I've seen many people use the following code:
Type t = obj1.GetType();
if (t == typeof(int))
// Some code here
But I know you could also do this:
if (obj1.GetType() == typeof(int))
// Some code here
Or this:
if (obj1 is int)
// Some code here
Personally, I feel the last one is the cleanest, but is there something I'm missing? Which one is the best to use, or is it personal preference?
All are different.
typeof takes a type name (which you specify at compile time).
GetType gets the runtime type of an instance.
is returns true if an instance is in the inheritance tree.
Example
class Animal { }
class Dog : Animal { }
void PrintTypes(Animal a) {
Console.WriteLine(a.GetType() == typeof(Animal)); // false
Console.WriteLine(a is Animal); // true
Console.WriteLine(a.GetType() == typeof(Dog)); // true
Console.WriteLine(a is Dog); // true
}
Dog spot = new Dog();
PrintTypes(spot);
What about typeof(T)? Is it also resolved at compile time?
Yes. T is always what the type of the expression is. Remember, a generic method is basically a whole bunch of methods with the appropriate type. Example:
string Foo<T>(T parameter) { return typeof(T).Name; }
Animal probably_a_dog = new Dog();
Dog definitely_a_dog = new Dog();
Foo(probably_a_dog); // this calls Foo<Animal> and returns "Animal"
Foo<Animal>(probably_a_dog); // this is exactly the same as above
Foo<Dog>(probably_a_dog); // !!! This will not compile. The parameter expects a Dog, you cannot pass in an Animal.
Foo(definitely_a_dog); // this calls Foo<Dog> and returns "Dog"
Foo<Dog>(definitely_a_dog); // this is exactly the same as above.
Foo<Animal>(definitely_a_dog); // this calls Foo<Animal> and returns "Animal".
Foo((Animal)definitely_a_dog); // this does the same as above, returns "Animal"
Use typeof when you want to get the type at compilation time. Use GetType when you want to get the type at execution time. There are rarely any cases to use is as it does a cast and, in most cases, you end up casting the variable anyway.
There is a fourth option that you haven't considered (especially if you are going to cast an object to the type you find as well); that is to use as.
Foo foo = obj as Foo;
if (foo != null)
// your code here
This only uses one cast whereas this approach:
if (obj is Foo)
Foo foo = (Foo)obj;
requires two.
Update (Jan 2020):
As of C# 7+, you can now cast inline, so the 'is' approach can now be done in one cast as well.
Example:
if(obj is Foo newLocalFoo)
{
// For example, you can now reference 'newLocalFoo' in this local scope
Console.WriteLine(newLocalFoo);
}
1.
Type t = typeof(obj1);
if (t == typeof(int))
This is illegal, because typeof only works on types, not on variables. I assume obj1 is a variable. So, in this way typeof is static, and does its work at compile time instead of runtime.
2.
if (obj1.GetType() == typeof(int))
This is true if obj1 is exactly of type int. If obj1 derives from int, the if condition will be false.
3.
if (obj1 is int)
This is true if obj1 is an int, or if it derives from a class called int, or if it implements an interface called int.
Type t = typeof(obj1);
if (t == typeof(int))
// Some code here
This is an error. The typeof operator in C# can only take type names, not objects.
if (obj1.GetType() == typeof(int))
// Some code here
This will work, but maybe not as you would expect. For value types, as you've shown here, it's acceptable, but for reference types, it would only return true if the type was the exact same type, not something else in the inheritance hierarchy. For instance:
class Animal{}
class Dog : Animal{}
static void Foo(){
object o = new Dog();
if(o.GetType() == typeof(Animal))
Console.WriteLine("o is an animal");
Console.WriteLine("o is something else");
}
This would print "o is something else", because the type of o is Dog, not Animal. You can make this work, however, if you use the IsAssignableFrom method of the Type class.
if(typeof(Animal).IsAssignableFrom(o.GetType())) // note use of tested type
Console.WriteLine("o is an animal");
This technique still leaves a major problem, though. If your variable is null, the call to GetType() will throw a NullReferenceException. So to make it work correctly, you'd do:
if(o != null && typeof(Animal).IsAssignableFrom(o.GetType()))
Console.WriteLine("o is an animal");
With this, you have equivalent behavior of the is keyword. Hence, if this is the behavior you want, you should use the is keyword, which is more readable and more efficient.
if(o is Animal)
Console.WriteLine("o is an animal");
In most cases, though, the is keyword still isn't what you really want, because it's usually not enough just to know that an object is of a certain type. Usually, you want to actually use that object as an instance of that type, which requires casting it too. And so you may find yourself writing code like this:
if(o is Animal)
((Animal)o).Speak();
But that makes the CLR check the object's type up to two times. It will check it once to satisfy the is operator, and if o is indeed an Animal, we make it check again to validate the cast.
It's more efficient to do this instead:
Animal a = o as Animal;
if(a != null)
a.Speak();
The as operator is a cast that won't throw an exception if it fails, instead returning null. This way, the CLR checks the object's type just once, and after that, we just need to do a null check, which is more efficient.
But beware: many people fall into a trap with as. Because it doesn't throw exceptions, some people think of it as a "safe" cast, and they use it exclusively, shunning regular casts. This leads to errors like this:
(o as Animal).Speak();
In this case, the developer is clearly assuming that o will always be an Animal, and as long as their assumption is correct, everything works fine. But if they're wrong, then what they end up with here is a NullReferenceException. With a regular cast, they would have gotten an InvalidCastException instead, which would have more correctly identified the problem.
Sometimes, this bug can be hard to find:
class Foo{
readonly Animal animal;
public Foo(object o){
animal = o as Animal;
}
public void Interact(){
animal.Speak();
}
}
This is another case where the developer is clearly expecting o to be an Animal every time, but this isn't obvious in the constructor, where the as cast is used. It's not obvious until you get to the Interact method, where the animal field is expected to be positively assigned. In this case, not only do you end up with a misleading exception, but it isn't thrown until potentially much later than when the actual error occurred.
In summary:
If you only need to know whether or not an object is of some type, use is.
If you need to treat an object as an instance of a certain type, but you don't know for sure that the object will be of that type, use as and check for null.
If you need to treat an object as an instance of a certain type, and the object is supposed to be of that type, use a regular cast.
If you're using C# 7, then it is time for an update to Andrew Hare's great answer. Pattern matching has introduced a nice shortcut that gives us a typed variable within the context of the if statement, without requiring a separate declaration/cast and check:
if (obj1 is int integerValue)
{
integerValue++;
}
This looks pretty underwhelming for a single cast like this, but really shines when you have many possible types coming into your routine. The below is the old way to avoid casting twice:
Button button = obj1 as Button;
if (button != null)
{
// do stuff...
return;
}
TextBox text = obj1 as TextBox;
if (text != null)
{
// do stuff...
return;
}
Label label = obj1 as Label;
if (label != null)
{
// do stuff...
return;
}
// ... and so on
Working around shrinking this code as much as possible, as well as avoiding duplicate casts of the same object has always bothered me. The above is nicely compressed with pattern matching to the following:
switch (obj1)
{
case Button button:
// do stuff...
break;
case TextBox text:
// do stuff...
break;
case Label label:
// do stuff...
break;
// and so on...
