I'm trying to containerize a .net framework console application for testing and learning.
The application works just fine outside the container.
However, I'm getting this error for every Console.Clear() call:
Unhandled Exception: System.IO.IOException: The handle is invalid.
at System.IO.__Error.WinIOError(Int32 errorCode, String maybeFullPath)
at System.Console.GetBufferInfo(Boolean throwOnNoConsole, Boolean& succeeded)
at System.Console.Clear()
at project.Program.Main(String[] args) in C:\Users\project\Program.cs:line xxx
I can "sort" this out by encasing the Console.Clear() lines in try-catch, but that would be a mess and won't really solve the issue, just hide it under the carpet.
I want to understand why is this happening and how to solve it.
For propietary reasons I can't post the entire solution here.
This is the dockerfile i'm using:
FROM mcr.microsoft.com/windows/servercore:ltsc2019
ADD "release" "c:/release"
CMD powershell "C:/release/project.exe"
EXPOSE 80 443
I suspect this is because a console is not well handled by a container, but why exactly is the Clear() method of Console falling and not everything else?
Why does the container lacks the handler for that particular method? Is it because it's windows core?
You are getting an error because System.Console.Clear (along with other methods that attempt to control/query the console such as System.Console.[Get|Set]CursorPosition) requires a console/TTY but none is attached to the program.
To run your code as-is, you should be able to use the --tty option to docker run to allocate a pseudo-TTY, e.g. docker run --tty <image>.
To modify your code to not require this, you'd probably want to create your own wrapper for System.Console.Clear that wraps it in a try-catch:
void ClearConsole()
{
try {
System.Console.Clear();
}
catch (System.IO.IOException) {
// do nothing
}
}
If only targeting Windows, you can alternatively do a P/Invoke call to GetConsoleWindow to check whether a console exists before calling System.Console.Clear:
class Program
{
[System.Runtime.InteropServices.DllImport("kernel32.dll")]
static extern System.IntPtr GetConsoleWindow();
static void ClearConsole()
{
if (GetConsoleWindow() != System.IntPtr.Zero)
{
System.Console.Clear();
}
}
}
Related
When I create a new project, I get a strange behavior for unhandled exceptions. This is how I can reproduce the problem:
1) create a new Windows Forms Application (C#, .NET Framework 4, VS2010)
2) add the following code to the Form1_Load handler:
int vara = 5, varb = 0;
int varc = vara / varb;
int vard = 7;
I would expect that VS breaks and shows an unhandled exception message at the second line. However, what happens is that the third line is just skipped without any message and the application keeps running.
I don't have this problem with my existing C# projects. So I guess that my new projects are created with some strange default settings.
Does anyone have an idea what's wrong with my project???
I tried checking the boxes in Debug->Exceptions. But then executions breaks even if I handle the exception in a try-catch block; which is also not what I want. If I remember correctly, there was a column called "unhandled exceptions" or something like this in this dialog box, which would do excatly what I want. But in my projects there is only one column ("Thrown").
This is a nasty problem induced by the wow64 emulation layer that allows 32-bit code to run on the 64-bit version of Windows 7. It swallows exceptions in the code that runs in response to a notification generated by the 64-bit window manager, like the Load event. Preventing the debugger from seeing it and stepping in. This problem is hard to fix, the Windows and DevDiv groups at Microsoft are pointing fingers back and forth. DevDiv can't do anything about it, Windows thinks it is the correct and documented behavior, mysterious as that sounds.
It is certainly documented but just about nobody understands the consequences or thinks it is reasonable behavior. Especially not when the window procedure is hidden from view of course, like it is in any project that uses wrapper classes to hide the window plumbing. Like any Winforms, WPF or MFC app. Underlying issue is Microsoft could not figure out how to flow exceptions from 32-bit code back to the 64-bit code that triggered the notification back to 32-bit code that tries to handle or debug the exception.
It is only a problem with a debugger attached, your code will bomb as usual without one.
