static void AddSerializeHooksForType<T>()
{
Type type = typeof(T);
System.Reflection.MethodInfo[] typeMethods = type
.GetMethods(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
var onSerializingMethods = typeMethods.Where(m =>
m.GetCustomAttributes(typeof(OnSerializingAttribute), true).Length > 0);
var OnDeserializedMethods = typeMethods.Where(m =>
m.GetCustomAttributes(typeof(OnDeserializedAttribute), true).Length > 0);
var OnSerializedMethods = typeMethods.Where(m =>
m.GetCustomAttributes(typeof(OnSerializedAttribute), true).Length > 0);
Object[] Parameters = { null };
if (onSerializingMethods.Any()) {
ServiceStack.Text.JsConfig<T>.OnSerializingFn = s => {
foreach (var method in onSerializingMethods)
method.Invoke(s, Parameters);
return s;
};
}
if (OnSerializedMethods.Any()) {
ServiceStack.Text.JsConfig<T>.OnSerializedFn = s => {
foreach (var method in OnSerializedMethods)
method.Invoke(s, Parameters);
};
}
if (OnDeserializedMethods.Any()) {
ServiceStack.Text.JsConfig<T>.OnDeserializedFn = s => {
foreach (var method in OnDeserializedMethods)
method.Invoke(s, Parameters);
return s;
};
}
}
Which you can wire up for a type with:
AddSerializeHooksForType<HookTest>();
Where it will call the desired callbacks, e.g:
public class HookTest
{
/// <summary>
/// Will be executed when deserializing starts
/// </summary>
[OnDeserializing]
protected void OnDeserializing(StreamingContext ctx) { }
/// <summary>
/// Will be executed when deserializing finished
/// </summary>
[OnDeserialized]
protected void OnDeserialized(StreamingContext ctx) { }
/// <summary>
/// Will be executed when serializing starts
/// </summary>
[OnSerializing]
protected void OnSerializing(StreamingContext ctx) { }
/// <summary>
/// Will be executed when serializing finished
/// </summary>
[OnSerialized]
protected void OnSerialized(StreamingContext ctx) { }
}

Related

Getting result from async call in a foreach loop

I am trying to get a list of offers that are fetched from an external service.
public void TriggerPurchase()
{
List<string> offers = listener.GetOffers();
Debug.Log("OFFERS " + offers[0]);
}
Here is the fetch function
public List<string> GetOffers()
{
var purchases = GetComponent<Purchases>();
purchases.GetOfferings((offerings, error) =>
{
if (offerings.Current != null && offerings.Current.AvailablePackages.Count != 0)
{
List<string> offers = new List<string>();
foreach (var package in offerings.Current.AvailablePackages)
{
//Debug.Log("Package " + package);
if (package == null) continue;
offers.Add(package.StoreProduct.PriceString);
}
return offers; // Anonymouse function converted to a void returning delegate cannot return a value
}
});
}
I get the Anonymouse function converted to a void returning
I would like to get a list with offers?
**UPDATE
Adding the implementation of GetOfferings
/// <summary>
/// Callback for <see cref="Purchases.GetOfferings"/>.
/// </summary>
/// <param name="offerings"> The <see cref="Offerings"/> object if the request was successful, null otherwise.</param>
/// <param name="error"> The error if the request was unsuccessful, null otherwise.</param>
public delegate void GetOfferingsFunc(Offerings offerings, Error error);
private GetOfferingsFunc GetOfferingsCallback { get; set; }
///
/// <param name="callback"> A completion block called when offerings are available.
/// Called immediately if offerings are cached. <see cref="Offerings"/> will be null if an error occurred.
/// </param>
///
/// <seealso href="https://docs.revenuecat.com/docs/displaying-products"/>
///
public void GetOfferings(GetOfferingsFunc callback)
{
GetOfferingsCallback = callback;
_wrapper.GetOfferings();
}
void methods don't return values. If you want your method to return a result you must change the type of the method and delegate:
public delegate Task<List<string>> GetOfferingsFuncAsync(Offerings offerings, Error error);
private GetOfferingsFunc GetOfferingsCallback { get; set; }
public async Task<List<string>> GetOfferingsAsync(GetOfferingsFunc callback)
{
GetOfferingsCallback = callback;
_wrapper.GetOfferings();
return await this.GetOfferingsCallback.Invoke(arg1, arg2);
}
Now you can handle the expected result properly:
public async Task<List<string>> GetOffers()
{
var purchases = GetComponent<Purchases>();
// Return the result.
return await purchases.GetOfferingsAsync(async (offerings, error) =>
{
if (offerings.Current != null && offerings.Current.AvailablePackages.Count != 0)
{
List<string> offers = new List<string>();
foreach (var package in offerings.Current.AvailablePackages)
{
//Debug.Log("Package " + package);
if (package == null) continue;
await SomeAsyncApiCall();
offers.Add(package.StoreProduct.PriceString);
}
// Because the delegate is no longer 'void'
// you can now return a result
return offers;
}
});
}

How to build a dynamic command object?

I'll try to make this as clear as possible.