}
EDIT: Updated the longer new method to use a switch as per Palec's comment.
I had a Type-property to compare to and could not use is (like my_type is _BaseTypetoLookFor), but I could use these:
base_type.IsInstanceOfType(derived_object);
base_type.IsAssignableFrom(derived_type);
derived_type.IsSubClassOf(base_type);
Notice that IsInstanceOfType and IsAssignableFrom return true when comparing the same types, where IsSubClassOf will return false. And IsSubclassOf does not work on interfaces, where the other two do. (See also this question and answer.)
public class Animal {}
public interface ITrainable {}
public class Dog : Animal, ITrainable{}
Animal dog = new Dog();
typeof(Animal).IsInstanceOfType(dog); // true
typeof(Dog).IsInstanceOfType(dog); // true
typeof(ITrainable).IsInstanceOfType(dog); // true
typeof(Animal).IsAssignableFrom(dog.GetType()); // true
typeof(Dog).IsAssignableFrom(dog.GetType()); // true
typeof(ITrainable).IsAssignableFrom(dog.GetType()); // true
dog.GetType().IsSubclassOf(typeof(Animal)); // true
dog.GetType().IsSubclassOf(typeof(Dog)); // false
dog.GetType().IsSubclassOf(typeof(ITrainable)); // false
I prefer is
That said, if you're using is, you're likely not using inheritance properly.
Assume that Person : Entity, and that Animal : Entity. Feed is a virtual method in Entity (to make Neil happy)
class Person
{
// A Person should be able to Feed
// another Entity, but they way he feeds
// each is different
public override void Feed( Entity e )
{
if( e is Person )
{
// feed me
}
else if( e is Animal )
{
// ruff
}
}
}
Rather
class Person
{
public override void Feed( Person p )
{
// feed the person
}
public override void Feed( Animal a )
{
// feed the animal
}
}
I believe the last one also looks at inheritance (e.g. Dog is Animal == true), which is better in most cases.
It depends on what I'm doing. If I need a bool value (say, to determine if I'll cast to an int), I'll use is. If I actually need the type for some reason (say, to pass to some other method) I'll use GetType().
The last one is cleaner, more obvious, and also checks for subtypes. The others do not check for polymorphism.
Used to obtain the System.Type object for a type. A typeof expression takes the following form:
System.Type type = typeof(int);
Example:
public class ExampleClass
{
public int sampleMember;
public void SampleMethod() {}
static void Main()
{
Type t = typeof(ExampleClass);
// Alternatively, you could use
// ExampleClass obj = new ExampleClass();
// Type t = obj.GetType();
Console.WriteLine("Methods:");
System.Reflection.MethodInfo[] methodInfo = t.GetMethods();
foreach (System.Reflection.MethodInfo mInfo in methodInfo)
Console.WriteLine(mInfo.ToString());
Console.WriteLine("Members:");
System.Reflection.MemberInfo[] memberInfo = t.GetMembers();
foreach (System.Reflection.MemberInfo mInfo in memberInfo)
Console.WriteLine(mInfo.ToString());
}
}
/*
Output:
Methods:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Members:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Void .ctor()
Int32 sampleMember
*/
This sample uses the GetType method to determine the type that is used to contain the result of a numeric calculation. This depends on the storage requirements of the resulting number.
class GetTypeTest
{
static void Main()
{
int radius = 3;
Console.WriteLine("Area = {0}", radius * radius * Math.PI);
Console.WriteLine("The type is {0}",
(radius * radius * Math.PI).GetType()
);
}
}
/*
Output:
Area = 28.2743338823081
The type is System.Double
*/
I found checking if the type of something is equal to something is done by the following:
variableName.GetType() == typeof(int)
if (c is UserControl) c.Enabled = enable;
You can use "typeof()" operator in C# but you need to call the namespace using System.IO; You must use "is" keyword if you wish to check for a type.
Performance test typeof() vs GetType():
using System;
namespace ConsoleApplication1
{
class Program
{
enum TestEnum { E1, E2, E3 }
static void Main(string[] args)
{
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test1(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test2(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
Console.ReadLine();
}
static Type Test1<T>(T value) => typeof(T);
static Type Test2(object value) => value.GetType();
}
}
Results in debug mode:
00:00:08.4096636
00:00:10.8570657
Results in release mode:
00:00:02.3799048
00:00:07.1797128
Related
I've seen many people use the following code:
Type t = obj1.GetType();
if (t == typeof(int))
// Some code here
But I know you could also do this:
if (obj1.GetType() == typeof(int))
// Some code here
Or this:
if (obj1 is int)
// Some code here
Personally, I feel the last one is the cleanest, but is there something I'm missing? Which one is the best to use, or is it personal preference?
All are different.
typeof takes a type name (which you specify at compile time).
GetType gets the runtime type of an instance.
is returns true if an instance is in the inheritance tree.
Example
class Animal { }
class Dog : Animal { }
void PrintTypes(Animal a) {
Console.WriteLine(a.GetType() == typeof(Animal)); // false
Console.WriteLine(a is Animal); // true
Console.WriteLine(a.GetType() == typeof(Dog)); // true
Console.WriteLine(a is Dog); // true
}
Dog spot = new Dog();
PrintTypes(spot);
What about typeof(T)? Is it also resolved at compile time?
Yes. T is always what the type of the expression is. Remember, a generic method is basically a whole bunch of methods with the appropriate type. Example:
string Foo<T>(T parameter) { return typeof(T).Name; }
Animal probably_a_dog = new Dog();
Dog definitely_a_dog = new Dog();
Foo(probably_a_dog); // this calls Foo<Animal> and returns "Animal"
Foo<Animal>(probably_a_dog); // this is exactly the same as above
Foo<Dog>(probably_a_dog); // !!! This will not compile. The parameter expects a Dog, you cannot pass in an Animal.
Foo(definitely_a_dog); // this calls Foo<Dog> and returns "Dog"
Foo<Dog>(definitely_a_dog); // this is exactly the same as above.
Foo<Animal>(definitely_a_dog); // this calls Foo<Animal> and returns "Animal".
Foo((Animal)definitely_a_dog); // this does the same as above, returns "Animal"
Use typeof when you want to get the type at compilation time. Use GetType when you want to get the type at execution time. There are rarely any cases to use is as it does a cast and, in most cases, you end up casting the variable anyway.
There is a fourth option that you haven't considered (especially if you are going to cast an object to the type you find as well); that is to use as.
Foo foo = obj as Foo;
if (foo != null)
// your code here
This only uses one cast whereas this approach:
if (obj is Foo)
Foo foo = (Foo)obj;
requires two.
Update (Jan 2020):
As of C# 7+, you can now cast inline, so the 'is' approach can now be done in one cast as well.
Example:
if(obj is Foo newLocalFoo)
{
// For example, you can now reference 'newLocalFoo' in this local scope
Console.WriteLine(newLocalFoo);
}
1.