Project > Properties > Build tab > Platform target = AnyCPU and untick Prefer 32-bit. Your app will now run as a 64-bit process, eliminating the wow64 failure mode. Some consequences, it disables Edit + Continue for VS versions prior to VS2013 and might not always be possible when you have a dependency on 32-bit code.
Other possible workarounds:
Debug > Exceptions > tick the Thrown box for CLR exceptions to force the debugger to stop at the line of code that throws the exception.
Write try/catch in the Load event handler and failfast in the catch block.
Use Application.SetUnhandledExceptionMode(UnhandledExceptionMode.CatchException) in the Main() method so that the exception trap in the message loop isn't disabled in debug mode. This however makes all unhandled exceptions hard to debug, the ThreadException event is pretty useless.
Consider if your code really belongs in the Load event handler. It is very rare to need it, it is however very popular in VB.NET and a swan song because it is the default event and a double-click trivially adds the event handler. You only ever really need Load when you are interested in the actual window size after user preferences and autoscaling is applied. Everything else belongs in the constructor.
Update to Windows 8 or later, they have this wow64 problem solved.
In my experience, I only see this issue when I'm running with a debugger attached. The application behaves the same when run standalone: the exception is not swallowed.
With the introduction of KB976038, you can make this work as you'd expect again. I never installed the hotfix, so I'm assuming it came as part of Win7 SP1.
This was mentioned in this post:
The case of the disappearing OnLoad exception – user-mode callback exceptions in x64
Here's some code that will enable the hotfix:
public static class Kernel32
{
public const uint PROCESS_CALLBACK_FILTER_ENABLED = 0x1;
[DllImport("Kernel32.dll")]
public static extern bool SetProcessUserModeExceptionPolicy(UInt32 dwFlags);
[DllImport("Kernel32.dll")]
public static extern bool GetProcessUserModeExceptionPolicy(out UInt32 lpFlags);
public static void DisableUMCallbackFilter() {
uint flags;
GetProcessUserModeExceptionPolicy(out flags);
flags &= ~PROCESS_CALLBACK_FILTER_ENABLED;
SetProcessUserModeExceptionPolicy(flags);
}
}
Call it at the beginning of your application:
[STAThread]
static void Main()
{
Kernel32.DisableUMCallbackFilter();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());
}
I've confirmed (with the the simple example shown below) that this works, just as you'd expect.
protected override void OnLoad(EventArgs e) {
throw new Exception("BOOM"); // This will now get caught.
}
So, what I don't understand, is why it was previously impossible for the debugger to handle crossing kernel-mode stack frames, but with this hotfix, they somehow figured it out.
As Hans mentions, compile the application and run the exe without a debugger attached.
For me the problem was changing a Class property name that a BindingSource control was bound to. Running without the IDE I was able to see the error:
Cannot bind to the property or column SendWithoutProofReading on the
DataSource. Parameter name: dataMember
Fixing the BindingSource control to bind to the updated property name resolved the problem:
I'm using WPF and ran into this same problem. I had tried Hans 1-3 suggestions already, but didn't like them because studio wouldn't stop at where the error was (so I couldn't view my variables and see what was the problem).
So I tried Hans' 4th suggestion. I was suprised at how much of my code could be moved to the MainWindow constructor without any issue. Not sure why I got in the habit of putting so much logic in the Load event, but apparently much of it can be done in the ctor.
However, this had the same problem as 1-3. Errors that occur during the ctor for WPF get wrapped into a generic Xaml exception. (an inner exception has the real error, but again I wanted studio to just break at the actual trouble spot).
What ended up working for me was to create a thread, sleep 50ms, dispatch back to main thread and do what I need...
void Window_Loaded(object sender, RoutedEventArgs e)
{
new Thread(() =>
{
Thread.Sleep(50);
CrossThread(() => { OnWindowLoaded(); });
}).Start();
}
void CrossThread(Action a)
{
this.Dispatcher.BeginInvoke(a);
}
void OnWindowLoaded()
{
...do my thing...