A Plugin architecture using reflection and 2 Attributes and an abstract class:
PluginEntryAttribute(Targets.Assembly, typeof(MyPlugin))
PluginImplAttribute(Targets.Class, ...)
abstract class Plugin
Commands are routed to a plugin via an interface and a delegate:
Ex: public delegate TTarget Command<TTarget>(object obj);
Using extension methods with Command<> as the target, a CommandRouter executes the delegate on the correct target interface:
Ex:
public static TResult Execute<TTarget, TResult>(this Command<TTarget> target, Func<TTarget, TResult> func) {
return CommandRouter.Default.Execute(func);
}
Putting this together, I have a class hard-coded with the command delegates like so:
public class Repositories {
public static Command<IDispatchingRepository> Dispatching = (o) => { return (IDispatchingRepository)o; };
public static Command<IPositioningRepository> Positioning = (o) => { return (IPositioningRepository)o; };
public static Command<ISchedulingRepository> Scheduling = (o) => { return (ISchedulingRepository)o; };
public static Command<IHistographyRepository> Histography = (o) => { return (IHistographyRepository)o; };
}
When an object wants to query from the repository, practical execution looks like this:
var expBob = Dispatching.Execute(repo => repo.AddCustomer("Bob"));
var actBob = Dispatching.Execute(repo => repo.GetCustomer("Bob"));
My question is this: how can I create such a class as Repositories dynamically from the plugins?
I can see the possibility that another attribute might be necessary. Something along the lines of:
[RoutedCommand("Dispatching", typeof(IDispatchingRepository)")]
public Command<IDispatchingRepository> Dispatching = (o) => { return (IDispatchingRepository)o; };
This is just an idea, but I'm at a loss as to how I'd still create a dynamic menu of sorts like the Repositories class.
For completeness, the CommandRouter.Execute(...) method and related Dictionary<,>:
private readonly Dictionary<Type, object> commandTargets;
internal TResult Execute<TTarget, TResult>(Func<TTarget, TResult> func) {
var result = default(TResult);
if (commandTargets.TryGetValue(typeof(TTarget), out object target)) {
result = func((TTarget)target);
}
return result;
}
OK, i am not sure if this is what you are looking for. I am assuming that each plugin contains field of the following definition:
public Command<T> {Name} = (o) => { return (T)o; };
example from code provided by you:
public Command<IDispatchingRepository> Dispatching = (o) => { return (IDispatchingRepository)o; };
One way to dynamically create class in .NET Core is by using the Microsoft.CodeAnalysis.CSharp nuget - this is Roslyn.
The result is compiled assembly with class called DynamicRepositories having all command fields from all plugins from all loaded dlls into the current AppDomain represented as static public fields.
The code has 3 main components: DynamicRepositoriesBuildInfo class, GetDynamicRepositoriesBuildInfo method and LoadDynamicRepositortyIntoAppDomain method.
DynamicRepositoriesBuildInfo - information for the command fields from the plugins and all assemblies needed to be loaded during the dynamic complication. This will be the assemblies which defines the Command type and the generic arguments of the Command type (ex: IDispatchingRepository)
GetDynamicRepositoriesBuildInfo method - creates DynamicRepositoriesBuildInfo using reflection by scanning loaded assemblies for the PluginEntryAttribute and PluginImplAttribute.
LoadDynamicRepositortyIntoAppDomain method - DynamicRepositoriesBuildInfo it creates assembly called DynamicRepository.dll with single public class App.Dynamic.DynamicRepositories
Here is the code
public class DynamicRepositoriesBuildInfo
{
public IReadOnlyCollection<Assembly> ReferencesAssemblies { get; }
public IReadOnlyCollection<FieldInfo> PluginCommandFieldInfos { get; }
public DynamicRepositoriesBuildInfo(
IReadOnlyCollection<Assembly> referencesAssemblies,
IReadOnlyCollection<FieldInfo> pluginCommandFieldInfos)
{
this.ReferencesAssemblies = referencesAssemblies;
this.PluginCommandFieldInfos = pluginCommandFieldInfos;
}
}
private static DynamicRepositoriesBuildInfo GetDynamicRepositoriesBuildInfo()
{
var pluginCommandProperties = (from a in AppDomain.CurrentDomain.GetAssemblies()
let entryAttr = a.GetCustomAttribute<PluginEntryAttribute>()
where entryAttr != null
from t in a.DefinedTypes
where t == entryAttr.PluginType
from p in t.GetFields(BindingFlags.Public | BindingFlags.Instance)
where p.FieldType.GetGenericTypeDefinition() == typeof(Command<>)
select p).ToList();
var referenceAssemblies = pluginCommandProperties
.Select(x => x.DeclaringType.Assembly)
.ToList();
referenceAssemblies.AddRange(
pluginCommandProperties
.SelectMany(x => x.FieldType.GetGenericArguments())
.Select(x => x.Assembly)
);
var buildInfo = new DynamicRepositoriesBuildInfo(
pluginCommandFieldInfos: pluginCommandProperties,
referencesAssemblies: referenceAssemblies.Distinct().ToList()
);
return buildInfo;
}
private static Assembly LoadDynamicRepositortyIntoAppDomain()
{
var buildInfo = GetDynamicRepositoriesBuildInfo();
var csScriptBuilder = new StringBuilder();
csScriptBuilder.AppendLine("using System;");
csScriptBuilder.AppendLine("namespace App.Dynamic");
csScriptBuilder.AppendLine("{");
csScriptBuilder.AppendLine(" public class DynamicRepositories");
csScriptBuilder.AppendLine(" {");
