Combining Public Certificate with Private RSA Key in C# - c#

I received from a client public certificate and private RSA key, as follows (only partially displayed here):
-----BEGIN CERTIFICATE-----
MIIFKDCCAxACAQEwDQYJKoZIhvcNAQELBQAwbjELMAkGA1UEBhMCVVMxETAPBgNV
BAgMCElsbGlub2lzMRAwDgYDVQQHDAdDaGljYWdvMRMwEQYDVQQKDApDbG91ZFF1
YW50MSUwIwYJKoZIhvcNAQkBFhZjcWFpb3BzQGNsb3VkcXVhbnQuY29tMB4XDTIw
MDkyMzIwMTgyN1oXDTQwMDkxODIwMTgyN1owRjELMAkGA1UEBhMCVVMxETAPBgNV
iESEKmYvylUwce7TcOuVnLtufyXxr8egu43jPvWDHsK0QvhMbx0q2KvyxGneQJ5E
...........
U0oIrq7M0qZTAf1BXEw9wgfQlIKfLzWDbIYKIg==
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
MIIJKQIBAAKCAgEAuxHk8lBZaqRTzhi/jvlj59pehTkK/u2fVHLuHWZPGOvPiAjq
HqrAgM1urPpmQPC2QuWObmhvQ1uluo/tq6V56WZNUEYALZnXhGvVNrvnYfoFooI0
F+1dJI2xQ8AC11Khinj+yAPtKymMhZFOHzQaFnGvjhKWTn/I0MaoJc+TQ8JKbDQ0
ycvopM2finujmIb62cxxhkhkEC5T+yMUJ8MbCnfmWpYux/oU2CXSHrnPympCbx7x
cReH0BeZEZPMI7+1Yi7U+XKGc7RP+zt9AoIBAQDE0BZb3WfertNqmyj9TF73VAwq
SDtSa6MTC8bOdtQewCz9/zC13MSI+jZGRDKSh7nxNL+bgM0OgmM6n/5B/61SIRjM
hswgOU9AHewIFSB/5C/ZcxWqM+PrgYXXYfOl9ZeWs1x+YRKuqk/CW/Z2rHJXykNx
.............
czG95J+2TWdGAjPuFLA596PRXT5KN2ITOWXUym3UksHmonbJ9om+k0ckPr4J
-----END RSA PRIVATE KEY-----
Initially, I scanned many postings here and realized that the easiest way to combine the puplic PEM certificate with private RSA key (PEM format) is by using .NET 5:
// Needs .NET 5, that is .NET Core and VS2019 16.8 or higher
X509Certificate2 X509Cert = X509Certificate2.CreateFromPemFile("cert.cer", "cert.key");
X509Certificate2 cert = new X509Certificate2(mX509Cert.Export(X509ContentType.Pfx, "12345678"), "12345678");
This worked great.
However, later on I realized that the type of project I am targeting (VSTO Excel Add-In) is not supporting .NET 5 yet...
Therefore, I changed the above code to the following, (which also worked) not realizing that it also requires .NET 5...
X509Certificate2 pubOnly = new X509Certificate2("cert.cer");
RSA rsa = RSA.Create();
rsa.ImportRSAPrivateKey(keyBuffer, out _);
X509Certificate2 pubPrivEphemeral = pubOnly.CopyWithPrivateKey(rsa);
X509Certificate2 cert = new X509Certificate2(pubPrivEphemeral.Export(X509ContentType.Pfx, "12345678"), "12345678");
Then when I finally switched to .NET 4.7.2 and now 4.8 I was looking for compatible way to do the same, and tired several methods offered here, but in vain, none did not work - they had complex routines that threw exceptions...