This way studio would break right where an uncaught exception occurs.
A simple work-around could be if you can move your init code to another event like as Form_Shown which called later than Form_Load, and use a flag to run startup code at first form shown:
bool firstLoad = true; //flag to detect first form_shown
private void Form1_Load(object sender, EventArgs e)
{
//firstLoad = true;
//dowork(); //not execute initialization code here (postpone it to form_shown)
}
private void Form1_Shown(object sender, EventArgs e)
{
if (firstLoad) //simulate Form-Load
{
firstLoad = false;
dowork();
}
}
void dowork()
{
var f = File.OpenRead(#"D:\NoSuchFile756.123"); //this cause an exception!
}
I found out about the error because I saw it in the windows built-in event viewer:
Description: The process was terminated due to an unhandled exception.
Exception Info: System.MissingMethodException
Stack:
at Injection.Main.DrawText_Hooked(...)
I have a c# application using easyhook. My dll critical code:
public void Run(RemoteHooking.IContext InContext, String InChannelName)
{
// Install system hook to detect calls to DrawTextExW that is made by the client and call the function DrawText_Hooked when ever this happens
try
{
DrawTextExHook = LocalHook.Create(LocalHook.GetProcAddress("user32.dll", "DrawTextExW"), new DDrawTextEx(DrawText_Hooked), this);
DrawTextExHook.ThreadACL.SetExclusiveACL(new Int32[] { 0 });
}....
And my delegate to handle the hooked function is:
int DrawText_Hooked(...)
{
Interface.Read(hdc, lpString, cchText, dwDTFormat);
return DrawTextExW(hdc, lpString, cchText, ref lprc, dwDTFormat, ref dparams);
}
When I shut down my main application everything works fine unless I use Interface.Read(...): in this case, the hooked application crashes. I've read it's probably because Interface.Read(...) doesn't exist anymore once I exit my app but I don't know how to tell my dll to stop doing that or simply unload so that it doesn't try to do Interface.Read(...) and finds out it doesn't actually exist anymore. How shall I do it?
Two days looking for the answer and after posting it I discover it myself after 10':
What I did was to declare the hook static:
static LocalHook DrawTextExHook;
So from my main code, on exit, I could call a static method that points it to null, therefore stopping calling my Interface.Read(...).
public static void stopIt()
{
DrawTextExHook = null;
}
When I create a new project, I get a strange behavior for unhandled exceptions. This is how I can reproduce the problem:
1) create a new Windows Forms Application (C#, .NET Framework 4, VS2010)
2) add the following code to the Form1_Load handler:
int vara = 5, varb = 0;
int varc = vara / varb;
int vard = 7;
I would expect that VS breaks and shows an unhandled exception message at the second line. However, what happens is that the third line is just skipped without any message and the application keeps running.
I don't have this problem with my existing C# projects. So I guess that my new projects are created with some strange default settings.
Does anyone have an idea what's wrong with my project???
I tried checking the boxes in Debug->Exceptions. But then executions breaks even if I handle the exception in a try-catch block; which is also not what I want. If I remember correctly, there was a column called "unhandled exceptions" or something like this in this dialog box, which would do excatly what I want. But in my projects there is only one column ("Thrown").
This is a nasty problem induced by the wow64 emulation layer that allows 32-bit code to run on the 64-bit version of Windows 7. It swallows exceptions in the code that runs in response to a notification generated by the 64-bit window manager, like the Load event. Preventing the debugger from seeing it and stepping in. This problem is hard to fix, the Windows and DevDiv groups at Microsoft are pointing fingers back and forth. DevDiv can't do anything about it, Windows thinks it is the correct and documented behavior, mysterious as that sounds.
It is certainly documented but just about nobody understands the consequences or thinks it is reasonable behavior. Especially not when the window procedure is hidden from view of course, like it is in any project that uses wrapper classes to hide the window plumbing. Like any Winforms, WPF or MFC app. Underlying issue is Microsoft could not figure out how to flow exceptions from 32-bit code back to the 64-bit code that triggered the notification back to 32-bit code that tries to handle or debug the exception.
