Solving modulo in c# - c#

I'm having troubles solving modulo in c#. The example below
7^-1 modulo 26
when on Wolfram Alpha returns correct 15. In c# when I tried direct:
1/7 % 26
it returns unwanted 0.142857142857143 instead of desired 15.
But i'm not a master mathematician, so i'm probably missing something vital.

Your are looking for modular inversion: in case of
7**-1 modulo 26 = x
or
1 / 7 modulo 26 = x
you actually want to find out an x such that
(x * 7) modulo 26 = 1
In our case x == 15 since
15 * 7 == 105 == 26 * 4 + 1
For small modulo values (like 26) you can find the answer (15) with a help of naive for loop:
int modulo = 26;
int div = 7;
int result = 0;
for (int i = 1; i < modulo; ++i)
if ((i * div) % modulo == 1) {
result = i;
break;
}
Console.Write(result);
In general case, you can obtain the result with a help of Extended Euclid Algorithm. Often, when working with modulo arithmetics we face huge numbers, that's why let me show the code for BigInteger; if it's not your case you can turn BigInteger to good old int.
Code:
using System.Numerics;
...
private static (BigInteger LeftFactor,
BigInteger RightFactor,
BigInteger Gcd) Egcd(this BigInteger left, BigInteger right) {
BigInteger leftFactor = 0;
BigInteger rightFactor = 1;
BigInteger u = 1;
BigInteger v = 0;
BigInteger gcd = 0;
while (left != 0) {
BigInteger q = right / left;
BigInteger r = right % left;
BigInteger m = leftFactor - u * q;
BigInteger n = rightFactor - v * q;
right = left;
left = r;
leftFactor = u;
rightFactor = v;
u = m;
v = n;
gcd = right;
}
return (LeftFactor: leftFactor,
RightFactor: rightFactor,
Gcd: gcd);
}
The inversion itself will be
private static BigInteger ModInversion(BigInteger value, BigInteger modulo) {
var egcd = Egcd(value, modulo);
if (egcd.Gcd != 1)
throw new ArgumentException("Invalid modulo", nameof(modulo));
BigInteger result = egcd.LeftFactor;
if (result < 0)
result += modulo;
return result % modulo;
}
Demo:
using System.Numerics;
...
BigInteger result = ModInversion(7, 26);
Console.Write(result);
Outcome:
15

Related

How to perform modinverse in C#

Is there a way to perform modinverse in C#? My data is in BigInteger format.
P : E61E05F338BC965421720C4128C33FDFC7BC3CE637A3BC92A114E79AC380C90387988639224FE5C578B601E505C85AF85EB86DAEC06413EA419187D1D2396C063CDA7DC805E47906E731F4A0B2C53521CAC812BE68044DBFA8E3DE4BE1E0D94F2E0CC9FC126D21E5AF7038FA0942D12700AFC4DE2D00FB3A1FA6A224D0FA0D7B
dP : 00000000000000000000000000010001
dP^-1 mod P
I've tried BigInteger.ModPow(dP, -1, P). But I cannot use negative exponent.
You have to implement Extended Euclidian Algorithm first:
public static BigInteger Egcd(BigInteger left,
BigInteger right,
out BigInteger leftFactor,
out BigInteger rightFactor) {
leftFactor = 0;
rightFactor = 1;
BigInteger u = 1;
BigInteger v = 0;
BigInteger gcd = 0;
while (left != 0) {
BigInteger q = right / left;
BigInteger r = right % left;
BigInteger m = leftFactor - u * q;
BigInteger n = rightFactor - v * q;
right = left;
left = r;
leftFactor = u;
rightFactor = v;
u = m;
v = n;
gcd = right;
}
return gcd;
}
And then
public static BigInteger ModInverse(BigInteger value, BigInteger modulo) {
BigInteger x, y;
if (1 != Egcd(value, modulo, out x, out y))
throw new ArgumentException("Invalid modulo", nameof(modulo));
if (x < 0)
x += modulo;
return x % modulo;
}

I am trying to find a value of multiple factorials . both values will be divided by like 100!/98! =?