Type t = typeof(obj1);
if (t == typeof(int))
This is illegal, because typeof only works on types, not on variables. I assume obj1 is a variable. So, in this way typeof is static, and does its work at compile time instead of runtime.
2.
if (obj1.GetType() == typeof(int))
This is true if obj1 is exactly of type int. If obj1 derives from int, the if condition will be false.
3.
if (obj1 is int)
This is true if obj1 is an int, or if it derives from a class called int, or if it implements an interface called int.
Type t = typeof(obj1);
if (t == typeof(int))
// Some code here
This is an error. The typeof operator in C# can only take type names, not objects.
if (obj1.GetType() == typeof(int))
// Some code here
This will work, but maybe not as you would expect. For value types, as you've shown here, it's acceptable, but for reference types, it would only return true if the type was the exact same type, not something else in the inheritance hierarchy. For instance:
class Animal{}
class Dog : Animal{}
static void Foo(){
object o = new Dog();
if(o.GetType() == typeof(Animal))
Console.WriteLine("o is an animal");
Console.WriteLine("o is something else");
}
This would print "o is something else", because the type of o is Dog, not Animal. You can make this work, however, if you use the IsAssignableFrom method of the Type class.
if(typeof(Animal).IsAssignableFrom(o.GetType())) // note use of tested type
Console.WriteLine("o is an animal");
This technique still leaves a major problem, though. If your variable is null, the call to GetType() will throw a NullReferenceException. So to make it work correctly, you'd do:
if(o != null && typeof(Animal).IsAssignableFrom(o.GetType()))
Console.WriteLine("o is an animal");
With this, you have equivalent behavior of the is keyword. Hence, if this is the behavior you want, you should use the is keyword, which is more readable and more efficient.
if(o is Animal)
Console.WriteLine("o is an animal");
In most cases, though, the is keyword still isn't what you really want, because it's usually not enough just to know that an object is of a certain type. Usually, you want to actually use that object as an instance of that type, which requires casting it too. And so you may find yourself writing code like this:
if(o is Animal)
((Animal)o).Speak();
But that makes the CLR check the object's type up to two times. It will check it once to satisfy the is operator, and if o is indeed an Animal, we make it check again to validate the cast.
It's more efficient to do this instead:
Animal a = o as Animal;
if(a != null)
a.Speak();
The as operator is a cast that won't throw an exception if it fails, instead returning null. This way, the CLR checks the object's type just once, and after that, we just need to do a null check, which is more efficient.
But beware: many people fall into a trap with as. Because it doesn't throw exceptions, some people think of it as a "safe" cast, and they use it exclusively, shunning regular casts. This leads to errors like this:
(o as Animal).Speak();
In this case, the developer is clearly assuming that o will always be an Animal, and as long as their assumption is correct, everything works fine. But if they're wrong, then what they end up with here is a NullReferenceException. With a regular cast, they would have gotten an InvalidCastException instead, which would have more correctly identified the problem.
Sometimes, this bug can be hard to find:
class Foo{
readonly Animal animal;
public Foo(object o){
animal = o as Animal;
}
public void Interact(){
animal.Speak();
}
}
This is another case where the developer is clearly expecting o to be an Animal every time, but this isn't obvious in the constructor, where the as cast is used. It's not obvious until you get to the Interact method, where the animal field is expected to be positively assigned. In this case, not only do you end up with a misleading exception, but it isn't thrown until potentially much later than when the actual error occurred.
In summary:
If you only need to know whether or not an object is of some type, use is.
If you need to treat an object as an instance of a certain type, but you don't know for sure that the object will be of that type, use as and check for null.
If you need to treat an object as an instance of a certain type, and the object is supposed to be of that type, use a regular cast.
If you're using C# 7, then it is time for an update to Andrew Hare's great answer. Pattern matching has introduced a nice shortcut that gives us a typed variable within the context of the if statement, without requiring a separate declaration/cast and check:
if (obj1 is int integerValue)
{
integerValue++;
}
This looks pretty underwhelming for a single cast like this, but really shines when you have many possible types coming into your routine. The below is the old way to avoid casting twice:
Button button = obj1 as Button;
if (button != null)
{
// do stuff...
return;
}
TextBox text = obj1 as TextBox;
if (text != null)
{
// do stuff...
return;
}
Label label = obj1 as Label;
if (label != null)
{
// do stuff...
return;
}
// ... and so on
Working around shrinking this code as much as possible, as well as avoiding duplicate casts of the same object has always bothered me. The above is nicely compressed with pattern matching to the following:
switch (obj1)
{
case Button button:
// do stuff...
break;
case TextBox text:
// do stuff...
break;
case Label label:
// do stuff...
break;
// and so on...
}
EDIT: Updated the longer new method to use a switch as per Palec's comment.
I had a Type-property to compare to and could not use is (like my_type is _BaseTypetoLookFor), but I could use these:
base_type.IsInstanceOfType(derived_object);
base_type.IsAssignableFrom(derived_type);
derived_type.IsSubClassOf(base_type);
Notice that IsInstanceOfType and IsAssignableFrom return true when comparing the same types, where IsSubClassOf will return false. And IsSubclassOf does not work on interfaces, where the other two do. (See also this question and answer.)
public class Animal {}
public interface ITrainable {}
public class Dog : Animal, ITrainable{}
Animal dog = new Dog();
typeof(Animal).IsInstanceOfType(dog); // true
typeof(Dog).IsInstanceOfType(dog); // true
typeof(ITrainable).IsInstanceOfType(dog); // true
typeof(Animal).IsAssignableFrom(dog.GetType()); // true
typeof(Dog).IsAssignableFrom(dog.GetType()); // true
typeof(ITrainable).IsAssignableFrom(dog.GetType()); // true
dog.GetType().IsSubclassOf(typeof(Animal)); // true
dog.GetType().IsSubclassOf(typeof(Dog)); // false
dog.GetType().IsSubclassOf(typeof(ITrainable)); // false
I prefer is
That said, if you're using is, you're likely not using inheritance properly.
Assume that Person : Entity, and that Animal : Entity. Feed is a virtual method in Entity (to make Neil happy)
class Person
{
// A Person should be able to Feed
// another Entity, but they way he feeds
// each is different
public override void Feed( Entity e )
{
if( e is Person )
{
// feed me
}
else if( e is Animal )
{
// ruff
}
}
}
Rather
class Person
{
public override void Feed( Person p )
{
// feed the person
}
public override void Feed( Animal a )
{
// feed the animal
}
}
I believe the last one also looks at inheritance (e.g. Dog is Animal == true), which is better in most cases.
It depends on what I'm doing. If I need a bool value (say, to determine if I'll cast to an int), I'll use is. If I actually need the type for some reason (say, to pass to some other method) I'll use GetType().
The last one is cleaner, more obvious, and also checks for subtypes. The others do not check for polymorphism.