foreach (var commandFieldInfo in buildInfo.PluginCommandFieldInfos)
{
var commandNamespaceStr = commandFieldInfo.FieldType.Namespace;
var commandTypeStr = commandFieldInfo.FieldType.Name.Split('`')[0];
var commandGenericArgStr = commandFieldInfo.FieldType.GetGenericArguments().Single().FullName;
var commandFieldNameStr = commandFieldInfo.Name;
csScriptBuilder.AppendLine($"public {commandNamespaceStr}.{commandTypeStr}<{commandGenericArgStr}> {commandFieldNameStr} => (o) => ({commandGenericArgStr})o;");
}
csScriptBuilder.AppendLine(" }");
csScriptBuilder.AppendLine("}");
var sourceText = SourceText.From(csScriptBuilder.ToString());
var parseOpt = CSharpParseOptions.Default.WithLanguageVersion(LanguageVersion.CSharp7_3);
var syntaxTree = SyntaxFactory.ParseSyntaxTree(sourceText, parseOpt);
var references = new List<MetadataReference>
{
MetadataReference.CreateFromFile(typeof(object).Assembly.Location),
MetadataReference.CreateFromFile(typeof(System.Runtime.AssemblyTargetedPatchBandAttribute).Assembly.Location),
};
references.AddRange(buildInfo.ReferencesAssemblies.Select(a => MetadataReference.CreateFromFile(a.Location)));
var compileOpt = new CSharpCompilationOptions(OutputKind.DynamicallyLinkedLibrary,
optimizationLevel: OptimizationLevel.Release,
assemblyIdentityComparer: DesktopAssemblyIdentityComparer.Default);
var compilation = CSharpCompilation.Create(
"DynamicRepository.dll",
new[] { syntaxTree },
references: references,
options: compileOpt);
using (var memStream = new MemoryStream())
{
var result = compilation.Emit(memStream);
if (result.Success)
{
var assembly = AppDomain.CurrentDomain.Load(memStream.ToArray());
return assembly;
}
else
{
throw new ArgumentException();
}
}
}
This is how to execute the code
var assembly = LoadDynamicRepositortyIntoAppDomain();
var type = assembly.GetType("App.Dynamic.DynamicRepositories");
The type variable represents the compiled class which has all the plugin commands as public static fields. You are loosing all type safety once you start using dynamic code compilation / building. If you need to execute some code from the type variable you will need reflection.
So if you have
PluginA
{
public Command<IDispatchingRepository> Dispatching= (o) => ....
}
PluginB
{
public Command<IDispatchingRepository> Scheduling = (o) => ....
}
the dynamically create type will look like this
public class DynamicRepositories
{
public static Command<IDispatchingRepository> Dispatching= (o) => ....
public static Command<IDispatchingRepository> Scheduling = (o) => ....
}
Here's another take, which does not require building code dynamically.
I'm assuming the following code for the plugin framework. Note that I did not make any assumptions regarding the abstract Plugin class, because I had no further information.
#region Plugin Framework
public delegate TTarget Command<out TTarget>(object obj);
/// <summary>
/// Abstract base class for plugins.
/// </summary>
public abstract class Plugin
{
}
#endregion
Next, here are two sample plugins. Note the DynamicTarget custom attributes, which I will describe in the next step.
#region Sample Plugin: ICustomerRepository
/// <summary>
/// Sample model class, representing a customer.
/// </summary>
public class Customer
{
public Customer(string name)
{
Name = name;
}
public string Name { get; }
}
/// <summary>
/// Sample target interface.
/// </summary>
public interface ICustomerRepository
{
Customer AddCustomer(string name);
Customer GetCustomer(string name);
}
/// <summary>
/// Sample plugin.
/// </summary>
[DynamicTarget(typeof(ICustomerRepository))]
public class CustomerRepositoryPlugin : Plugin, ICustomerRepository
{
private readonly Dictionary<string, Customer> _customers = new Dictionary<string, Customer>();
public Customer AddCustomer(string name)
{
var customer = new Customer(name);
_customers[name] = customer;
return customer;
}
public Customer GetCustomer(string name)
{
return _customers[name];
}
}
#endregion
#region Sample Plugin: IProductRepository
/// <summary>
/// Sample model class, representing a product.
/// </summary>
public class Product
{
public Product(string name)
{
Name = name;
}
public string Name { get; }
}
/// <summary>
/// Sample target interface.
/// </summary>
public interface IProductRepository
{
Product AddProduct(string name);
Product GetProduct(string name);
}
/// <summary>
/// Sample plugin.
/// </summary>
[DynamicTarget(typeof(IProductRepository))]
public class ProductRepositoryPlugin : Plugin, IProductRepository
{
private readonly Dictionary<string, Product> _products = new Dictionary<string, Product>();
public Product AddProduct(string name)
{
var product = new Product(name);
_products[name] = product;
return product;
}
public Product GetProduct(string name)
{
return _products[name];
}
}
#endregion
Here's what your static Repositories class would look like with the two sample plugins:
#region Static Repositories Example Class from Question
public static class Repositories
{
public static readonly Command<ICustomerRepository> CustomerRepositoryCommand = o => (ICustomerRepository) o;
public static readonly Command<IProductRepository> ProductRepositoryCommand = o => (IProductRepository) o;
}
#endregion
To begin the actual answer to your question here's the custom attribute used to mark the plugins. This custom attribute has been used on the two example plugins shown above.