So I am trying now BouncyCastle that helped a lot in the past and came up with this code:
string cerFilePath = Path.Combine(InstallDir, "cert.cer");
X509Certificate2 dotnetCertificate2 = new X509Certificate2(cerFilePath);
string keyFilePath = Path.Combine(InstallDir, "cert.key");
var pemReader = new Org.BouncyCastle.OpenSsl.PemReader(File.OpenText(keyFilePath));
var pemObject = pemReader.ReadObject();
var rsa = DotNetUtilities.ToRSA((RsaPrivateCrtKeyParameters)pemObject);
Unfortunately, the last line throws exception - there is something incompatible here and I do not know what it is... The exception message states:
"Unable to cast object of type 'Org.BouncyCastle.Crypto.AsymmetricCipherKeyPair' to type 'Org.BouncyCastle.Crypto.Parameters.RsaPrivateCrtKeyParameters'."
So if anyone can either correct me with the above BouncyCastle code or show me pure .NET 4.6 - 4.8 code - I'd really appreciate.
EDIT:
So I did find another code from here
private X509Certificate2 CreateCertWithKey()
{
using (Log.VerboseCall())
{
X509Certificate2 x509Cert = null;
try
{
string cerFilePath = Path.Combine(InstallDir, "cert.cer");
using (TextReader tr = new StreamReader(cerFilePath))
{
publicPemCert = tr.ReadToEnd();
}
string keyFilePath = Path.Combine(InstallDir, "cert.key");
using (TextReader tr = new StreamReader(keyFilePath))
{
privatePemKey = tr.ReadToEnd();
}
var keyPair = (AsymmetricCipherKeyPair)new PemReader(new StringReader(privatePemKey)).ReadObject();
var cert = (Org.BouncyCastle.X509.X509Certificate)new PemReader(new StringReader(publicPemCert)).ReadObject();
var builder = new Pkcs12StoreBuilder();
builder.SetUseDerEncoding(true);
var store = builder.Build();
var certEntry = new X509CertificateEntry(cert);
store.SetCertificateEntry("", certEntry);
store.SetKeyEntry("", new AsymmetricKeyEntry(keyPair.Private), new[] { certEntry });
byte[] data;
using (var ms = new MemoryStream())
{
//store.Save(ms, Array.Empty<char>(), new SecureRandom());
data = ms.ToArray();
x509Cert = new X509Certificate2(data);
}
}
catch(Exception ex)
{
Log.Verbose(ex);
}
return x509Cert;
}
}
It runs without problem but with the generated certificate my HttpWebRequest does not work, claiming that TSL/SSL connection cannot be created (and I tries 1.1, 1.2, and 1.3, although I recall that just Tls negotiates the version by itself...
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls;
The .NET 5 code ran without a problem with exactly the same code for HttpWebRequest...