Used to obtain the System.Type object for a type. A typeof expression takes the following form:
System.Type type = typeof(int);
Example:
public class ExampleClass
{
public int sampleMember;
public void SampleMethod() {}
static void Main()
{
Type t = typeof(ExampleClass);
// Alternatively, you could use
// ExampleClass obj = new ExampleClass();
// Type t = obj.GetType();
Console.WriteLine("Methods:");
System.Reflection.MethodInfo[] methodInfo = t.GetMethods();
foreach (System.Reflection.MethodInfo mInfo in methodInfo)
Console.WriteLine(mInfo.ToString());
Console.WriteLine("Members:");
System.Reflection.MemberInfo[] memberInfo = t.GetMembers();
foreach (System.Reflection.MemberInfo mInfo in memberInfo)
Console.WriteLine(mInfo.ToString());
}
}
/*
Output:
Methods:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Members:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Void .ctor()
Int32 sampleMember
*/
This sample uses the GetType method to determine the type that is used to contain the result of a numeric calculation. This depends on the storage requirements of the resulting number.
class GetTypeTest
{
static void Main()
{
int radius = 3;
Console.WriteLine("Area = {0}", radius * radius * Math.PI);
Console.WriteLine("The type is {0}",
(radius * radius * Math.PI).GetType()
);
}
}
/*
Output:
Area = 28.2743338823081
The type is System.Double
*/
I found checking if the type of something is equal to something is done by the following:
variableName.GetType() == typeof(int)
if (c is UserControl) c.Enabled = enable;
You can use "typeof()" operator in C# but you need to call the namespace using System.IO; You must use "is" keyword if you wish to check for a type.
Performance test typeof() vs GetType():
using System;
namespace ConsoleApplication1
{
class Program
{
enum TestEnum { E1, E2, E3 }
static void Main(string[] args)
{
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test1(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test2(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
Console.ReadLine();
}
static Type Test1<T>(T value) => typeof(T);
static Type Test2(object value) => value.GetType();
}
}
Results in debug mode:
00:00:08.4096636
00:00:10.8570657
Results in release mode:
00:00:02.3799048
00:00:07.1797128
In C# can I cast a variable of type object to a variable of type T where T is defined in a Type variable?
Here is an example of a cast and a convert:
using System;
public T CastObject<T>(object input) {
return (T) input;
}
public T ConvertObject<T>(object input) {
return (T) Convert.ChangeType(input, typeof(T));
}
Edit:
Some people in the comments say that this answer doesn't answer the question. But the line (T) Convert.ChangeType(input, typeof(T)) provides the solution. The Convert.ChangeType method tries to convert any Object to the Type provided as the second argument.
For example:
Type intType = typeof(Int32);
object value1 = 1000.1;
// Variable value2 is now an int with a value of 1000, the compiler
// knows the exact type, it is safe to use and you will have autocomplete
int value2 = Convert.ChangeType(value1, intType);
// Variable value3 is now an int with a value of 1000, the compiler
// doesn't know the exact type so it will allow you to call any
// property or method on it, but will crash if it doesn't exist
dynamic value3 = Convert.ChangeType(value1, intType);
I've written the answer with generics, because I think it is a very likely sign of code smell when you want to cast a something to a something else without handling an actual type. With proper interfaces that shouldn't be necessary 99.9% of the times. There are perhaps a few edge cases when it comes to reflection that it might make sense, but I would recommend to avoid those cases.
Edit 2:
Few extra tips:
Try to keep your code as type-safe as possible. If the compiler doesn't know the type, then it can't check if your code is correct and things like autocomplete won't work. Simply said: if you can't predict the type(s) at compile time, then how would the compiler be able to?
If the classes that you are working with implement a common interface, you can cast the value to that interface. Otherwise consider creating your own interface and have the classes implement that interface.
If you are working with external libraries that you are dynamically importing, then also check for a common interface. Otherwise consider creating small wrapper classes that implement the interface.
If you want to make calls on the object, but don't care about the type, then store the value in an object or dynamic variable.
Generics can be a great way to create reusable code that applies to a lot of different types, without having to know the exact types involved.
If you are stuck then consider a different approach or code refactor. Does your code really have to be that dynamic? Does it have to account for any type there is?
Other answers do not mention "dynamic" type. So to add one more answer, you can use "dynamic" type to store your resulting object without having to cast converted object with a static type.
dynamic changedObj = Convert.ChangeType(obj, typeVar);
changedObj.Method();
Keep in mind that with the use of "dynamic" the compiler is bypassing static type checking which could introduce possible runtime errors if you are not careful.
Also, it is assumed that the obj is an instance of Type typeVar or is convertible to that type.
Here is my method to cast an object but not to a generic type variable, rather to a System.Type dynamically:
I create a lambda expression at run-time using System.Linq.Expressions, of type Func<object, object>, that unboxes its input, performs the desired type conversion then gives the result boxed. A new one is needed not only for all types that get casted to, but also for the types that get casted (because of the unboxing step). Creating these expressions is highly time consuming, because of the reflection, the compilation and the dynamic method building that is done under the hood. Luckily once created, the expressions can be invoked repeatedly and without high overhead, so I cache each one.
private static Func<object, object> MakeCastDelegate(Type from, Type to)
{
var p = Expression.Parameter(typeof(object)); //do not inline
return Expression.Lambda<Func<object, object>>(
Expression.Convert(Expression.ConvertChecked(Expression.Convert(p, from), to), typeof(object)),
p).Compile();
}
private static readonly Dictionary<Tuple<Type, Type>, Func<object, object>> CastCache
= new Dictionary<Tuple<Type, Type>, Func<object, object>>();
public static Func<object, object> GetCastDelegate(Type from, Type to)
{
lock (CastCache)
{
var key = new Tuple<Type, Type>(from, to);
Func<object, object> cast_delegate;
if (!CastCache.TryGetValue(key, out cast_delegate))
{
cast_delegate = MakeCastDelegate(from, to);
CastCache.Add(key, cast_delegate);
}
return cast_delegate;
}
}
public static object Cast(Type t, object o)
{
return GetCastDelegate(o.GetType(), t).Invoke(o);
}
Note that this isn't magic. Casting doesn't occur in code, as it does with the dynamic keyword, only the underlying data of the object gets converted. At compile-time we are still left to painstakingly figure out exactly what type our object might be, making this solution impractical. I wrote this as a hack to invoke conversion operators defined by arbitrary types, but maybe somebody out there can find a better use case.
Putting boxing and unboxing aside for simplicity, there's no specific runtime action involved in casting along the inheritance hierarchy. It's mostly a compile time thing. Essentially, a cast tells the compiler to treat the value of the variable as another type.
What you could do after the cast? You don't know the type, so you wouldn't be able to call any methods on it. There wouldn't be any special thing you could do. Specifically, it can be useful only if you know the possible types at compile time, cast it manually and handle each case separately with if statements:
if (type == typeof(int)) {
int x = (int)obj;
DoSomethingWithInt(x);
} else if (type == typeof(string)) {
string s = (string)obj;
DoSomethingWithString(s);
} // ...
After not finding anything to get around "Object must implement IConvertible" exception when using Zyphrax's answer (except for implementing the interface).. I tried something a little bit unconventional and worked for my situation.