/// <summary>
/// Marks a plugin as the target of a <see cref="Command{TTarget}" />, specifying
/// the type to be registered with the <see cref="DynamicCommands" />.
/// </summary>
[AttributeUsage(AttributeTargets.Class, Inherited = false, AllowMultiple = true)]
public class DynamicTargetAttribute : Attribute
{
public DynamicTargetAttribute(Type type)
{
Type = type;
}
public Type Type { get; }
}
The custom attribute is parsed in the RegisterDynamicTargets(Assembly) of the following DynamicRepository class to identify the plugins and the types (e.g., ICustomerRepository) to be registered. The targets are registered with the CommandRouter shown below.
/// <summary>
/// A dynamic command repository.
/// </summary>
public static class DynamicCommands
{
/// <summary>
/// For all assemblies in the current domain, registers all targets marked with the
/// <see cref="DynamicTargetAttribute" />.
/// </summary>
public static void RegisterDynamicTargets()
{
foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies())
{
RegisterDynamicTargets(assembly);
}
}
/// <summary>
/// For the given <see cref="Assembly" />, registers all targets marked with the
/// <see cref="DynamicTargetAttribute" />.
/// </summary>
/// <param name="assembly"></param>
public static void RegisterDynamicTargets(Assembly assembly)
{
IEnumerable<Type> types = assembly
.GetTypes()
.Where(type => type.CustomAttributes
.Any(ca => ca.AttributeType == typeof(DynamicTargetAttribute)));
foreach (Type type in types)
{
// Note: This assumes that we simply instantiate an instance upon registration.
// You might have a different convention with your plugins (e.g., they might be
// singletons accessed via an Instance or Default property). Therefore, you
// might have to change this.
object target = Activator.CreateInstance(type);
IEnumerable<CustomAttributeData> customAttributes = type.CustomAttributes
.Where(ca => ca.AttributeType == typeof(DynamicTargetAttribute));
foreach (CustomAttributeData customAttribute in customAttributes)
{
CustomAttributeTypedArgument argument = customAttribute.ConstructorArguments.First();
CommandRouter.Default.RegisterTarget((Type) argument.Value, target);
}
}
}
/// <summary>
/// Registers the given target.
/// </summary>
/// <typeparam name="TTarget">The type of the target.</typeparam>
/// <param name="target">The target.</param>
public static void RegisterTarget<TTarget>(TTarget target)
{
CommandRouter.Default.RegisterTarget(target);
}
/// <summary>
/// Gets the <see cref="Command{TTarget}" /> for the given <typeparamref name="TTarget" />
/// type.
/// </summary>
/// <typeparam name="TTarget">The target type.</typeparam>
/// <returns>The <see cref="Command{TTarget}" />.</returns>
public static Command<TTarget> Get<TTarget>()
{
return obj => (TTarget) obj;
}
/// <summary>
/// Extension method used to help dispatch the command.
/// </summary>
/// <typeparam name="TTarget">The type of the target.</typeparam>
/// <typeparam name="TResult">The type of the result of the function invoked on the target.</typeparam>
/// <param name="_">The <see cref="Command{TTarget}" />.</param>
/// <param name="func">The function invoked on the target.</param>
/// <returns>The result of the function invoked on the target.</returns>
public static TResult Execute<TTarget, TResult>(this Command<TTarget> _, Func<TTarget, TResult> func)
{
return CommandRouter.Default.Execute(func);
}
}
Instead of dynamically creating properties, the above utility class offers a simple Command<TTarget> Get<TTarget>() method, with which you can create the Command<TTarget> instance, which is then used in the Execute extension method. The latter method finally delegates to the CommandRouter shown next.
/// <summary>
/// Command router used to dispatch commands to targets.
/// </summary>
public class CommandRouter
{
public static readonly CommandRouter Default = new CommandRouter();
private readonly Dictionary<Type, object> _commandTargets = new Dictionary<Type, object>();
/// <summary>
/// Registers a target.
/// </summary>
/// <typeparam name="TTarget">The type of the target instance.</typeparam>
/// <param name="target">The target instance.</param>
public void RegisterTarget<TTarget>(TTarget target)
{
_commandTargets[typeof(TTarget)] = target;
}
/// <summary>
/// Registers a target instance by <see cref="Type" />.
/// </summary>
/// <param name="type">The <see cref="Type" /> of the target.</param>
/// <param name="target">The target instance.</param>
public void RegisterTarget(Type type, object target)
{
_commandTargets[type] = target;
}
internal TResult Execute<TTarget, TResult>(Func<TTarget, TResult> func)
{
var result = default(TResult);
if (_commandTargets.TryGetValue(typeof(TTarget), out object target))
{
result = func((TTarget)target);
}
return result;
}
}
#endregion
Finally, here are a few unit tests showing how the above classes work.