static void Main(string[] args)
{
Console.WriteLine("Enter your number: ");
int number= Convert.ToInt32(Console.ReadLine());
int number2 = Convert.ToInt32(Console.ReadLine());
double factorial = Factorial(number,number2);
Console.WriteLine("Factorial of " + number +" / "+ number2 + " = " + factorial );
Console.ReadKey();
}
//Factorial function added
public static double Factorial(int number, int number2)
{
if (number == 1 && number2 ==1 )
{
return 1;
}
double factorial = 1;
double factorial1 = 1;
double factorial2 = 1;
for (int i = number, j = number2; i >= 1 && j >= 1; i--, j--)
{
factorial1 = (factorial * i);
factorial2 = (factorial * j);
factorial = factorial1 / factorial2;
}
return factorial;
}
Your attempted solution is simply so overcomplicated, I wouldn't know where to begin. This usually happens when you don't stop to think about how you'd resolve this problem by hand:
So, the question is, whats 5!/3!? Ok, lets write it out:
(5 * 4 * 3 * 2 * 1) / (3 * 2 * 1)
Wow, that looks like it can be simplified simply to 5 * 4.
The key insight here is that m! % n! = 0 if n is less or equal to m. In other words, m! is always divisible by n! because there is always an integer r such that r * n! = m!, and you don't need to evaluate m! or n! to figure out what r is, you simple do:
r = m * (m - 1) * (m - 2) * ... * (n + 1); // m >= n
If n > m, r is zero unless you are looking for a real number solution in which case you would simply evaluate r as n! / m! and then return 1.0 / r because m! / n! = 1 / (n! / m!).
How to evaluate r?
public static long DivideFactorials(int m, int n)
{
if (n > m)
return 0;
var r = 1L;
for (var k = m; k > n; k--)
r *= k;
return r;
}
Or the real number solution:
public static double DivideFactorials(int m, int n)
{
if (n > m)
return 1 / DivideFactorials(n, m);
var r = 1.0;
for (var k = m; k > n; k--)
r *= k;
return r;
}
If I had to save your try:
public static double Factorial(int number, int number2)
{
if (number == 1 && number2 == 1)
{
return 1;
}
double facNum = 1;
double facNum2 = 1;
// counting up is easier, we start at 2 as we initialized to 1
// we count up to the max of both numbers
for (int i = 2; i <= Math.Max(number, number2); i++)
{
if (i <= number)
facNum *= i; // we mult this until we reached number
if (i <= number2)
facNum2 *= i; // we mult this until we reach number2
}
// return the devision of both - this wont handle number < number2 well!
return facNum / facNum2; // do this outside the loop
}
If I had to create a solution:
Factorial division of integers has 3 outcomes (I can think of):
N! / O! with N == O:
let N=3, O=3
N! = 1*2*3
O! = 1*2*3
N! / O! = 1*2*3/(1*2*3) == 1
N! / O! with N > O:
let N=5, O=3
N! = 1*2*3*4*5
O! = 1*2*3
N! / O! == 1*2*3*4*5/(1*2*3) == 4*5 == 20
N! / O! with N < O:
let N=3, O=5
N! = 1*2*3
O! = 1*2*3*4*5
N! / O! == 1*2*3/(1*2*3*4*5) == 1/(4*5) == 1/20
Based on this I would model the problem like that:
using System;
using System.Collections.Generic;
using System.Linq;
internal class Program
{
public static decimal CalcFactDivision(int n1, int n2)
{
// calclulate the division of a factorial by another, num1 must be >= num2
IEnumerable<int> getRemaining(int num1, int num2)
{
// special cases: div by 0 and 0 div something
if (num2 == 0)
num2 = 1; // 0! == 1
else if (num1 == 0)
return new[] { 0 };
// get all numbers that make up the factorial in one step
// I can guarantee that num1 will always be bigger then num2
// by how I call this
return Enumerable.Range(num2 + 1, num1 - num2);
}
// calculate the product of an ienumerable of ints
int product(IEnumerable<int> nums) => nums.Aggregate((a, b) => a * b);
if (n1 == n2)
return 1;
else if (n1 > n2) // use product(...) to calc
return product(getRemaining(n1, n2));
else // flip them and use 1/product(...) to calc
return (decimal)1 / product(getRemaining(n2, n1));
}
static void Main(string[] args)
{
foreach (var a in Enumerable.Range(1, 10))
Console.WriteLine($"{a}! / {10 - a}! = {CalcFactDivision(a, 10 - a)} ");
Console.ReadLine();
}
}
Output:
1! / 9! = 0,0000027557319223985890652557
2! / 8! = 0,0000496031746031746031746032
3! / 7! = 0,0011904761904761904761904762
4! / 6! = 0,0333333333333333333333333333
5! / 5! = 1
6! / 4! = 30
7! / 3! = 840
8! / 2! = 20160
9! / 1! = 362880
10! / 0! = 3628800