Using the Newtonsoft.Json nuget package...
var castedObject = JsonConvert.DeserializeObject(JsonConvert.SerializeObject(myObject), myType);
How could you do that? You need a variable or field of type T where you can store the object after the cast, but how can you have such a variable or field if you know T only at runtime? So, no, it's not possible.
Type type = GetSomeType();
Object #object = GetSomeObject();
??? xyz = #object.CastTo(type); // How would you declare the variable?
xyz.??? // What methods, properties, or fields are valid here?
When it comes to casting to Enum type:
private static Enum GetEnum(Type type, int value)
{
if (type.IsEnum)
if (Enum.IsDefined(type, value))
{
return (Enum)Enum.ToObject(type, value);
}
return null;
}
And you will call it like that:
var enumValue = GetEnum(typeof(YourEnum), foo);
This was essential for me in case of getting Description attribute value of several enum types by int value:
public enum YourEnum
{
[Description("Desc1")]
Val1,
[Description("Desc2")]
Val2,
Val3,
}
public static string GetDescriptionFromEnum(Enum value, bool inherit)
{
Type type = value.GetType();
System.Reflection.MemberInfo[] memInfo = type.GetMember(value.ToString());
if (memInfo.Length > 0)
{
object[] attrs = memInfo[0].GetCustomAttributes(typeof(DescriptionAttribute), inherit);
if (attrs.Length > 0)
return ((DescriptionAttribute)attrs[0]).Description;
}
return value.ToString();
}
and then:
string description = GetDescriptionFromEnum(GetEnum(typeof(YourEnum), foo));
string description2 = GetDescriptionFromEnum(GetEnum(typeof(YourEnum2), foo2));
string description3 = GetDescriptionFromEnum(GetEnum(typeof(YourEnum3), foo3));
Alternatively (better approach), such casting could look like that:
private static T GetEnum<T>(int v) where T : struct, IConvertible
{
if (typeof(T).IsEnum)
if (Enum.IsDefined(typeof(T), v))
{
return (T)Enum.ToObject(typeof(T), v);
}
throw new ArgumentException(string.Format("{0} is not a valid value of {1}", v, typeof(T).Name));
}
I will never understand why you need up to 50 reputation to leave a comment but I just had to say that #Curt answer is exactly what I was looking and hopefully someone else.
In my example, I have an ActionFilterAttribute that I was using to update the values of a json patch document. I didn't what the T model was for the patch document to I had to serialize & deserialize it to a plain JsonPatchDocument, modify it, then because I had the type, serialize & deserialize it back to the type again.
Type originalType = //someType that gets passed in to my constructor.
var objectAsString = JsonConvert.SerializeObject(myObjectWithAGenericType);
var plainPatchDocument = JsonConvert.DeserializeObject<JsonPatchDocument>(objectAsString);
var plainPatchDocumentAsString= JsonConvert.SerializeObject(plainPatchDocument);
var modifiedObjectWithGenericType = JsonConvert.DeserializeObject(plainPatchDocumentAsString, originalType );
public bool TryCast<T>(ref T t, object o)
{
if (
o == null
|| !typeof(T).IsAssignableFrom(o.GetType())
)
return false;
t = (T)o;
return true;
}
If you need to cast objects at runtime without knowing destination type, you can use reflection to make a dynamic converter.
This is a simplified version (without caching generated method):
public static class Tool
{
public static object CastTo<T>(object value) where T : class
{
return value as T;
}
private static readonly MethodInfo CastToInfo = typeof (Tool).GetMethod("CastTo");
public static object DynamicCast(object source, Type targetType)
{
return CastToInfo.MakeGenericMethod(new[] { targetType }).Invoke(null, new[] { source });
}
}
then you can call it:
var r = Tool.DynamicCast(myinstance, typeof (MyClass));
even cleaner:
public static bool TryCast<T>(ref T t, object o)
{
if (!(o is T))
{
return false;
}
t = (T)o;
return true;
}
I have a generic function that is constrained to struct. My inputs are boxed ("objects"). Is it possible to unbox the value at runtime to avoid having to check for each possible type and do the casts manually?
See the above example:
public struct MyStruct
{
public int Value;
}
public void Foo<T>(T test)
where T : struct
{
// do stuff
}
public void TestFunc()
{
object o = new MyStruct() { Value = 100 }; // o is always a value type
Foo(o);
}
In the example, I know that o must be a struct (however, it does not need to be MyStruct ...). Is there a way to call Foo without tons of boilerplate code to check for every possible struct type?
Thank you.
.NET Generics are implemented in a manner that allows value types as a generic type parameter without incurring any boxing/unboxing overhead. Because your're casting to object before calling Foo you don't take advantage of that, in fact you're not even taking advantage of generics at all.
The whole point of using generics in the first place is to replace the "object-idiom". I think you're missing the concept here.
Whatever type T happens to be, it is available at run-time and because you constrained it to struct guaranteed to be a struct type.
Your TestFunc could be written like this without problem:
public void TestFunc()
{
MyStruct o = new MyStruct() { Value = 100 }; // o is always a value type
Foo<MyStruct>(o);
}
Looking at Foo, it would look like this in your example:
public void Foo<T>(T test)
where T : struct
{
T copy = test; // T == MyStruct
}
EDIT:
Ok, since the OP clarified what he wants to call the generic method but doesn't know the type of his struct (it's just object). The easiest way to call your generic method with the correct type parameter is to use a little reflection.
public void TestFunc()
{
object o = new DateTime();
MethodInfo method = this.GetType().GetMethod("Foo");
MethodInfo generic = method.MakeGenericMethod(o.GetType());
generic.Invoke(this, new object[] {o});
}
public void Foo<T>(T test)
where T : struct
{
T copy = test; // T == DateTime
}
No; you're using object, which is (by definition) not a struct/value type. Why are you intentionally boxing the value in this way?
The whole point of using generics is to avoid situations like this.
When you actually "close" the generic with a type of struct, you eliminate the need for runtime type checking: ie.
Foo<MyStruct>(MyStruct test);
Your implementation of Foo, can safely assume that it's dealing with a struct.
(Marked as CW because you can't pass an instance of ValueType to a generic requiring a struct, but it might be helpful for others who come across this question).
Instead of declaring o as an object, you can use a type of System.ValueType, which can only be assigned struct values; you cannot store an object in a ValueType.
However, I'm honestly not sure if that does anything in terms of (un)boxing. Note that ECMA-334 11.1.1 says:
System.ValueType is not itself a value-type. Rather, it is a class-type from which all value-types are automatically derived.
I dont know exactly what you are trying to archieve, but you could pass a delegate/lambda to unbox the value, and select some value in the struct you are interested in:
(Updated this code snippet after slurmomatics comment)
public void Foo<TValue>(object test, Func<object, TValue> ValueSelector)
where TValue : struct
{
TValue value = ValueSelector(test);
// do stuff with 'value'
}
public void TestFunc()
{
object o = new MyStruct() { Value = 100 };
// Do the unboxing in the lambda.