#region Unit Tests
public class DynamicCommandTests
{
[Fact]
public void TestUsingStaticRepository_StaticDeclaration_Success()
{
ICustomerRepository customerRepository = new CustomerRepositoryPlugin();
CommandRouter.Default.RegisterTarget(customerRepository);
Command<ICustomerRepository> command = Repositories.CustomerRepositoryCommand;
Customer expected = command.Execute(repo => repo.AddCustomer("Bob"));
Customer actual = command.Execute(repo => repo.GetCustomer("Bob"));
Assert.Equal(expected, actual);
Assert.Equal("Bob", actual.Name);
}
[Fact]
public void TestUsingDynamicRepository_ManualRegistration_Success()
{
ICustomerRepository customerRepository = new CustomerRepositoryPlugin();
DynamicCommands.RegisterTarget(customerRepository);
Command<ICustomerRepository> command = DynamicCommands.Get<ICustomerRepository>();
Customer expected = command.Execute(repo => repo.AddCustomer("Bob"));
Customer actual = command.Execute(repo => repo.GetCustomer("Bob"));
Assert.Equal(expected, actual);
Assert.Equal("Bob", actual.Name);
}
[Fact]
public void TestUsingDynamicRepository_DynamicRegistration_Success()
{
// Register all plugins, i.e., CustomerRepositoryPlugin and ProductRepositoryPlugin
// in this test case.
DynamicCommands.RegisterDynamicTargets();
// Invoke ICustomerRepository methods on CustomerRepositoryPlugin target.
Command<ICustomerRepository> customerCommand = DynamicCommands.Get<ICustomerRepository>();
Customer expectedBob = customerCommand.Execute(repo => repo.AddCustomer("Bob"));
Customer actualBob = customerCommand.Execute(repo => repo.GetCustomer("Bob"));
Assert.Equal(expectedBob, actualBob);
Assert.Equal("Bob", actualBob.Name);
// Invoke IProductRepository methods on ProductRepositoryPlugin target.
Command<IProductRepository> productCommand = DynamicCommands.Get<IProductRepository>();
Product expectedHammer = productCommand.Execute(repo => repo.AddProduct("Hammer"));
Product actualHammer = productCommand.Execute(repo => repo.GetProduct("Hammer"));
Assert.Equal(expectedHammer, actualHammer);
Assert.Equal("Hammer", actualHammer.Name);
}
}
#endregion
You can find the whole implementation here.

How to wait until item goes through pipeline?

So, I'm trying to wrap my head around Microsoft's Dataflow library. I've built a very simple pipeline consisting of just two blocks:
var start = new TransformBlock<Foo, Bar>();
var end = new ActionBlock<Bar>();
start.LinkTo(end);
Now I can asynchronously process Foo instances by calling:
start.SendAsync(new Foo());
What I do not understand is how to do the processing synchronously, when needed. I thought that waiting on SendAsync would be enough:
start.SendAsync(new Foo()).Wait();
But apparently it returns as soon as item is accepted by first processor in pipeline, and not when item is fully processed. So is there a way to wait until given item was processed by last (end) block? Apart from passing a WaitHandle through entire pipeline.
In short that's not supported out of the box in data flow. Essentially what you need to do is to tag the data so you can retrieve it when processing is done. I've written up a way to do this that let's the consumer await a Job as it gets processed by the pipeline. The only concession to pipeline design is that each block take a KeyValuePair<Guid, T>. This is the basic JobManager and the post I wrote about it. Note the code in the post is a bit dated and needs some updates but it should get you in the right direction.
namespace ConcurrentFlows.DataflowJobs {
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;
/// <summary>
/// A generic interface defining that:
/// for a specified input type => an awaitable result is produced.
/// </summary>
/// <typeparam name="TInput">The type of data to process.</typeparam>
/// <typeparam name="TOutput">The type of data the consumer expects back.</typeparam>
public interface IJobManager<TInput, TOutput> {
Task<TOutput> SubmitRequest(TInput data);
}
/// <summary>
/// A TPL-Dataflow based job manager.
/// </summary>
/// <typeparam name="TInput">The type of data to process.</typeparam>
/// <typeparam name="TOutput">The type of data the consumer expects back.</typeparam>
public class DataflowJobManager<TInput, TOutput> : IJobManager<TInput, TOutput> {
/// <summary>
/// It is anticipated that jobHandler is an injected
/// singleton instance of a Dataflow based 'calculator', though this implementation
/// does not depend on it being a singleton.
/// </summary>
/// <param name="jobHandler">A singleton Dataflow block through which all jobs are processed.</param>
public DataflowJobManager(IPropagatorBlock<KeyValuePair<Guid, TInput>, KeyValuePair<Guid, TOutput>> jobHandler) {
if (jobHandler == null) { throw new ArgumentException("Argument cannot be null.", "jobHandler"); }
this.JobHandler = JobHandler;
if (!alreadyLinked) {
JobHandler.LinkTo(ResultHandler, new DataflowLinkOptions() { PropagateCompletion = true });
alreadyLinked = true;
}
}
private static bool alreadyLinked = false;
/// <summary>
/// Submits the request to the JobHandler and asynchronously awaits the result.