It is only a problem with a debugger attached, your code will bomb as usual without one.
Project > Properties > Build tab > Platform target = AnyCPU and untick Prefer 32-bit. Your app will now run as a 64-bit process, eliminating the wow64 failure mode. Some consequences, it disables Edit + Continue for VS versions prior to VS2013 and might not always be possible when you have a dependency on 32-bit code.
Other possible workarounds:
Debug > Exceptions > tick the Thrown box for CLR exceptions to force the debugger to stop at the line of code that throws the exception.
Write try/catch in the Load event handler and failfast in the catch block.
Use Application.SetUnhandledExceptionMode(UnhandledExceptionMode.CatchException) in the Main() method so that the exception trap in the message loop isn't disabled in debug mode. This however makes all unhandled exceptions hard to debug, the ThreadException event is pretty useless.
Consider if your code really belongs in the Load event handler. It is very rare to need it, it is however very popular in VB.NET and a swan song because it is the default event and a double-click trivially adds the event handler. You only ever really need Load when you are interested in the actual window size after user preferences and autoscaling is applied. Everything else belongs in the constructor.
Update to Windows 8 or later, they have this wow64 problem solved.
In my experience, I only see this issue when I'm running with a debugger attached. The application behaves the same when run standalone: the exception is not swallowed.
With the introduction of KB976038, you can make this work as you'd expect again. I never installed the hotfix, so I'm assuming it came as part of Win7 SP1.
This was mentioned in this post:
The case of the disappearing OnLoad exception – user-mode callback exceptions in x64
Here's some code that will enable the hotfix:
public static class Kernel32
{
public const uint PROCESS_CALLBACK_FILTER_ENABLED = 0x1;
[DllImport("Kernel32.dll")]
public static extern bool SetProcessUserModeExceptionPolicy(UInt32 dwFlags);
[DllImport("Kernel32.dll")]
public static extern bool GetProcessUserModeExceptionPolicy(out UInt32 lpFlags);
public static void DisableUMCallbackFilter() {
uint flags;
GetProcessUserModeExceptionPolicy(out flags);
flags &= ~PROCESS_CALLBACK_FILTER_ENABLED;
SetProcessUserModeExceptionPolicy(flags);
}
}
Call it at the beginning of your application:
[STAThread]
static void Main()
{
Kernel32.DisableUMCallbackFilter();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());
}
I've confirmed (with the the simple example shown below) that this works, just as you'd expect.
protected override void OnLoad(EventArgs e) {
throw new Exception("BOOM"); // This will now get caught.
}
So, what I don't understand, is why it was previously impossible for the debugger to handle crossing kernel-mode stack frames, but with this hotfix, they somehow figured it out.
As Hans mentions, compile the application and run the exe without a debugger attached.
For me the problem was changing a Class property name that a BindingSource control was bound to. Running without the IDE I was able to see the error:
Cannot bind to the property or column SendWithoutProofReading on the
DataSource. Parameter name: dataMember
Fixing the BindingSource control to bind to the updated property name resolved the problem:
I'm using WPF and ran into this same problem. I had tried Hans 1-3 suggestions already, but didn't like them because studio wouldn't stop at where the error was (so I couldn't view my variables and see what was the problem).
So I tried Hans' 4th suggestion. I was suprised at how much of my code could be moved to the MainWindow constructor without any issue. Not sure why I got in the habit of putting so much logic in the Load event, but apparently much of it can be done in the ctor.
However, this had the same problem as 1-3. Errors that occur during the ctor for WPF get wrapped into a generic Xaml exception. (an inner exception has the real error, but again I wanted studio to just break at the actual trouble spot).