// Additionally you can also select some
// value, if you need to, like in this example
Foo(o, x => ((MyStruct)x).Value);
}
Update:
Then do this:
public static void Foo<TUnboxed>(object test)
where TUnboxed : struct
{
try
{
TUnboxed unboxed = (TUnboxed)test;
}
catch (InvalidCastException ex)
{
// handle the exception or re-throw it...
throw ex;
}
// do stuff with 'unboxed'
}
public void TestFunc()
{
// box an int
object o = 100;
// Now call foo, letting it unbox the int.
// Note that the generic type can not be infered
// but has to be explicitly given, and has to match the
// boxed type, or throws an `InvalidCastException`
Foo<int>(o);
}
I've seen many people use the following code:
Type t = obj1.GetType();
if (t == typeof(int))
// Some code here
But I know you could also do this:
if (obj1.GetType() == typeof(int))
// Some code here
Or this:
if (obj1 is int)
// Some code here
Personally, I feel the last one is the cleanest, but is there something I'm missing? Which one is the best to use, or is it personal preference?
All are different.
typeof takes a type name (which you specify at compile time).
GetType gets the runtime type of an instance.
is returns true if an instance is in the inheritance tree.
Example
class Animal { }
class Dog : Animal { }
void PrintTypes(Animal a) {
Console.WriteLine(a.GetType() == typeof(Animal)); // false
Console.WriteLine(a is Animal); // true
Console.WriteLine(a.GetType() == typeof(Dog)); // true
Console.WriteLine(a is Dog); // true
}
Dog spot = new Dog();
PrintTypes(spot);
What about typeof(T)? Is it also resolved at compile time?
Yes. T is always what the type of the expression is. Remember, a generic method is basically a whole bunch of methods with the appropriate type. Example:
string Foo<T>(T parameter) { return typeof(T).Name; }
Animal probably_a_dog = new Dog();
Dog definitely_a_dog = new Dog();
Foo(probably_a_dog); // this calls Foo<Animal> and returns "Animal"
Foo<Animal>(probably_a_dog); // this is exactly the same as above
Foo<Dog>(probably_a_dog); // !!! This will not compile. The parameter expects a Dog, you cannot pass in an Animal.
Foo(definitely_a_dog); // this calls Foo<Dog> and returns "Dog"
Foo<Dog>(definitely_a_dog); // this is exactly the same as above.
Foo<Animal>(definitely_a_dog); // this calls Foo<Animal> and returns "Animal".
Foo((Animal)definitely_a_dog); // this does the same as above, returns "Animal"
Use typeof when you want to get the type at compilation time. Use GetType when you want to get the type at execution time. There are rarely any cases to use is as it does a cast and, in most cases, you end up casting the variable anyway.
There is a fourth option that you haven't considered (especially if you are going to cast an object to the type you find as well); that is to use as.
Foo foo = obj as Foo;
if (foo != null)
// your code here
This only uses one cast whereas this approach:
if (obj is Foo)
Foo foo = (Foo)obj;
requires two.
Update (Jan 2020):
As of C# 7+, you can now cast inline, so the 'is' approach can now be done in one cast as well.
Example:
if(obj is Foo newLocalFoo)
{
// For example, you can now reference 'newLocalFoo' in this local scope
Console.WriteLine(newLocalFoo);
}
1.
Type t = typeof(obj1);
if (t == typeof(int))
This is illegal, because typeof only works on types, not on variables. I assume obj1 is a variable. So, in this way typeof is static, and does its work at compile time instead of runtime.
2.
if (obj1.GetType() == typeof(int))
This is true if obj1 is exactly of type int. If obj1 derives from int, the if condition will be false.
3.
if (obj1 is int)
This is true if obj1 is an int, or if it derives from a class called int, or if it implements an interface called int.
Type t = typeof(obj1);
if (t == typeof(int))
// Some code here
This is an error. The typeof operator in C# can only take type names, not objects.
if (obj1.GetType() == typeof(int))
// Some code here
This will work, but maybe not as you would expect. For value types, as you've shown here, it's acceptable, but for reference types, it would only return true if the type was the exact same type, not something else in the inheritance hierarchy. For instance:
class Animal{}
class Dog : Animal{}
static void Foo(){
object o = new Dog();
if(o.GetType() == typeof(Animal))
Console.WriteLine("o is an animal");
Console.WriteLine("o is something else");
}
This would print "o is something else", because the type of o is Dog, not Animal. You can make this work, however, if you use the IsAssignableFrom method of the Type class.
if(typeof(Animal).IsAssignableFrom(o.GetType())) // note use of tested type
Console.WriteLine("o is an animal");
This technique still leaves a major problem, though. If your variable is null, the call to GetType() will throw a NullReferenceException. So to make it work correctly, you'd do:
if(o != null && typeof(Animal).IsAssignableFrom(o.GetType()))
Console.WriteLine("o is an animal");
With this, you have equivalent behavior of the is keyword. Hence, if this is the behavior you want, you should use the is keyword, which is more readable and more efficient.
if(o is Animal)
Console.WriteLine("o is an animal");
In most cases, though, the is keyword still isn't what you really want, because it's usually not enough just to know that an object is of a certain type. Usually, you want to actually use that object as an instance of that type, which requires casting it too. And so you may find yourself writing code like this:
if(o is Animal)
((Animal)o).Speak();
But that makes the CLR check the object's type up to two times. It will check it once to satisfy the is operator, and if o is indeed an Animal, we make it check again to validate the cast.
It's more efficient to do this instead:
Animal a = o as Animal;
if(a != null)
a.Speak();
The as operator is a cast that won't throw an exception if it fails, instead returning null. This way, the CLR checks the object's type just once, and after that, we just need to do a null check, which is more efficient.
But beware: many people fall into a trap with as. Because it doesn't throw exceptions, some people think of it as a "safe" cast, and they use it exclusively, shunning regular casts. This leads to errors like this:
(o as Animal).Speak();
In this case, the developer is clearly assuming that o will always be an Animal, and as long as their assumption is correct, everything works fine. But if they're wrong, then what they end up with here is a NullReferenceException. With a regular cast, they would have gotten an InvalidCastException instead, which would have more correctly identified the problem.
Sometimes, this bug can be hard to find:
class Foo{
readonly Animal animal;
public Foo(object o){
animal = o as Animal;
}
public void Interact(){
animal.Speak();
}
}
This is another case where the developer is clearly expecting o to be an Animal every time, but this isn't obvious in the constructor, where the as cast is used. It's not obvious until you get to the Interact method, where the animal field is expected to be positively assigned. In this case, not only do you end up with a misleading exception, but it isn't thrown until potentially much later than when the actual error occurred.
In summary:
If you only need to know whether or not an object is of some type, use is.
If you need to treat an object as an instance of a certain type, but you don't know for sure that the object will be of that type, use as and check for null.
If you need to treat an object as an instance of a certain type, and the object is supposed to be of that type, use a regular cast.