Average of 3 long integers

I have 3 very large signed integers.
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
I want to calculate their truncated average. Expected average value is long.MaxValue - 1, which is 9223372036854775806.
It is impossible to calculate it as:
long avg = (x + y + z) / 3; // 3074457345618258600
Note: I read all those questions about average of 2 numbers, but I don't see how that technique can be applied to average of 3 numbers.
It would be very easy with the usage of BigInteger, but let's assume I cannot use it.
BigInteger bx = new BigInteger(x);
BigInteger by = new BigInteger(y);
BigInteger bz = new BigInteger(z);
BigInteger bavg = (bx + by + bz) / 3; // 9223372036854775806
If I convert to double, then, of course, I lose precision:
double dx = x;
double dy = y;
double dz = z;
double davg = (dx + dy + dz) / 3; // 9223372036854780000
If I convert to decimal, it works, but also let's assume that I cannot use it.
decimal mx = x;
decimal my = y;
decimal mz = z;
decimal mavg = (mx + my + mz) / 3; // 9223372036854775806
Question: Is there a way to calculate the truncated average of 3 very large integers only with the usage of long type? Don't consider that question as C#-specific, just it is easier for me to provide samples in C#.
This code will work, but isn't that pretty.
It first divides all three values (it floors the values, so you 'lose' the remainder), and then divides the remainder:
long n = x / 3
+ y / 3
+ z / 3
+ ( x % 3
+ y % 3
+ z % 3
) / 3
Note that the above sample does not always work properly when having one or more negative values.
As discussed with Ulugbek, since the number of comments are exploding below, here is the current BEST solution for both positive and negative values.
Thanks to answers and comments of Ulugbek Umirov, James S, KevinZ, Marc van Leeuwen, gnasher729 this is the current solution:
static long CalculateAverage(long x, long y, long z)
{
return (x % 3 + y % 3 + z % 3 + 6) / 3 - 2
+ x / 3 + y / 3 + z / 3;
}
static long CalculateAverage(params long[] arr)
{
int count = arr.Length;
return (arr.Sum(n => n % count) + count * (count - 1)) / count - (count - 1)
+ arr.Sum(n => n / count);
}
NB - Patrick has already given a great answer. Expanding on this you could do a generic version for any number of integers like so:
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
long[] arr = { x, y, z };
var avg = arr.Select(i => i / arr.Length).Sum()
+ arr.Select(i => i % arr.Length).Sum() / arr.Length;
Patrick Hofman has posted a great solution. But if needed it can still be implemented in several other ways. Using the algorithm here I have another solution. If implemented carefully it may be faster than the multiple divisions in systems with slow hardware divisors. It can be further optimized by using divide by constants technique from hacker's delight
public class int128_t {
private int H;
private long L;
public int128_t(int h, long l)
{
H = h;
L = l;
}
public int128_t add(int128_t a)
{
int128_t s;
s.L = L + a.L;
s.H = H + a.H + (s.L < a.L);
return b;
}
private int128_t rshift2() // right shift 2
{
int128_t r;
r.H = H >> 2;
r.L = (L >> 2) | ((H & 0x03) << 62);
return r;
}
public int128_t divideby3()
{
int128_t sum = {0, 0}, num = new int128_t(H, L);
while (num.H || num.L > 3)
{
int128_t n_sar2 = num.rshift2();
sum = add(n_sar2, sum);
num = add(n_sar2, new int128_t(0, num.L & 3));
}