What ended up working for me was to create a thread, sleep 50ms, dispatch back to main thread and do what I need...
void Window_Loaded(object sender, RoutedEventArgs e)
{
new Thread(() =>
{
Thread.Sleep(50);
CrossThread(() => { OnWindowLoaded(); });
}).Start();
}
void CrossThread(Action a)
{
this.Dispatcher.BeginInvoke(a);
}
void OnWindowLoaded()
{
...do my thing...
This way studio would break right where an uncaught exception occurs.
A simple work-around could be if you can move your init code to another event like as Form_Shown which called later than Form_Load, and use a flag to run startup code at first form shown:
bool firstLoad = true; //flag to detect first form_shown
private void Form1_Load(object sender, EventArgs e)
{
//firstLoad = true;
//dowork(); //not execute initialization code here (postpone it to form_shown)
}
private void Form1_Shown(object sender, EventArgs e)
{
if (firstLoad) //simulate Form-Load
{
firstLoad = false;
dowork();
}
}
void dowork()
{
var f = File.OpenRead(#"D:\NoSuchFile756.123"); //this cause an exception!
}
I want to test if my application crash dump can be debugged. But firstly, I need to generate a crash dump of my application. I'm using C# to code my app, and have tried with many exceptions and unsafe code etc. but don't get it.
Thanks!
Edit: Sorry, Just forgot something, I'm making the application with Unity3D, which handles exceptions for me automatically.
Edit 2: Thanks all for your answers. I've tested your suggestions in a standard C# application and it all works fine, but not in my Unity3D application (written with C#). It seems like Unity3D requires more effort to cause a crash, I might email Unity3D to get a answer. I will post here if I get it. Cheers!
The following will provide an unhandled exception and will ask for you to choose a debugger:
System.Diagnostics.Debugger.Launch()
StackOverflowException is a badass:
void PerformOverflow()
{
PerformOverflow();
}
Usage:
PerformOverflow();
Throw an exception :)
throw new Exception("Your exception here!");
For C# in Unity3D
There is UnityEngine.Diagnostics.Utils.ForceCrash (in Unity 2018.3)
This can be used with one of the following ForcedCrashCategory enum parameter:
AccessViolation
Cause a crash by performing an invalid memory
access.The invalid memory access is performed on each platform as
follows:
FatalError
Cause a crash using Unity's native fatal error
implementation.
Abort
Cause a crash by calling the abort() function.
PureVirtualFunction
Cause a crash by calling a pure virtual function
to raise an exception.
For older versions of Unity:
UnityEngine.Application.ForceCrash(int mode)
For even older versions (Unity 5):
UnityEngine.Application.CommitSuicide(int mode)
From my experience, mode 0 causes a "unity handled" crash (where the Unity crash dialog appears), and mode 2 causes a "hard" crash where the Windows error dialog appears.
This seems consistent with this post by Smilediver on mode:
0 - will simulate crash, 1 - will simulate a fatal error that Unity
has caught, 2 - will call abort().
(These methods are not documented as they were intended for Unity's internal use. They may also be marked [Obsolete] depending on your Unity version.)
Well. The only good 100% way actualy crash CLR is to inject a native exception into the managed world.
Calling the Kernel32.dll's RaiseException() directly will immediately crash ANY C# application, and Unity Editor as well.
[DllImport("kernel32.dll")]
static extern void RaiseException(uint dwExceptionCode, uint dwExceptionFlags, uint nNumberOfArguments, IntPtr lpArguments);
void start()
{
RaiseException(13, 0, 0, new IntPtr(1));
}
Happy crashing. Please note that in order to debug native and managed, you will need two instances of Visual Studio running. If you are developing native P/INVOKE plugin, set up it that Visual Studio Instance 1 is native debugger and uses Unity or your C# program as a Host program, and you attach to the Host program from another Visual Studio Instance.
Another option is to call
System.Environment.FailFast("Error happened")
A surefire way to do it is as follows:
ThreadPool.QueueUserWorkItem(new WaitCallback(ignored =>
{
throw new Exception();
}));
All the others can be handled by the top level ApplicationDomain.OnUnhandledException and the like.