If you're using C# 7, then it is time for an update to Andrew Hare's great answer. Pattern matching has introduced a nice shortcut that gives us a typed variable within the context of the if statement, without requiring a separate declaration/cast and check:
if (obj1 is int integerValue)
{
integerValue++;
}
This looks pretty underwhelming for a single cast like this, but really shines when you have many possible types coming into your routine. The below is the old way to avoid casting twice:
Button button = obj1 as Button;
if (button != null)
{
// do stuff...
return;
}
TextBox text = obj1 as TextBox;
if (text != null)
{
// do stuff...
return;
}
Label label = obj1 as Label;
if (label != null)
{
// do stuff...
return;
}
// ... and so on
Working around shrinking this code as much as possible, as well as avoiding duplicate casts of the same object has always bothered me. The above is nicely compressed with pattern matching to the following:
switch (obj1)
{
case Button button:
// do stuff...
break;
case TextBox text:
// do stuff...
break;
case Label label:
// do stuff...
break;
// and so on...
}
EDIT: Updated the longer new method to use a switch as per Palec's comment.
I had a Type-property to compare to and could not use is (like my_type is _BaseTypetoLookFor), but I could use these:
base_type.IsInstanceOfType(derived_object);
base_type.IsAssignableFrom(derived_type);
derived_type.IsSubClassOf(base_type);
Notice that IsInstanceOfType and IsAssignableFrom return true when comparing the same types, where IsSubClassOf will return false. And IsSubclassOf does not work on interfaces, where the other two do. (See also this question and answer.)
public class Animal {}
public interface ITrainable {}
public class Dog : Animal, ITrainable{}
Animal dog = new Dog();
typeof(Animal).IsInstanceOfType(dog); // true
typeof(Dog).IsInstanceOfType(dog); // true
typeof(ITrainable).IsInstanceOfType(dog); // true
typeof(Animal).IsAssignableFrom(dog.GetType()); // true
typeof(Dog).IsAssignableFrom(dog.GetType()); // true
typeof(ITrainable).IsAssignableFrom(dog.GetType()); // true
dog.GetType().IsSubclassOf(typeof(Animal)); // true
dog.GetType().IsSubclassOf(typeof(Dog)); // false
dog.GetType().IsSubclassOf(typeof(ITrainable)); // false
I prefer is
That said, if you're using is, you're likely not using inheritance properly.
Assume that Person : Entity, and that Animal : Entity. Feed is a virtual method in Entity (to make Neil happy)
class Person
{
// A Person should be able to Feed
// another Entity, but they way he feeds
// each is different
public override void Feed( Entity e )
{
if( e is Person )
{
// feed me
}
else if( e is Animal )
{
// ruff
}
}
}
Rather
class Person
{
public override void Feed( Person p )
{
// feed the person
}
public override void Feed( Animal a )
{
// feed the animal
}
}
I believe the last one also looks at inheritance (e.g. Dog is Animal == true), which is better in most cases.
It depends on what I'm doing. If I need a bool value (say, to determine if I'll cast to an int), I'll use is. If I actually need the type for some reason (say, to pass to some other method) I'll use GetType().
The last one is cleaner, more obvious, and also checks for subtypes. The others do not check for polymorphism.
Used to obtain the System.Type object for a type. A typeof expression takes the following form:
System.Type type = typeof(int);
Example:
public class ExampleClass
{
public int sampleMember;
public void SampleMethod() {}
static void Main()
{
Type t = typeof(ExampleClass);
// Alternatively, you could use
// ExampleClass obj = new ExampleClass();
// Type t = obj.GetType();
Console.WriteLine("Methods:");
System.Reflection.MethodInfo[] methodInfo = t.GetMethods();
foreach (System.Reflection.MethodInfo mInfo in methodInfo)
Console.WriteLine(mInfo.ToString());
Console.WriteLine("Members:");
System.Reflection.MemberInfo[] memberInfo = t.GetMembers();
foreach (System.Reflection.MemberInfo mInfo in memberInfo)
Console.WriteLine(mInfo.ToString());
}
}
/*
Output:
Methods:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Members:
Void SampleMethod()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Void .ctor()
Int32 sampleMember
*/
This sample uses the GetType method to determine the type that is used to contain the result of a numeric calculation. This depends on the storage requirements of the resulting number.
class GetTypeTest
{
static void Main()
{
int radius = 3;
Console.WriteLine("Area = {0}", radius * radius * Math.PI);
Console.WriteLine("The type is {0}",
(radius * radius * Math.PI).GetType()
);
}
}
/*
Output:
Area = 28.2743338823081
The type is System.Double
*/
I found checking if the type of something is equal to something is done by the following:
variableName.GetType() == typeof(int)
if (c is UserControl) c.Enabled = enable;
You can use "typeof()" operator in C# but you need to call the namespace using System.IO; You must use "is" keyword if you wish to check for a type.
Performance test typeof() vs GetType():
using System;
namespace ConsoleApplication1
{
class Program
{
enum TestEnum { E1, E2, E3 }
static void Main(string[] args)
{
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test1(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
{
var start = DateTime.UtcNow;
for (var i = 0; i < 1000000000; i++)
Test2(TestEnum.E2);
Console.WriteLine(DateTime.UtcNow - start);
}
Console.ReadLine();
}
static Type Test1<T>(T value) => typeof(T);
static Type Test2(object value) => value.GetType();
}
}
Results in debug mode:
00:00:08.4096636
00:00:10.8570657
Results in release mode:
00:00:02.3799048
00:00:07.1797128
In C# can I cast a variable of type object to a variable of type T where T is defined in a Type variable?
Here is an example of a cast and a convert:
using System;
public T CastObject<T>(object input) {
return (T) input;
}
public T ConvertObject<T>(object input) {
return (T) Convert.ChangeType(input, typeof(T));
}
Edit:
Some people in the comments say that this answer doesn't answer the question. But the line (T) Convert.ChangeType(input, typeof(T)) provides the solution. The Convert.ChangeType method tries to convert any Object to the Type provided as the second argument.
For example:
Type intType = typeof(Int32);
object value1 = 1000.1;
// Variable value2 is now an int with a value of 1000, the compiler
// knows the exact type, it is safe to use and you will have autocomplete
int value2 = Convert.ChangeType(value1, intType);
// Variable value3 is now an int with a value of 1000, the compiler
// doesn't know the exact type so it will allow you to call any
// property or method on it, but will crash if it doesn't exist
dynamic value3 = Convert.ChangeType(value1, intType);
I've written the answer with generics, because I think it is a very likely sign of code smell when you want to cast a something to a something else without handling an actual type. With proper interfaces that shouldn't be necessary 99.9% of the times. There are perhaps a few edge cases when it comes to reflection that it might make sense, but I would recommend to avoid those cases.
Edit 2:
Few extra tips:
Try to keep your code as type-safe as possible. If the compiler doesn't know the type, then it can't check if your code is correct and things like autocomplete won't work. Simply said: if you can't predict the type(s) at compile time, then how would the compiler be able to?
If the classes that you are working with implement a common interface, you can cast the value to that interface. Otherwise consider creating your own interface and have the classes implement that interface.
If you are working with external libraries that you are dynamically importing, then also check for a common interface. Otherwise consider creating small wrapper classes that implement the interface.
If you want to make calls on the object, but don't care about the type, then store the value in an object or dynamic variable.
Generics can be a great way to create reusable code that applies to a lot of different types, without having to know the exact types involved.
