c# lock function during async file write [duplicate] - c#

I want to start some new threads each for one repeating operation. But when such an operation is already in progress, I want to discard the current task. In my scenario I need very current data only - dropped data is not an issue.
In the MSDN I found the Mutex class but as I understand it, it waits for its turn, blocking the current thread. Also I want to ask you: Does something exist in the .NET framework already, that does the following:
Is some method M already being executed?
If so, return (and let me increase some counter for statistics)
If not, start method M in a new thread

The lock(someObject) statement, which you may have come across, is syntactic sugar around Monitor.Enter and Monitor.Exit.
However, if you use the monitor in this more verbose way, you can also use Monitor.TryEnter which allows you to check if you'll be able to get the lock - hence checking if someone else already has it and is executing code.
So instead of this:
var lockObject = new object();
lock(lockObject)
{
// do some stuff
}
try this (option 1):
int _alreadyBeingExecutedCounter;
var lockObject = new object();
if (Monitor.TryEnter(lockObject))
{
// you'll only end up here if you got the lock when you tried to get it - otherwise you'll never execute this code.
// do some stuff
//call exit to release the lock
Monitor.Exit(lockObject);
}
else
{
// didn't get the lock - someone else was executing the code above - so I don't need to do any work!
Interlocked.Increment(ref _alreadyBeingExecutedCounter);
}
(you'll probably want to put a try..finally in there to ensure the lock is released)
or dispense with the explicit lock althogether and do this
(option 2)
private int _inUseCount;
public void MyMethod()
{
if (Interlocked.Increment(ref _inUseCount) == 1)
{
// do dome stuff
}
Interlocked.Decrement(ref _inUseCount);
}
[Edit: in response to your question about this]
No - don't use this to lock on. Create a privately scoped object to act as your lock.
Otherwise you have this potential problem:
public class MyClassWithLockInside
{
public void MethodThatTakesLock()
{
lock(this)
{
// do some work
}
}
}
public class Consumer
{
private static MyClassWithLockInside _instance = new MyClassWithLockInside();
public void ThreadACallsThis()
{
lock(_instance)
{
// Having taken a lock on our instance of MyClassWithLockInside,
// do something long running
Thread.Sleep(6000);
}
}
public void ThreadBCallsThis()
{
// If thread B calls this while thread A is still inside the lock above,
// this method will block as it tries to get a lock on the same object
// ["this" inside the class = _instance outside]
_instance.MethodThatTakesLock();
}
}
In the above example, some external code has managed to disrupt the internal locking of our class just by taking out a lock on something that was externally accessible.
Much better to create a private object that you control, and that no-one outside your class has access to, to avoid these sort of problems; this includes not using this or the type itself typeof(MyClassWithLockInside) for locking.

One option would be to work with a reentrancy sentinel:
You could define an int field (initialize with 0) and update it via Interlocked.Increment on entering the method and only proceed if it is 1. At the end just do a Interlocked.Decrement.
Another option:
From your description it seems that you have a Producer-Consumer-Scenario...
For this case it might be helpful to use something like BlockingCollection as it is thread-safe and mostly lock-free...
Another option would be to use ConcurrentQueue or ConcurrentStack...

You might find some useful information on the following site (the PDf is also downlaodable - recently downloaded it myself). The Adavnced threading Suspend and Resume or Aborting chapters maybe what you are inetrested in.

You should use Interlocked class atomic operations - for best performance - since you won't actually use system-level sychronizations(any "standard" primitive needs it, and involve system call overhead).
//simple non-reentrant mutex without ownership, easy to remake to support //these features(just set owner after acquiring lock(compare Thread reference with Thread.CurrentThread for example), and check for matching identity, add counter for reentrancy)
//can't use bool because it's not supported by CompareExchange
private int lock;
public bool TryLock()
{
//if (Interlocked.Increment(ref _inUseCount) == 1)
//that kind of code is buggy - since counter can change between increment return and
//condition check - increment is atomic, this if - isn't.
//Use CompareExchange instead
//checks if 0 then changes to 1 atomically, returns original value
//return true if thread succesfully occupied lock
return CompareExchange(ref lock, 1, 0)==0;
return false;
}
public bool Release()
{
//returns true if lock was occupied; false if it was free already
return CompareExchange(ref lock, 0, 1)==1;
}