This one will kill it dead (assuming .NET 2.0+, and not using 'legacyUnhandledExceptionPolicy': http://msdn.microsoft.com/en-us/library/ms228965.aspx).
None of the answers crashed my app the way I was looking for. So here is the approach that worked for me.
private void Form1_Load(object sender, EventArgs e)
{
object p = 0;
IntPtr pnt = (IntPtr)0x123456789;
Marshal.StructureToPtr(p, pnt, false);
}
public void Loop()
{
Loop();
}
//call this
Loop();
I think there was a code in earlier unity versions like
Application.commitSuicide(number Input);
Now it is replaced by
Application.ForceCrash(number input);
Till this point, I dont know what different numbers do in number input, but for me,
Application.ForceCrash(1);
does the job.
you could also divide by zero,
z = 0;
int divide = 1 / x;
int[] x = {0};
int blah = x[2];
will cause an exception just as well
It's easy enough to reproduce if you try to transform a null game object. For example, like this:
public static GameObject gameObjectCrash;
public void GenerateCrash()
{
gameObjectCrash.transform.rotation = Quaternion.Euler(90, 0, 0);
}
Use below code to close the application.
Environment.Exit(1);
Exit needs a parameter called exitcode. If exitcode=0 means there was no error. Supply a non-zero exit code to to reflect an error.
When I create a new project, I get a strange behavior for unhandled exceptions. This is how I can reproduce the problem:
1) create a new Windows Forms Application (C#, .NET Framework 4, VS2010)
2) add the following code to the Form1_Load handler:
int vara = 5, varb = 0;
int varc = vara / varb;
int vard = 7;
I would expect that VS breaks and shows an unhandled exception message at the second line. However, what happens is that the third line is just skipped without any message and the application keeps running.
I don't have this problem with my existing C# projects. So I guess that my new projects are created with some strange default settings.
Does anyone have an idea what's wrong with my project???
I tried checking the boxes in Debug->Exceptions. But then executions breaks even if I handle the exception in a try-catch block; which is also not what I want. If I remember correctly, there was a column called "unhandled exceptions" or something like this in this dialog box, which would do excatly what I want. But in my projects there is only one column ("Thrown").
This is a nasty problem induced by the wow64 emulation layer that allows 32-bit code to run on the 64-bit version of Windows 7. It swallows exceptions in the code that runs in response to a notification generated by the 64-bit window manager, like the Load event. Preventing the debugger from seeing it and stepping in. This problem is hard to fix, the Windows and DevDiv groups at Microsoft are pointing fingers back and forth. DevDiv can't do anything about it, Windows thinks it is the correct and documented behavior, mysterious as that sounds.
It is certainly documented but just about nobody understands the consequences or thinks it is reasonable behavior. Especially not when the window procedure is hidden from view of course, like it is in any project that uses wrapper classes to hide the window plumbing. Like any Winforms, WPF or MFC app. Underlying issue is Microsoft could not figure out how to flow exceptions from 32-bit code back to the 64-bit code that triggered the notification back to 32-bit code that tries to handle or debug the exception.
It is only a problem with a debugger attached, your code will bomb as usual without one.
Project > Properties > Build tab > Platform target = AnyCPU and untick Prefer 32-bit. Your app will now run as a 64-bit process, eliminating the wow64 failure mode. Some consequences, it disables Edit + Continue for VS versions prior to VS2013 and might not always be possible when you have a dependency on 32-bit code.
Other possible workarounds:
Debug > Exceptions > tick the Thrown box for CLR exceptions to force the debugger to stop at the line of code that throws the exception.
Write try/catch in the Load event handler and failfast in the catch block.
Use Application.SetUnhandledExceptionMode(UnhandledExceptionMode.CatchException) in the Main() method so that the exception trap in the message loop isn't disabled in debug mode. This however makes all unhandled exceptions hard to debug, the ThreadException event is pretty useless.