/// </summary>
/// <param name="data">The input data to be processd.</param>
/// <returns></returns>
public async Task<TOutput> SubmitRequest(TInput data) {
var taggedData = TagInputData(data);
var job = CreateJob(taggedData);
Jobs.TryAdd(job.Key, job.Value);
await JobHandler.SendAsync(taggedData);
return await job.Value.Task;
}
private static ConcurrentDictionary<Guid, TaskCompletionSource<TOutput>> Jobs {
get;
} = new ConcurrentDictionary<Guid, TaskCompletionSource<TOutput>>();
private static ExecutionDataflowBlockOptions Options {
get;
} = GetResultHandlerOptions();
private static ITargetBlock<KeyValuePair<Guid, TOutput>> ResultHandler {
get;
} = CreateReplyHandler(Options);
private IPropagatorBlock<KeyValuePair<Guid, TInput>, KeyValuePair<Guid, TOutput>> JobHandler {
get;
}
private KeyValuePair<Guid, TInput> TagInputData(TInput data) {
var id = Guid.NewGuid();
return new KeyValuePair<Guid, TInput>(id, data);
}
private KeyValuePair<Guid, TaskCompletionSource<TOutput>> CreateJob(KeyValuePair<Guid, TInput> taggedData) {
var id = taggedData.Key;
var jobCompletionSource = new TaskCompletionSource<TOutput>();
return new KeyValuePair<Guid, TaskCompletionSource<TOutput>>(id, jobCompletionSource);
}
private static ExecutionDataflowBlockOptions GetResultHandlerOptions() {
return new ExecutionDataflowBlockOptions() {
MaxDegreeOfParallelism = Environment.ProcessorCount,
BoundedCapacity = 1000
};
}
private static ITargetBlock<KeyValuePair<Guid, TOutput>> CreateReplyHandler(ExecutionDataflowBlockOptions options) {
return new ActionBlock<KeyValuePair<Guid, TOutput>>((result) => {
RecieveOutput(result);
}, options);
}
private static void RecieveOutput(KeyValuePair<Guid, TOutput> result) {
var jobId = result.Key;
TaskCompletionSource<TOutput> jobCompletionSource;
if (!Jobs.TryRemove(jobId, out jobCompletionSource)) {
throw new InvalidOperationException($"The jobId: {jobId} was not found.");
}
var resultValue = result.Value;
jobCompletionSource.SetResult(resultValue);
}
}
}
I ended up using the following pipeline:
var start = new TransformBlock<FooBar, FooBar>(...);
var end = new ActionBlock<FooBar>(item => item.Complete());
start.LinkTo(end);
var input = new FooBar {Input = new Foo()};
start.SendAsync(input);
input.Task.Wait();
Where
class FooBar
{
public Foo Input { get; set; }
public Bar Result { get; set; }
public Task<Bar> Task { get { return _taskSource.Task; } }
public void Complete()
{
_taskSource.SetResult(Result);
}
private TaskCompletionSource<Bar> _taskSource = new TaskCompletionSource<Bar>();
}
Less than ideal, but it works.

What's the correct way to construct my message handlers so that they can be moved out of the appHost?

Given the following code for my RabbitMQ Request and Response messages:
public class AppHost : ServiceStackHost
{
public AppHost()
: base("LO.Leads.Processor", typeof(LeadService).Assembly) { }
public override void Configure(Container container)
{
//DataAccess
//RabbitMQ
container.Register<IMessageService>(c => new RabbitMqServer("cdev-9010.example.com", "test", "test")
{
AutoReconnect = true,
DisablePriorityQueues = true,
});
var mqServer = container.Resolve<IMessageService>();
var messageHandlers = new MessageHandlers(); // Is there a better way than newing up an instance?
mqServer.RegisterHandler<LeadInformation>(messageHandlers.OnProcessLeadInformation, messageHandlers.OnExceptionLeadInformation);
mqServer.Start();
}
}
public class MessageHandlers
{
readonly ILog _log = LogManager.GetLogger(typeof(MessageHandlers));
public object OnProcessLeadInformation(IMessage<LeadInformation> request)
{
_log.DebugFormat("Request message received {0}", request.Id);
try
{
// Log to the database
// Run rules against lead
// Log response to database
// return response
}
catch (Exception exception)
{
_log.Error(request, exception);
}
return new LeadInformationResponse();
}
public void OnExceptionLeadInformation(IMessage<LeadInformation> request, Exception exception)
{
_log.Error(request, exception);
}
}
Most of the ServiceStack documentation shows examples where an anonymous method is used in-line, but that quickly bloats the apphost file and I'd like to move this code out closer to the service interface project. Is there anyway to define the delegate and not have to instantiate the "MessageHandlers" class?
Updated May 29th, 2015
Having had a few months to reflect on this question I wanted to add that I never implemented the changes to break out the method call from anonymous to delegate.