Related

Reentrance method and partial synchronized calls

I do have a singleton component that manages some information blocks. An information block is a calculated information identified by some characteristics (concrete an Id and a time period). These calculations may take some seconds. All information blocks are stored in a collection.
Some other consumers are using these information blocks. The calculation should start when the first request for this Id and time period comes. I had following flow in mind:
The first consumer requests the data identified by Id and time period.
The component checks if the information block already exists
If not: Create the information block, put it into the collection and start the calculation in a background task. If yes: Take it from the collection
After that the flow goes to the information block:
When the calculation is already finished (by a former call), a callback from the consumer is called with the result of the calculation.
When the calculation is still in process, the callback is called when the calculation is finished.
So long, so good.
The critical section comes when the second (or any other subsequent) call is coming and the calculation is still running. The idea is that the calculation method holds each consumers callback and then when the calculation is finished all consumers callbacks are called.
public class SingletonInformationService
{
private readonly Collection<InformationBlock> blocks = new();
private object syncObject = new();
public void GetInformationBlock(Guid id, TimePersiod timePeriod,
Action<InformationBlock> callOnFinish)
{
InformationBlock block = null;
lock(syncObject)
{
// check out if the block already exists
block = blocks.SingleOrDefault(b => b.Id ...);
if (block == null)
{
block = new InformationBlock(...);
blocks.Add(block);
}
}
block?.BeginCalculation(callOnFinish);
return true;
}
}
public class InformationBlock
{
private Task calculationTask = null;
private CalculationState isCalculating isCalculating = CalculationState.Unknown;
private List<Action<InformationBlock> waitingRoom = new();
internal void BeginCalculation(Action<InformationBlock> callOnFinish)
{
if (isCalculating == CalculationState.Finished)
{
callOnFinish(this);
return;
}
else if (isCalculating == CalculationState.IsRunning)
{
waitingRoom.Add(callOnFinish);
return;
}
// add the first call to the waitingRoom
waitingRoom.Add(callOnFinish);
isCalculating = CalculationState.IsRunning;
calculationTask = Task.Run(() => { // run the calculation})
.ContinueWith(taskResult =>
{
//.. apply the calculation result to local properties
this.Property1 = taskResult.Result.Property1;
// set the state to mark this instance as complete
isCalculating = CalculationState.Finished;
// inform all calls about the result
waitingRoom.ForEach(c => c(this));
waitingRoom.Clear();
}, TaskScheduler.FromCurrentSynchronizationContext());
}
}
Is that approach a good idea? Do you see any failures or possible deadlocks? The method BeginCalculation might be called more than once while the calculation is running. Should I await for the calculationTask?
To have deadlocks, you'll need some cycles: object A depends of object B, that depends on object A again (image below). As I see, that's not your case, since the InformationBlock class doesn't access the service, but is only called by it.
The lock block is also very small, so probably it'll not put you in troubles.
You could look for the Thread-Safe Collection from C# standard libs. This could simplify your code.
I suggest you to use a ConcurrentDictionary, because it's fastest then iterate over the collection every request.

implementing a c# read write lock where some reads produce writes

I have to implement some .Net code involving a shared resource accessed by different threads. In principle, this should be solved with a simple read write lock. However, my solution requires that some of the read accessions do end up producing a write operation. I first checked the ReaderWriterLockSlim, but by itself it does not solve the problem, because it requires that I know in advance if a read operation can turn into a write operation, and this is not my case. I finally opted by simply using a ReaderWriterLockSlim, and when the read operation "detects" that needs to do a write operation, release the read lock and acquire a write lock. I am not sure if there is a better solution, or event if this solution could lead to some synchronization issue (I have experience with Java, but I am fairly new to .Net).
Below some sample code illustrating my solution:
public class MyClass
{
private int[] data;
private readonly ReaderWriterLockSlim syncLock = new ReaderWriterLockSlim();
public void modifyData()
{
try
{
syncLock.EnterWriteLock();
// clear my array and read from database...
}
finally
{
syncLock.ExitWriteLock();
}
}
public int readData(int index)
{
try
{
syncLock.EnterReadLock();
// some initial preprocessing of the arguments
try
{
_syncLock.ExitReadLock();
_syncLock.EnterWriteLock();
// check if a write is needed <--- this operation is fast, and, in most cases, the result will be false
// if true, perform the write operation
}
finally
{
_syncLock.ExitWriteLock();
_syncLock.EnterReadLock();
}
return data[index];
}
finally
{
syncLock.ExitReadLock();
}
}
}

What happens if I Monitor.Enter conditionally while another thread is in the critical section without a lock?