Consider if your code really belongs in the Load event handler. It is very rare to need it, it is however very popular in VB.NET and a swan song because it is the default event and a double-click trivially adds the event handler. You only ever really need Load when you are interested in the actual window size after user preferences and autoscaling is applied. Everything else belongs in the constructor.
Update to Windows 8 or later, they have this wow64 problem solved.
In my experience, I only see this issue when I'm running with a debugger attached. The application behaves the same when run standalone: the exception is not swallowed.
With the introduction of KB976038, you can make this work as you'd expect again. I never installed the hotfix, so I'm assuming it came as part of Win7 SP1.
This was mentioned in this post:
The case of the disappearing OnLoad exception – user-mode callback exceptions in x64
Here's some code that will enable the hotfix:
public static class Kernel32
{
public const uint PROCESS_CALLBACK_FILTER_ENABLED = 0x1;
[DllImport("Kernel32.dll")]
public static extern bool SetProcessUserModeExceptionPolicy(UInt32 dwFlags);
[DllImport("Kernel32.dll")]
public static extern bool GetProcessUserModeExceptionPolicy(out UInt32 lpFlags);
public static void DisableUMCallbackFilter() {
uint flags;
GetProcessUserModeExceptionPolicy(out flags);
flags &= ~PROCESS_CALLBACK_FILTER_ENABLED;
SetProcessUserModeExceptionPolicy(flags);
}
}
Call it at the beginning of your application:
[STAThread]
static void Main()
{
Kernel32.DisableUMCallbackFilter();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());
}
I've confirmed (with the the simple example shown below) that this works, just as you'd expect.
protected override void OnLoad(EventArgs e) {
throw new Exception("BOOM"); // This will now get caught.
}
So, what I don't understand, is why it was previously impossible for the debugger to handle crossing kernel-mode stack frames, but with this hotfix, they somehow figured it out.
As Hans mentions, compile the application and run the exe without a debugger attached.
For me the problem was changing a Class property name that a BindingSource control was bound to. Running without the IDE I was able to see the error:
Cannot bind to the property or column SendWithoutProofReading on the
DataSource. Parameter name: dataMember
Fixing the BindingSource control to bind to the updated property name resolved the problem:
I'm using WPF and ran into this same problem. I had tried Hans 1-3 suggestions already, but didn't like them because studio wouldn't stop at where the error was (so I couldn't view my variables and see what was the problem).
So I tried Hans' 4th suggestion. I was suprised at how much of my code could be moved to the MainWindow constructor without any issue. Not sure why I got in the habit of putting so much logic in the Load event, but apparently much of it can be done in the ctor.
However, this had the same problem as 1-3. Errors that occur during the ctor for WPF get wrapped into a generic Xaml exception. (an inner exception has the real error, but again I wanted studio to just break at the actual trouble spot).
What ended up working for me was to create a thread, sleep 50ms, dispatch back to main thread and do what I need...
void Window_Loaded(object sender, RoutedEventArgs e)
{
new Thread(() =>
{
Thread.Sleep(50);
CrossThread(() => { OnWindowLoaded(); });
}).Start();
}
void CrossThread(Action a)
{
this.Dispatcher.BeginInvoke(a);
}
void OnWindowLoaded()
{
...do my thing...
This way studio would break right where an uncaught exception occurs.
A simple work-around could be if you can move your init code to another event like as Form_Shown which called later than Form_Load, and use a flag to run startup code at first form shown:
bool firstLoad = true; //flag to detect first form_shown
private void Form1_Load(object sender, EventArgs e)
{
//firstLoad = true;
//dowork(); //not execute initialization code here (postpone it to form_shown)
}
private void Form1_Shown(object sender, EventArgs e)
{
if (firstLoad) //simulate Form-Load
{
firstLoad = false;
dowork();
}
}
void dowork()
{
var f = File.OpenRead(#"D:\NoSuchFile756.123"); //this cause an exception!
}