But now it's time to commit, and to that end I have come up with the 'template' class that matches the signature of the RegisterHandeler method, code below.
public static class HelloHandler
{
private static ILog _log = LogManager.GetLogger("logger");
public static Func<IMessage<ServiceModel.Hello>, object> ProcessMessageFn
{
get { return OnProcessMessage; }
}
public static Action<IMessageHandler, IMessage<ServiceModel.Hello>, Exception> ProcessExpectionFn
{
get { return OnProcessExpection; }
}
/// <summary>
///
/// </summary>
/// <param name="message"></param>
/// <returns></returns>
private static object OnProcessMessage(IMessage<ServiceModel.Hello> message)
{
return message;
}
/// <summary>
///
/// </summary>
/// <param name="handler"></param>
/// <param name="message"></param>
/// <param name="exception"></param>
private static void OnProcessExpection(IMessageHandler handler, IMessage<ServiceModel.Hello> message, Exception exception)
{
/*
public interface IMessageHandler
{
Type MessageType { get; }
IMessageQueueClient MqClient { get; }
void Process(IMessageQueueClient mqClient);
int ProcessQueue(IMessageQueueClient mqClient, string queueName, Func<bool> doNext = null);
void ProcessMessage(IMessageQueueClient mqClient, object mqResponse);
IMessageHandlerStats GetStats();
}
*/
/*
public interface IMessage<T> : IMessage, IHasId<Guid>
{
T GetBody();
}
*/
/*
Exception
*/
}
}
I'm leaning more towards this design to begin with, but that has me questioning the usage of the
OnProcessExpection
method. What is the first parameter being passed in for? When would that be relevant and what can I do with it? The interface does have the GetStats method which might be beneficial in diagnosing and issue, but I'm just guessing.
Thank you,
Stephen

How can I make method signature caching?

I'm building an app in .NET and C#, and I'd like to cache some of the results by using attributes/annotations instead of explicit code in the method.
I'd like a method signature that looks a bit like this:
[Cache, timeToLive=60]
String getName(string id, string location)
It should make a hash based on the inputs, and use that as the key for the result.
Naturally, there'd be some config file telling it how to actually put in memcached, local dictionary or something.
Do you know of such a framework?
I'd even be interested in one for Java as well
With CacheHandler in Microsoft Enterprise Library you can easily achieve this.
For instance:
[CacheHandler(0, 30, 0)]
public Object GetData(Object input)
{
}
would make all calls to that method cached for 30 minutes. All invocations gets a unique cache-key based on the input data and method name so if you call the method twice with different input it doesn't get cached but if you call it >1 times within the timout interval with the same input then the method only gets executed once.
I've added some extra features to Microsoft's code:
My modified version looks like this:
using System;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Runtime.Remoting.Contexts;
using System.Text;
using System.Web;
using System.Web.Caching;
using System.Web.UI;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.Unity.InterceptionExtension;
namespace Middleware.Cache
{
/// <summary>
/// An <see cref="ICallHandler"/> that implements caching of the return values of
/// methods. This handler stores the return value in the ASP.NET cache or the Items object of the current request.
/// </summary>
[ConfigurationElementType(typeof (CacheHandler)), Synchronization]
public class CacheHandler : ICallHandler
{
/// <summary>
/// The default expiration time for the cached entries: 5 minutes
/// </summary>
public static readonly TimeSpan DefaultExpirationTime = new TimeSpan(0, 5, 0);
private readonly object cachedData;
private readonly DefaultCacheKeyGenerator keyGenerator;
private readonly bool storeOnlyForThisRequest = true;
private TimeSpan expirationTime;
private GetNextHandlerDelegate getNext;
private IMethodInvocation input;
public CacheHandler(TimeSpan expirationTime, bool storeOnlyForThisRequest)
{
keyGenerator = new DefaultCacheKeyGenerator();
this.expirationTime = expirationTime;
this.storeOnlyForThisRequest = storeOnlyForThisRequest;
}
/// <summary>
/// This constructor is used when we wrap cached data in a CacheHandler so that
/// we can reload the object after it has been removed from the cache.
/// </summary>
/// <param name="expirationTime"></param>
/// <param name="storeOnlyForThisRequest"></param>
/// <param name="input"></param>
/// <param name="getNext"></param>
/// <param name="cachedData"></param>
public CacheHandler(TimeSpan expirationTime, bool storeOnlyForThisRequest,
IMethodInvocation input, GetNextHandlerDelegate getNext,
object cachedData)
: this(expirationTime, storeOnlyForThisRequest)
{
this.input = input;
this.getNext = getNext;
this.cachedData = cachedData;
}
/// <summary>
/// Gets or sets the expiration time for cache data.
/// </summary>
/// <value>The expiration time.</value>
public TimeSpan ExpirationTime
{
get { return expirationTime; }
set { expirationTime = value; }
}
#region ICallHandler Members
/// <summary>
/// Implements the caching behavior of this handler.