if (num.H == 0 && num.L == 3)
{
// sum = add(sum, 1);
sum.L++;
if (sum.L == 0) sum.H++;
}
return sum;
}
};
int128_t t = new int128_t(0, x);
t = t.add(new int128_t(0, y));
t = t.add(new int128_t(0, z));
t = t.divideby3();
long average = t.L;
In C/C++ on 64-bit platforms it's much easier with __int128
int64_t average = ((__int128)x + y + z)/3;
You can calculate the mean of numbers based on the differences between the numbers rather than using the sum.
Let's say x is the max, y is the median, z is the min (as you have). We will call them max, median and min.
Conditional checker added as per #UlugbekUmirov's comment:
long tmp = median + ((min - median) / 2); //Average of min 2 values
if (median > 0) tmp = median + ((max - median) / 2); //Average of max 2 values
long mean;
if (min > 0) {
mean = min + ((tmp - min) * (2.0 / 3)); //Average of all 3 values
} else if (median > 0) {
mean = min;
while (mean != tmp) {
mean += 2;
tmp--;
}
} else if (max > 0) {
mean = max;
while (mean != tmp) {
mean--;
tmp += 2;
}
} else {
mean = max + ((tmp - max) * (2.0 / 3));
}
Patching Patrick Hofman's solution with supercat's correction, I give you the following:
static Int64 Avg3 ( Int64 x, Int64 y, Int64 z )
{
UInt64 flag = 1ul << 63;
UInt64 x_ = flag ^ (UInt64) x;
UInt64 y_ = flag ^ (UInt64) y;
UInt64 z_ = flag ^ (UInt64) z;
UInt64 quotient = x_ / 3ul + y_ / 3ul + z_ / 3ul
+ ( x_ % 3ul + y_ % 3ul + z_ % 3ul ) / 3ul;
return (Int64) (quotient ^ flag);
}
And the N element case:
static Int64 AvgN ( params Int64 [ ] args )
{
UInt64 length = (UInt64) args.Length;
UInt64 flag = 1ul << 63;
UInt64 quotient_sum = 0;
UInt64 remainder_sum = 0;
foreach ( Int64 item in args )
{
UInt64 uitem = flag ^ (UInt64) item;
quotient_sum += uitem / length;
remainder_sum += uitem % length;
}
return (Int64) ( flag ^ ( quotient_sum + remainder_sum / length ) );
}
This always gives the floor() of the mean, and eliminates every possible edge case.
Because C uses floored division rather than Euclidian division, it may easier to compute a properly-rounded average of three unsigned values than three signed ones. Simply add 0x8000000000000000UL to each number before taking the unsigned average, subtract it after taking the result, and use an unchecked cast back to Int64 to get a signed average.
To compute the unsigned average, compute the sum of the top 32 bits of the three values. Then compute the sum of the bottom 32 bits of the three values, plus the sum from above, plus one [the plus one is to yield a rounded result]. The average will be 0x55555555 times the first sum, plus one third of the second.
Performance on 32-bit processors might be enhanced by producing three "sum" values each of which is 32 bits long, so that the final result is ((0x55555555UL * sumX)<<32) + 0x55555555UL * sumH + sumL/3; it might possibly be further enhanced by replacing sumL/3 with ((sumL * 0x55555556UL) >> 32), though the latter would depend upon the JIT optimizer [it might know how to replace a division by 3 with a multiply, and its code might actually be more efficient than an explicit multiply operation].
If you know you have N values, can you just divide each value by N and sum them together?
long GetAverage(long* arrayVals, int n)
{
long avg = 0;
long rem = 0;
for(int i=0; i<n; ++i)
{
avg += arrayVals[i] / n;
rem += arrayVals[i] % n;
}
return avg + (rem / n);
}