Just came across this while working through similar issues and I found a way to create the X509Certificate2 object that includes the private key (which I use for XML Signing). It requires that you create a PFX record using the public/private keys, I used OpenSSL:
openssl pkcs12 -export -inkey private-key.pem -in cert.pem -out cert.pfx
You can either open just instantiate the instance directly with the file name:
var cert = new X509Certificate2(filePath);
Or if you have already opened the file somewhere and stored it in base64 format, you can use the bytes:
var bytes = Convert.FromBase64String(pfx_base64);
var cert = new X509Certificate2(bytes);
A lot of credit for this goes to reading Scott Brady's blog.

Related

C# - Generate X509 Certificate based on a given issuer certificate in byte[]

I want to create iothub device certificates from C# code. The root CA is stored in keyvault as a .pfx, fetched as a string, and then converted from base 64 in order to obtain the certificate bytes as it is required for a certificate stored in keyvault: Azure Key Vault Certificates does not have the Private Key when retrieved via IKeyVaultClient.GetCertificateAsync
I want to write a function that will take these bytes, along with a subject name (for the leaf certificate) and will create a x509 certificate (with both public and private keys) that would have the issuer as the root.
Here is what I have sketched so far:
public static X509Certificate2 GenerateCertificateBasedOnIssuer(string subjectName, byte[] issuerByteCert)
{
var issuerCertificate = new X509Certificate2(issuerByteCert);
RSA keyProvider = issuerCertificate.GetRSAPrivateKey();
CertificateRequest certificateRequest = new CertificateRequest($"CN={subjectName}", keyProvider, HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
CryptoApiRandomGenerator randomGenerator = new CryptoApiRandomGenerator();
SecureRandom random = new SecureRandom(randomGenerator);
BigInteger serialNumber = BigIntegers.CreateRandomInRange(BigInteger.One, BigInteger.ValueOf(Int64.MaxValue), random);
var publicOnlyDeviceCertificate = certificateRequest.Create(issuerCertificate, issuerCertificate.NotBefore, issuerCertificate.NotAfter, serialNumber.ToByteArray());
return publicOnlyDeviceCertificate; // oh no ! :(
}
The issue I am having with this solution is that the created certificate only contains a public key.
I found another solution that appears to solve my problem on another Stack Overflow question using BouncyCastle's X509V3CertificateGenerator: Generate a self-signed certificate on the fly
The issue I have with this solution is that I cannot convert my rootCA certificate's private key to an AsymmetricKeyParameter (first parameter of the X509V3CertificateGenerator.Generate method). I tried converting the issuer's key to AsymmetricKeyParameter using this solution: convert PEM encoded RSA public key to AsymmetricKeyParameter, but I got an invalid operation exception.
I was wondering if I was on the right path (as far as understanding goes) and if there is a way to generate a certificate with a private (and public key) based on the code I currently have in place.
UPDATE: I have been able to convert a private key to an AsymmetricKeyParameter by hardcoding the key as follows:
string testKey = #"-----BEGIN PRIVATE KEY-----
<THE KEY>
-----END PRIVATE KEY-----
";
var stringReader = new StringReader(testKey);
var pemReader = new PemReader(stringReader);
var pemObject = pemReader.ReadObject();
var keyParam = ((AsymmetricKeyParameter)pemObject);
Azure keyvault stores certificate in a pfx format. I am thinking of storing the private key as a secret string. I will keep testing with an hardcoded key for now until I get to a working solution.
I am now testing with BouncyCastle and will come back with a working solution if it works!
The key you pass to CertificateRequest is used as the public key in the cert... so you want to pass a new key, not the issuer's key.
Then, once you now have the subject key, you use CopyWithPrivateKey at the end to glue them back together.
public static X509Certificate2 GenerateCertificateBasedOnIssuer(string subjectName, byte[] issuerByteCert)
{
using (var issuerCertificate = new X509Certificate2(issuerByteCert))
using (RSA subjectKey = RSA.Create(2048))
{
CertificateRequest certificateRequest = new CertificateRequest($"CN={subjectName}", subjectKey, HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
CryptoApiRandomGenerator randomGenerator = new CryptoApiRandomGenerator();
SecureRandom random = new SecureRandom(randomGenerator);
BigInteger serialNumber = BigIntegers.CreateRandomInRange(BigInteger.One, BigInteger.ValueOf(Int64.MaxValue), random);
var publicOnlyDeviceCertificate = certificateRequest.Create(issuerCertificate, issuerCertificate.NotBefore, issuerCertificate.NotAfter, serialNumber.ToByteArray());
using (publicOnlyDeviceCertificate)
{
return publicOnlyDeviceCertificate.CopyWithPrivateKey(subjectKey);
}
}

How to get private key as Byte[] of a password protected pfx fetched from azure key vault