If you are stuck then consider a different approach or code refactor. Does your code really have to be that dynamic? Does it have to account for any type there is?
Other answers do not mention "dynamic" type. So to add one more answer, you can use "dynamic" type to store your resulting object without having to cast converted object with a static type.
dynamic changedObj = Convert.ChangeType(obj, typeVar);
changedObj.Method();
Keep in mind that with the use of "dynamic" the compiler is bypassing static type checking which could introduce possible runtime errors if you are not careful.
Also, it is assumed that the obj is an instance of Type typeVar or is convertible to that type.
Here is my method to cast an object but not to a generic type variable, rather to a System.Type dynamically:
I create a lambda expression at run-time using System.Linq.Expressions, of type Func<object, object>, that unboxes its input, performs the desired type conversion then gives the result boxed. A new one is needed not only for all types that get casted to, but also for the types that get casted (because of the unboxing step). Creating these expressions is highly time consuming, because of the reflection, the compilation and the dynamic method building that is done under the hood. Luckily once created, the expressions can be invoked repeatedly and without high overhead, so I cache each one.
private static Func<object, object> MakeCastDelegate(Type from, Type to)
{
var p = Expression.Parameter(typeof(object)); //do not inline
return Expression.Lambda<Func<object, object>>(
Expression.Convert(Expression.ConvertChecked(Expression.Convert(p, from), to), typeof(object)),
p).Compile();
}
private static readonly Dictionary<Tuple<Type, Type>, Func<object, object>> CastCache
= new Dictionary<Tuple<Type, Type>, Func<object, object>>();
public static Func<object, object> GetCastDelegate(Type from, Type to)
{
lock (CastCache)
{
var key = new Tuple<Type, Type>(from, to);
Func<object, object> cast_delegate;
if (!CastCache.TryGetValue(key, out cast_delegate))
{
cast_delegate = MakeCastDelegate(from, to);
CastCache.Add(key, cast_delegate);
}
return cast_delegate;
}
}
public static object Cast(Type t, object o)
{
return GetCastDelegate(o.GetType(), t).Invoke(o);
}
Note that this isn't magic. Casting doesn't occur in code, as it does with the dynamic keyword, only the underlying data of the object gets converted. At compile-time we are still left to painstakingly figure out exactly what type our object might be, making this solution impractical. I wrote this as a hack to invoke conversion operators defined by arbitrary types, but maybe somebody out there can find a better use case.
Putting boxing and unboxing aside for simplicity, there's no specific runtime action involved in casting along the inheritance hierarchy. It's mostly a compile time thing. Essentially, a cast tells the compiler to treat the value of the variable as another type.
What you could do after the cast? You don't know the type, so you wouldn't be able to call any methods on it. There wouldn't be any special thing you could do. Specifically, it can be useful only if you know the possible types at compile time, cast it manually and handle each case separately with if statements:
if (type == typeof(int)) {
int x = (int)obj;
DoSomethingWithInt(x);
} else if (type == typeof(string)) {
string s = (string)obj;
DoSomethingWithString(s);
} // ...
After not finding anything to get around "Object must implement IConvertible" exception when using Zyphrax's answer (except for implementing the interface).. I tried something a little bit unconventional and worked for my situation.
Using the Newtonsoft.Json nuget package...
var castedObject = JsonConvert.DeserializeObject(JsonConvert.SerializeObject(myObject), myType);
How could you do that? You need a variable or field of type T where you can store the object after the cast, but how can you have such a variable or field if you know T only at runtime? So, no, it's not possible.
Type type = GetSomeType();
Object #object = GetSomeObject();
??? xyz = #object.CastTo(type); // How would you declare the variable?
xyz.??? // What methods, properties, or fields are valid here?
When it comes to casting to Enum type:
private static Enum GetEnum(Type type, int value)
{
if (type.IsEnum)
if (Enum.IsDefined(type, value))
{
return (Enum)Enum.ToObject(type, value);
}
return null;
}
And you will call it like that:
var enumValue = GetEnum(typeof(YourEnum), foo);
This was essential for me in case of getting Description attribute value of several enum types by int value:
public enum YourEnum
{
[Description("Desc1")]
Val1,
[Description("Desc2")]
Val2,
Val3,
}
public static string GetDescriptionFromEnum(Enum value, bool inherit)
{
Type type = value.GetType();
System.Reflection.MemberInfo[] memInfo = type.GetMember(value.ToString());
if (memInfo.Length > 0)
{
object[] attrs = memInfo[0].GetCustomAttributes(typeof(DescriptionAttribute), inherit);
if (attrs.Length > 0)
return ((DescriptionAttribute)attrs[0]).Description;
}
return value.ToString();
}
and then:
string description = GetDescriptionFromEnum(GetEnum(typeof(YourEnum), foo));
string description2 = GetDescriptionFromEnum(GetEnum(typeof(YourEnum2), foo2));
string description3 = GetDescriptionFromEnum(GetEnum(typeof(YourEnum3), foo3));
Alternatively (better approach), such casting could look like that:
private static T GetEnum<T>(int v) where T : struct, IConvertible
{
if (typeof(T).IsEnum)
if (Enum.IsDefined(typeof(T), v))
{
return (T)Enum.ToObject(typeof(T), v);
}
throw new ArgumentException(string.Format("{0} is not a valid value of {1}", v, typeof(T).Name));
}
I will never understand why you need up to 50 reputation to leave a comment but I just had to say that #Curt answer is exactly what I was looking and hopefully someone else.
In my example, I have an ActionFilterAttribute that I was using to update the values of a json patch document. I didn't what the T model was for the patch document to I had to serialize & deserialize it to a plain JsonPatchDocument, modify it, then because I had the type, serialize & deserialize it back to the type again.
Type originalType = //someType that gets passed in to my constructor.
var objectAsString = JsonConvert.SerializeObject(myObjectWithAGenericType);
var plainPatchDocument = JsonConvert.DeserializeObject<JsonPatchDocument>(objectAsString);
var plainPatchDocumentAsString= JsonConvert.SerializeObject(plainPatchDocument);
var modifiedObjectWithGenericType = JsonConvert.DeserializeObject(plainPatchDocumentAsString, originalType );
public bool TryCast<T>(ref T t, object o)
{
if (
o == null
|| !typeof(T).IsAssignableFrom(o.GetType())
)
return false;
t = (T)o;
return true;
}
If you need to cast objects at runtime without knowing destination type, you can use reflection to make a dynamic converter.
This is a simplified version (without caching generated method):
public static class Tool
{
public static object CastTo<T>(object value) where T : class
{
return value as T;
}
private static readonly MethodInfo CastToInfo = typeof (Tool).GetMethod("CastTo");
public static object DynamicCast(object source, Type targetType)
{
return CastToInfo.MakeGenericMethod(new[] { targetType }).Invoke(null, new[] { source });
}
}
then you can call it:
var r = Tool.DynamicCast(myinstance, typeof (MyClass));
even cleaner:
public static bool TryCast<T>(ref T t, object o)
{
if (!(o is T))
{
return false;
}
t = (T)o;
return true;
}