You could use the fact that you can write each of the numbers as y = ax + b, where x is a constant. Each a would be y / x (the integer part of that division). Each b would be y % x (the rest/modulo of that division). If you choose this constant in an intelligent way, for example by choosing the square root of the maximum number as a constant, you can get the average of x numbers without having problems with overflow.
The average of an arbitrary list of numbers can be found by finding:
( ( sum( all A's ) / length ) * constant ) +
( ( sum( all A's ) % length ) * constant / length) +
( ( sum( all B's ) / length )
where % denotes modulo and / denotes the 'whole' part of division.
The program would look something like:
class Program
{
static void Main()
{
List<long> list = new List<long>();
list.Add( long.MaxValue );
list.Add( long.MaxValue - 1 );
list.Add( long.MaxValue - 2 );
long sumA = 0, sumB = 0;
long res1, res2, res3;
//You should calculate the following dynamically
long constant = 1753413056;
foreach (long num in list)
{
sumA += num / constant;
sumB += num % constant;
}
res1 = (sumA / list.Count) * constant;
res2 = ((sumA % list.Count) * constant) / list.Count;
res3 = sumB / list.Count;
Console.WriteLine( res1 + res2 + res3 );
}
}
I also tried it and come up with a faster solution (although only by a factor about 3/4). It uses a single division
public static long avg(long a, long b, long c) {
final long quarterSum = (a>>2) + (b>>2) + (c>>2);
final long lowSum = (a&3) + (b&3) + (c&3);
final long twelfth = quarterSum / 3;
final long quarterRemainder = quarterSum - 3*twelfth;
final long adjustment = smallDiv3(lowSum + 4*quarterRemainder);
return 4*twelfth + adjustment;
}
where smallDiv3 is division by 3 using multipliation and working only for small arguments
private static long smallDiv3(long n) {
assert -30 <= n && n <= 30;
// Constants found rather experimentally.
return (64/3*n + 10) >> 6;
}
Here is the whole code including a test and a benchmark, the results are not that impressive.
This function computes the result in two divisions. It should generalize nicely to other divisors and word sizes.
It works by computing the double-word addition result, then working out the division.
Int64 average(Int64 a, Int64 b, Int64 c) {
// constants: 0x10000000000000000 div/mod 3
const Int64 hdiv3 = UInt64(-3) / 3 + 1;
const Int64 hmod3 = UInt64(-3) % 3;
// compute the signed double-word addition result in hi:lo
UInt64 lo = a; Int64 hi = a>=0 ? 0 : -1;
lo += b; hi += b>=0 ? lo<b : -(lo>=UInt64(b));
lo += c; hi += c>=0 ? lo<c : -(lo>=UInt64(c));
// divide, do a correction when high/low modulos add up
return hi>=0 ? lo/3 + hi*hdiv3 + (lo%3 + hi*hmod3)/3
: lo/3+1 + hi*hdiv3 + Int64(lo%3-3 + hi*hmod3)/3;
}
Math
(x + y + z) / 3 = x/3 + y/3 + z/3
(a[1] + a[2] + .. + a[k]) / k = a[1]/k + a[2]/k + .. + a[k]/k
Code
long calculateAverage (long a [])
{
double average = 0;
foreach (long x in a)
average += (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
return Convert.ToInt64(Math.Round(average));
}
long calculateAverage_Safe (long a [])
{
double average = 0;
double b = 0;
foreach (long x in a)
{
b = (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
if (b >= (Convert.ToDouble(long.MaxValue)-average))
throw new OverflowException ();
average += b;
}
return Convert.ToInt64(Math.Round(average));
}
Try this:
long n = Array.ConvertAll(new[]{x,y,z},v=>v/3).Sum()
+ (Array.ConvertAll(new[]{x,y,z},v=>v%3).Sum() / 3);