I am fetching my certificate from Azure Key Vault using GetSecretAsync() method and then I am expecting to get the byte[] of the private key and the certificate eventually.
I have my application in .netcore3.1
This is how my code looks like :
var certWithPrivateKey = Client.GetSecretAsync(ConfigurationSettings.AppSettings["AKVEndpoint"], ConfigurationSettings.AppSettings["CertName"]).GetAwaiter().GetResult();
var privateKeyBytes = Convert.FromBase64String(certWithPrivateKey.Value);
X509Certificate2 x509Certificate = new X509Certificate2(privateKeyBytes);
var privateKey = x509Certificate.GetRSAPrivateKey() as RSA;
I get a valid privateKey of type RSACng, but any operation (tried ExportRSAPrivateKey()) on that throws an error of "'privateKey.ExportRSAPrivateKey()' threw an exception of type 'Internal.Cryptography.CryptoThrowHelper.WindowsCryptographicException'" and "The requested operation is not supported."
I am not sure how to proceed next here to get the byte[] of the private key and certificate.
Since you do actually seem to need to export: Your current code doesn't load the private key as exportable, so it can't be exported. The fix is to assert exportability:
X509Certificate2 x509Certificate =
new X509Certificate2(privateKeyBytes, "", X509KeyStorageFlags.Exportable);
If that's not enough, then you're encountering the difference between CAPI exportability and CNG exportability (Windows older, and newer, crypto libraries). If the private key from a PFX/PKCS#12 gets loaded into CNG it's only "encrypted exportable", but ExportParameters is plaintext-export.
There's a workaround, though... export it encrypted, then import that somewhere else with a more flexible export policy, then export again.
This snippet uses the .NET Core 3.0+ ExportPkcs8PrivateKey() method, since that's the format you want your data in, and new .NET 5 PemEncoding class to simplify turning the DER encoded output into PEM+DER output. If your exporter is on .NET Framework, this is a more complex problem. For .NET Standard 2.0 there's not really a clean solution (reflect call the methods for .NET Core/.NET 5, otherwise use the Windows-specific version for .NET Framework?).
byte[] pkcs8PrivateKey;
using (RSA privateKey = x509Certificate.GetRSAPrivateKey())
{
pkcs8PrivateKey = ExportPrivateKey(privateKey);
}
File.WriteAllText(
"tls.cer",
new string(PemEncoding.Write("CERTIFICATE", x509Certificate.RawData));
File.WriteAllText(
"tls.key",
new string(PemEncoding.Write("PRIVATE KEY", pkcs8PrivateKey));
...
private static byte[] ExportPrivateKey(RSA privateKey)
{
try
{
// If it's plaintext exportable, just do the easy thing.
return privateKey.ExportPkcs8PrivateKey();
}
catch (CryptographicException)
{
}
using (RSA exportRewriter = RSA.Create())
{
// Only one KDF iteration is being used here since it's immediately being
// imported again. Use more if you're actually exporting encrypted keys.
exportRewriter.ImportEncryptedPkcs8PrivateKey(
"password",
privateKey.ExportEncryptedPkcs8PrivateKey(
"password",
new PbeParameters(
PbeEncryptionAlgorithm.Aes128Cbc,
HashAlgorithmName.SHA256,
1)),
out _);
return exportRewriter.ExportPkcs8PrivateKey();
}
}

SignedData giving Invalid algorithm specified.exception

I tried to sign and valid my signed data using myCert.pfx file private and public key. But while signing the data I am getting " Invalid algorithm specified." exception
.Net framework we are using is 4.5 and the code is as below
public static void CallMainMethod()
{
string str = "Sign and verify the data";
X509Certificate2 certificate = LoadPrivateKey();
byte[] hashBytes = GetDataHash(str);
byte[] signature = GetDigitalSignature(hashBytes);
}
private static X509Certificate2 LoadPrivateKey()
{
return new X509Certificate2(#"d:\Keys\myCert.pfx", "Pass##123");
}
private static byte[] GetDataHash(string sampleData)
{
//choose any hash algorithm
SHA256Managed managedHash = new SHA256Managed();
return managedHash.ComputeHash(Encoding.Unicode.GetBytes(sampleData));
}
private static byte[] GetDigitalSignature(byte[] data)
{
X509Certificate2 certificate = LoadPrivateKey();
RSACryptoServiceProvider provider = (RSACryptoServiceProvider)certificate.PrivateKey;
return provider.SignHash(data, "SHA256");
}
I believe that legacy RSACryptoServiceProvider doesn't support SHA2 algorithms. Rewrite last method as follows:
private static byte[] GetDigitalSignature(byte[] data)
{
X509Certificate2 certificate = LoadPrivateKey();
RSA provider = certificate.GetRSAPrivateKey();
return provider.SignHash(data, "SHA256", RSASignaturePadding.Pkcs1);
}
This style is preferred as of .NET Framework 4.6 and above (#bartonjs, please correct me if I'm wrong in regards to .NET version).
While #Crypt32 gave the best answer (upgrade to .NET Framework 4.6 or better and use GetRSAPrivateKey() and the better version of SignData -- it's been out over 4 years at this point), if you really need to stay on net45, your easiest answer is to open the PFX with X509KeyStorageFlags.Exportable and copy the key into a better provider.
return new X509Certificate2(#"d:\Keys\myCert.pfx", "Pass##123", X509KeyStorageFlags.Exportable);
...
RSA legacyProv = (RSA)certificate.PrivateKey;
RSACryptoServiceProvider provider = new RSACryptoServiceProvider();
provider.ImportParameters(legacyProv.ExportParameters(true));
return provider.SignHash(data, "SHA256");