/// </summary>
/// <param name="input"><see cref="IMethodInvocation"/> object describing the current call.</param>
/// <param name="getNext">delegate used to get the next handler in the current pipeline.</param>
/// <returns>Return value from target method, or cached result if previous inputs have been seen.</returns>
public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext)
{
lock (input.MethodBase)
{
this.input = input;
this.getNext = getNext;
return loadUsingCache();
}
}
public int Order
{
get { return 0; }
set { }
}
#endregion
private IMethodReturn loadUsingCache()
{
//We need to synchronize calls to the CacheHandler on method level
//to prevent duplicate calls to methods that could be cached.
lock (input.MethodBase)
{
if (TargetMethodReturnsVoid(input) || HttpContext.Current == null)
{
return getNext()(input, getNext);
}
var inputs = new object[input.Inputs.Count];
for (int i = 0; i < inputs.Length; ++i)
{
inputs[i] = input.Inputs[i];
}
string cacheKey = keyGenerator.CreateCacheKey(input.MethodBase, inputs);
object cachedResult = getCachedResult(cacheKey);
if (cachedResult == null)
{
var stopWatch = Stopwatch.StartNew();
var realReturn = getNext()(input, getNext);
stopWatch.Stop();
if (realReturn.Exception == null && realReturn.ReturnValue != null)
{
AddToCache(cacheKey, realReturn.ReturnValue);
}
return realReturn;
}
var cachedReturn = input.CreateMethodReturn(cachedResult, input.Arguments);
return cachedReturn;
}
}
private object getCachedResult(string cacheKey)
{
//When the method uses input that is not serializable
//we cannot create a cache key and can therefore not
//cache the data.
if (cacheKey == null)
{
return null;
}
object cachedValue = !storeOnlyForThisRequest ? HttpRuntime.Cache.Get(cacheKey) : HttpContext.Current.Items[cacheKey];
var cachedValueCast = cachedValue as CacheHandler;
if (cachedValueCast != null)
{
//This is an object that is reloaded when it is being removed.
//It is therefore wrapped in a CacheHandler-object and we must
//unwrap it before returning it.
return cachedValueCast.cachedData;
}
return cachedValue;
}
private static bool TargetMethodReturnsVoid(IMethodInvocation input)
{
var targetMethod = input.MethodBase as MethodInfo;
return targetMethod != null && targetMethod.ReturnType == typeof (void);
}
private void AddToCache(string key, object valueToCache)
{
if (key == null)
{
//When the method uses input that is not serializable
//we cannot create a cache key and can therefore not
//cache the data.
return;
}
if (!storeOnlyForThisRequest)
{
HttpRuntime.Cache.Insert(
key,
valueToCache,
null,
System.Web.Caching.Cache.NoAbsoluteExpiration,
expirationTime,
CacheItemPriority.Normal, null);
}
else
{
HttpContext.Current.Items[key] = valueToCache;
}
}
}
/// <summary>
/// This interface describes classes that can be used to generate cache key strings
/// for the <see cref="CacheHandler"/>.
/// </summary>
public interface ICacheKeyGenerator
{
/// <summary>
/// Creates a cache key for the given method and set of input arguments.
/// </summary>
/// <param name="method">Method being called.</param>
/// <param name="inputs">Input arguments.</param>
/// <returns>A (hopefully) unique string to be used as a cache key.</returns>
string CreateCacheKey(MethodBase method, object[] inputs);
}
/// <summary>
/// The default <see cref="ICacheKeyGenerator"/> used by the <see cref="CacheHandler"/>.
/// </summary>
public class DefaultCacheKeyGenerator : ICacheKeyGenerator
{
private readonly LosFormatter serializer = new LosFormatter(false, "");
#region ICacheKeyGenerator Members
/// <summary>
/// Create a cache key for the given method and set of input arguments.
/// </summary>
/// <param name="method">Method being called.</param>
/// <param name="inputs">Input arguments.</param>
/// <returns>A (hopefully) unique string to be used as a cache key.</returns>
public string CreateCacheKey(MethodBase method, params object[] inputs)
{
try
{
var sb = new StringBuilder();
if (method.DeclaringType != null)
{
sb.Append(method.DeclaringType.FullName);
}
sb.Append(':');
sb.Append(method.Name);
TextWriter writer = new StringWriter(sb);
if (inputs != null)
{
foreach (var input in inputs)
{
sb.Append(':');
if (input != null)
{
//Diffrerent instances of DateTime which represents the same value
//sometimes serialize differently due to some internal variables which are different.
//We therefore serialize it using Ticks instead. instead.
var inputDateTime = input as DateTime?;
if (inputDateTime.HasValue)
{
sb.Append(inputDateTime.Value.Ticks);
}
else
{
//Serialize the input and write it to the key StringBuilder.
serializer.Serialize(writer, input);
}
}
}
}
return sb.ToString();
}
catch
{
//Something went wrong when generating the key (probably an input-value was not serializble.
//Return a null key.
return null;
}
}
#endregion
}
}
Microsoft deserves most credit for this code. We've only added stuff like caching at request level instead of across requests (more useful than you might think) and fixed some bugs (e.g. equal DateTime-objects serializing to different values).
To do exactly what you are describing, i.e. writing
public class MyClass {
[Cache, timeToLive=60]
string getName(string id, string location){
return ExpensiveCall(id, location);
}
}
// ...
MyClass c = new MyClass();
string name = c.getName("id", "location");
string name_again = c.getName("id", "location");
and having only one invocation of the expensive call and without needing to wrap the class with some other code (f.x. CacheHandler<MyClass> c = new CacheHandler<MyClass>(new MyClass());) you need to look into an Aspect Oriented Programming framework. Those usually work by rewriting the byte-code, so you need to add another step to your compilation process - but you gain a lot of power in the process. There are many AOP-frameworks, but PostSharp for .NET and AspectJ are among the most popular. You can easily Google how to use those to add the caching-aspect you want.

Categories

Resources