How do I determine if adding 2 numbers will involve regourping / carryover or subracting 2 numbers will involve borrowing?

I need to create a function that will generate 2 random numbers between x and y (e.g. x = 1, y = 20) which when added will not involve regrouping / carryover or which when subracted will not involve borrowing.
For example,
18 + 1 = good
14 + 5 = good
18-7 = good
29 - 8 = good
15 + 6 = bad
6 + 7 = bad
21 - 3 = bad
36 - 8 = bad etc.
I want to create a simple worksheet generator that will generate sample problems using the requirements above.
I guess I could always convert the number to string, get the right most digit for each of the 2 numbers, convert them back to integer, and test if one is greater than the other. Repeat for all the digit. Only thing is, that is so damn ugly (read inefficient). I am sure that there is a better way. Anyone have any suggestions? Thanks
Generate them one digit at a time. e.g
a1 = rand(9)
a2 = rand(9 - a1)
b1 = rand(9)
b2 = rand(9 - b1)
x = b1*10 + a1
y = b2*10 + a2
From the construction you know that x+y will not involve any carry, because a1+a2 <= 9 and b1 + b2 <= 9.
You can do similar for subtraction.
If you want to restrict the overall range to be [1..20] instead of [1..99], just adjust the range for the leftmost digit:
b1 = rand(1)
b2 = rand(1 - b1)
using System;
class Sample {
static void Main() {
var rnd = new Random();
var x = 1;
var y = 20;
var a = rnd.Next(x, y);
var b = rnd.Next(x, y);
var op = '+';
Console.WriteLine("{0} {2} {1} = {3}", a, b, op , isValid(a, b, op)? "good":"bad");
op = '-';
Console.WriteLine("{0} {2} {1} = {3}", a, b, op , isValid(a, b, op)? "good":"bad");
}
static bool isValid(int x, int y, char op){
int a = x % 10;
int b = y % 10;
switch (op){
case '+':
return a + b < 10;
case '-':
return x >= y && a - b >= 0;
default:
throw new Exception(String.Format("unknown operator '{0}'", op));
}
}
}
Breaking up the numbers into digits is indeed exactly what you need to do. It does not matter whether you do that by arithmetic manipulation (division and modulus by 10) or by converting the numbers into strings, but fundamentally your question is precisely about the individual digits of the numbers.
For the subtraction x − y, no borrows are required if and only if none of the digits in y are greater than the corresponding digit in x.
For the addition x + y, there will be no carries if and only if the sum of each pair of corresponding digits is less than 10.
Here's some pseudo-C# for checking these conditions:
bool CanSubtractWithoutBorrow (uint x, uint y) {
while (y > 0) {
if ((x % 10) < (y % 10)) return False;
x /= 10; y /= 10;
}
return True;
}
bool CanAddWithoutCarry (uint x, uint y) {
while (x > 0 && y > 0) {
if ((x % 10) + (y % 10) >= 10) return False;
x /= 10; y /= 10;
}
return True;
}
You need to look at each pair digit in turn, and see if adding or subtracting them involves carries.
You can get the rightmost digit by taking the value modulo 10, x%10, and you can erase the right most digit by dividing by 10.
No string conversions are necessary.

C# ModInverse Function

Is there a built in function that would allow me to calculate the modular inverse of a(mod n)?
e.g. 19^-1 = 11 (mod 30), in this case the 19^-1 == -11==19;
Since .Net 4.0+ implements BigInteger with a special modular arithmetics function ModPow (which produces “X power Y modulo Z”), you don't need a third-party library to emulate ModInverse. If n is a prime, all you need to do is to compute:
a_inverse = BigInteger.ModPow(a, n - 2, n)
For more details, look in Wikipedia: Modular multiplicative inverse, section Using Euler's theorem, the special case “when m is a prime”. By the way, there is a more recent SO topic on this: 1/BigInteger in c#, with the same approach suggested by CodesInChaos.
int modInverse(int a, int n)
{
int i = n, v = 0, d = 1;
while (a>0) {
int t = i/a, x = a;
a = i % x;
i = x;
x = d;
d = v - t*x;
v = x;
}
v %= n;
if (v<0) v = (v+n)%n;
return v;
}
The BouncyCastle Crypto library has a BigInteger implementation that has most of the modular arithmetic functions. It's in the Org.BouncyCastle.Math namespace.
Here is a slightly more polished version of Samuel Allan's algorithm. The TryModInverse method returns a bool value, that indicates whether a modular multiplicative inverse exists for this number and modulo.
public static bool TryModInverse(int number, int modulo, out int result)
{
if (number < 1) throw new ArgumentOutOfRangeException(nameof(number));
if (modulo < 2) throw new ArgumentOutOfRangeException(nameof(modulo));
int n = number;
int m = modulo, v = 0, d = 1;
while (n > 0)
{
int t = m / n, x = n;
n = m % x;
m = x;
x = d;
d = checked(v - t * x); // Just in case
v = x;
}
result = v % modulo;
if (result < 0) result += modulo;
if ((long)number * result % modulo == 1L) return true;
result = default;
return false;
}
There is no library for getting inverse mod, but the following code can be used to get it.
// Given a and b->ax+by=d
long[] u = { a, 1, 0 };
long[] v = { b, 0, 1 };
long[] w = { 0, 0, 0 };
long temp = 0;
while (v[0] > 0)
{
double t = (u[0] / v[0]);
for (int i = 0; i < 3; i++)
{
w[i] = u[i] - ((int)(Math.Floor(t)) * v[i]);
u[i] = v[i];
v[i] = w[i];
}
}
// u[0] is gcd while u[1] gives x and u[2] gives y.
// if u[1] gives the inverse mod value and if it is negative then the following gives the first positive value
if (u[1] < 0)
{
while (u[1] < 0)
{
temp = u[1] + b;
u[1] = temp;
}
}

Categories

Resources