Certificate signing produces different signature when on server

I am trying to sign some data using a certificate private key. The issue I'm finding is that the signature is different depending on if I'm executing it locally or on a server.
I'm using the following code as a test, running under the same user both locally and on the server:
using System;
using System.Security.Cryptography;
using System.Security.Cryptography.X509Certificates;
using System.Text;
namespace TestSignature
{
class Program
{
static void Main(string[] args)
{
var key = SigningKeyFromCertificate(StoreName.My, StoreLocation.LocalMachine, X509FindType.FindByThumbprint, "thumbprint");
var alg = CryptoConfig.MapNameToOID("SHA256");
var data = Encoding.UTF8.GetBytes("test");
var sig = key.SignData(data, alg);
Console.WriteLine(Convert.ToBase64String(sig));
}
private static RSACryptoServiceProvider SigningKeyFromCertificate(StoreName storeName, StoreLocation storeLocation, X509FindType findType, string findValue)
{
X509Store store = new X509Store(storeName, storeLocation);
store.Open(OpenFlags.ReadOnly);
var certs = store.Certificates.Find(findType, findValue, false);
if (certs?.Count > 0)
{
var cert = certs[0];
if (cert.HasPrivateKey)
{
// Force use of Enhanced RSA and AES Cryptographic Provider to allow use of SHA256.
var key = cert.PrivateKey as RSACryptoServiceProvider;
var enhanced = new RSACryptoServiceProvider().CspKeyContainerInfo;
var parameters = new CspParameters(enhanced.ProviderType, enhanced.ProviderName, key.CspKeyContainerInfo.UniqueKeyContainerName);
return new RSACryptoServiceProvider(parameters);
}
else
{
throw new Exception($"No private key access to cert '{findValue}.'");
}
}
else
{
throw new Exception($"Cert '{findValue}' not found!");
}
}
}
}
Locally, I get the following signature:
YUjspKhLl7v3u5VQkh1PfHytMTpEtbAftxOA5v4lmph3B4ssVlZp7KedO5NW9K5L222Kz9Ik9/55NirS0cNCz/cDhEFRtD4daJ9qLRuM8oD5hCj6Jt9Vc6WeS2he+Cqfoylnv4V9plfi1xw8y7EyAf4C77BGkXOdyP5wyz2Xubo=
On the server, I get this one instead:
u1RUDwbBlUpOgNNkAjXhYEWfVLGpMOa0vEfm6PUkB4y9PYBk1lDmCAp+488ta+ipbTdSDLM9btRqsQfZ7JlIn/dIBw9t5K63Y7dcDcc7gDLE1+umLJ7EincMcdwUv3YQ0zCvzc9RrP0jKJManV1ptQNnODpMktGYAq1KmJb9aTY=
Any idea of what could be different? I would think, with the same certificate, the same code, and the same data, the signature should be the same.
(The example is written in C# 4.5.2.)
You have some code to reopen the CAPI key handle under PROV_RSA_AES:
// Force use of Enhanced RSA and AES Cryptographic Provider to allow use of SHA256.
var key = cert.PrivateKey as RSACryptoServiceProvider;
var enhanced = new RSACryptoServiceProvider().CspKeyContainerInfo;
var parameters = new CspParameters(
enhanced.ProviderType,
enhanced.ProviderName,
key.CspKeyContainerInfo.UniqueKeyContainerName);
return new RSACryptoServiceProvider(parameters);
But key.CspKeyContainerInfo.UniqueKeyContainerName isn't the name of the key (it's the name of the file on disk where the key lives), so you're opening a brand new key (you're also generating a new ephemeral key just to ask what the default provider is). Since it's a named key it persists, and subsequent application executions resolve to the same key -- but a different "same" key on each computer.
A more stable way of reopening the key is
var cspParameters = new CspParameters
{
KeyContainerName = foo.CspKeyContainerInfo.KeyContainerName,
Flags = CspProviderFlags.UseExistingKey,
};
(since the provider type and name aren't specified they will use the defaults, and by saying UseExistingKey you get an exception if you reference a key that doesn't exist).
That said, the easiest fix is to stop using RSACryptoServiceProvider. .NET Framework 4.6 (and .NET Core 1.0) have a(n extension) method on X509Certificate2, GetRSAPrivateKey(), it returns an RSA (which you should avoid casting) which is usually RSACng (on Windows), but may be RSACryptoServiceProvider if only CAPI had a driver required for a HSM, and may be some other RSA in the future. Since RSACng handles SHA-2 better there's almost never a need to "reopen" the return object (even if it's RSACryptoServiceProvider, and even if the type isn't PROV_RSA_AES (24), that doesn't mean the HSM will fail to do SHA-2).

Creating of ECDSA certficate signed by other ECDSA certificate

I need to create "Client" ECDSA certificate signed by "Root" certificate (self-signed, ECDSA).
"Root" certificate was created as described in Translating Elliptic Curve parameters (BC to MS).
To create "Client" certificate (signed by "Root") slightly modified algorithm can be used.
The difference is that the private key (used to sign public key from keypair generated for "Client" certificate) must be supplied from the "outside" - it is a private-key of "Root" certificate.
But this is the issue. I cannot find a way how to get and translate private key to type Org.BouncyCastle.Crypto.Parameters.ECPrivateKeyParameters that could be passed to signature-factory.
// 1. get private-key of "Root" certificate from existing certificate:
byte[] msRootCertData = File.ReadAllBytes(#"c:\root_ecdsa_cert.pfx");
X509Certificate2 msRootCert = new X509Certificate2(msRootCertData);
ECDsaCng msRootPrivateKey = msRootCert.GetECDsaPrivateKey() as ECDsaCng;
ECParameters msRootPrivateKeyParameters = msRootPrivateKey.ExportParameters(true);
// here comes the issue:
ECPrivateKeyParameters bcRootPrivateKeysParameters = TranslateMSKeysToBouncy(msRootPrivateKeyParameters);
// 2. generate "Client" key-pair:
AsymmetricCipherKeyPair bcClientKeyPair = bcKeyGen.GenerateKeyPair();
ECPrivateKeyParameters bcClientPrivKey = (ECPrivateKeyParameters)bcClientKeyPair.Private;
ECPrivateKeyParameters bcClientPublKey = (ECPublicKeyParameters)bcClientKeyPair.Public;
// 3. create X509 certificate:
X509V3CertificateGenerator bcCertGen = new X509V3CertificateGenerator();
bcCertGen.SetPublicKey(bcClientPublKey);
// .. set subject, validity period etc
ISignatureFactory sigFac = new Asn1SignatureFactory("Sha256WithECDSA", bcRootPrivateKeysParameters);
Org.BouncyCastle.X509.X509Certificate bcClientX509Cert = bcCertGen.Generate(sigFac);
byte[] x509CertEncoded = bcClientX509Cert.GetEncoded();
// the rest is the same as in the mentioned example.
Any hints?
Or is there other way? (for example: passing instance of X509Certificate2 directly to BouncyCastle library (avoid to translate private-keys to Cng), or generating "Client" certificate without BouncyCastle)
Thanks.
If you can take a dependency on .NET Framework 4.7.2 (or .NET Core 2.0) you can do it without BouncyCastle, via the new CertificateRequest class:
X509Certificate2 publicPrivate;
using (ECDsa clientPrivateKey = ECDsa.Create())
{
var request = new CertificateRequest(
"CN=Et. Cetera",
clientPrivateKey,
HashAlgorithmName.SHA256);
// Assuming this isn't another CA cert:
request.CertificateExtensions.Add(
new X509BasicConstraintsExtension(false, false, 0, false));
// other CertificateExtensions as you desire.
// Assign, or derive, a serial number.
// RFC 3280 recommends that it have no more than 20 bytes encoded.
// 12 random bytes seems long enough.
byte[] serial = new byte[12];
using (RandomNumberGenerator rng = RandomNumberGenerator.Create())
{
rng.GetBytes(serial);
}
DateTimeOffset notBefore = DateTimeOffset.UtcNow;
DateTimeOffset notAfter = notBefore.AddMonths(15);
using (X509Certificate2 publicOnly = request.Create(
msRootCert,
notBefore,
notAfter,
serial))
{
publicPrivate = publicOnly.CopyWithPrivateKey(clientPrivateKey);
}
}
// The original key object was disposed,
// but publicPrivate.GetECDsaPrivateKey() still works.
If you want to add publicPrivate to an X509Store you need to either 1) export it to a PFX and re-import it, or 2) change the key creation to use a named key. Otherwise, only the public portion will be saved (on Windows).

Categories

Resources