I'm attempting to reimplement functionality from a system class (Lazy<T>) and I found this unusual bit of code. I get the basic idea. The first thread to try for a value performs the calculations. Any threads that try while that's happening get locked at the gate, wait until release, and then go get the cached value. Any later calls notice the sentinel value and don't bother with the locks any more.
bool lockWasTaken = false;
var obj = Volatile.Read<object>(ref this._locker);
object returnValue = null;
try
{
if (obj != SENTINEL_VALUE)
{
Monitor.Enter(obj, ref lockWasTaken);
}
if (this.cachedValue != null) // always true after code has run once
{
returnValue = this.cachedValue;
}
else //only happens on the first thread to lock and enter
{
returnValue = SomeCalculations();
this.cachedValue = returnValue;
Volatile.Write<object>(ref this._locker, SENTINEL_VALUE);
}
return returnValue
}
finally
{
if (lockWasTaken)
{
Monitor.Exit(obj);
}
}
But let's say, after a change in the code, that another method resets the this._locker to it's original value and then goes in to lock and recalculate the cached value. While it does this, another thread happened to be picking up the cached value, so it's inside the locked section, but without a lock. What happens? Does it just execute normally while the thread with the lock also goes in parallel?
While it does this, another thread happened to be picking up the cached value, so it's inside the locked section, but without a lock. What happens? Does it just execute normally while the thread with the lock also goes in parallel?
Yes, it'll just execute normally.
That being said, this code appears like it could be removed entirely by using Lazy<T>. The Lazy<T> class provides a thread safe way to handle lazy instantiation of data, which appears to be the goal of this code.
Basically, the entire code could be replaced by:
// Have a field like the following:
Lazy<object> cachedValue = new Lazy<object>(() => SomeCalculations());
// Code then becomes:
return cachedValue.Value;

Resource Access by Parallel Threads

I have 2 threads to are triggered at the same time and run in parallel. These 2 threads are going to be manipulating a string value, but I want to make sure that there are no data inconsistencies. For that I want to use a lock with Monitor.Pulse and Monitor.Wait. I used a method that I found on another question/answer, but whenever I run my program, the first thread gets stuck at the Monitor.Wait level. I think that's because the second thread has already "Pulsed" and "Waited". Here is some code to look at:
string currentInstruction;
public void nextInstruction()
{
Action actions = {
fetch,
decode
}
Parallel.Invoke(actions);
_pc++;
}
public void fetch()
{
lock(irLock)
{
currentInstruction = "blah";
GiveTurnTo(2);
WaitTurn(1);
}
decodeEvent.WaitOne();
}
public void decode()
{
decodeEvent.Set();
lock(irLock)
{
WaitTurn(2);
currentInstruction = "decoding..."
GiveTurnTo(1);
}
}
// Below are the methods I talked about before.
// Wait for turn to use lock object
public static void WaitTurn(int threadNum, object _lock)
{
// While( not this threads turn )
while (threadInControl != threadNum)
{
// "Let go" of lock on SyncRoot and wait utill
// someone finishes their turn with it
Monitor.Wait(_lock);
}
}
// Pass turn over to other thread
public static void GiveTurnTo(int nextThreadNum, object _lock)
{
threadInControl = nextThreadNum;
// Notify waiting threads that it's someone else's turn
Monitor.Pulse(_lock);
}
Any idea how to get 2 parallel threads to communicate (manipulate the same resources) within the same cycle using locks or anything else?
You want to run 2 peaces of code in parallel, but locking them at start using the same variable?
As nvoigt mentioned, it already sounds wrong. What you have to do is to remove lock from there. Use it only when you are about to access something exclusively.
Btw "data inconsistencies" can be avoided by not having to have them. Do not use currentInstruction field directly (is it a field?), but provide a thread safe CurrentInstruction property.
private object _currentInstructionLock = new object();
private string _currentInstruction
public string CurrentInstruction
{
get { return _currentInstruction; }
set
{
lock(_currentInstructionLock)
_currentInstruction = value;
}
}
Other thing is naming, local variables name starting from _ is a bad style. Some peoples (incl. me) using them to distinguish private fields. Property name should start from BigLetter and local variables fromSmall.

How to: Write a thread-safe method that may only be called once?

I'm attempting to write a thread-safe method which may only be called once (per object instance). An exception should be thrown if it has been called before.
I have come up with two solutions. Are they both correct? If not, what's wrong with them?
With lock:
public void Foo()
{
lock (fooLock)
{
if (fooCalled) throw new InvalidOperationException();
fooCalled = true;
}
…
}
private object fooLock = new object();
private bool fooCalled;
With Interlocked.CompareExchange:
public void Foo()
{
if (Interlocked.CompareExchange(ref fooCalled, 1, 0) == 1)
throw new InvalidOperationException();
…
}
private int fooCalled;
If I'm not mistaken, this solution has the advantage of being lock-free (which seems irrelevant in my case), and that it requires fewer private fields.
I am also open to justified opinions which solution should be preferred, and to further suggestions if there's a better way.
Your Interlocked.CompareExchange solution looks the best, and (as you said) is lock-free. It's also significantly less complicated than other solutions. Locks are quite heavyweight, whereas CompareExchange can be compiled down to a single CAS cpu instruction. I say go with that one.
The double checked lock patter is what you are after:
This is what you are after:
class Foo
{
private object someLock = new object();
private object someFlag = false;
void SomeMethod()
{
// to prevent locking on subsequent calls
if(someFlag)
throw new Exception();
// to make sure only one thread can change the contents of someFlag
lock(someLock)
{
if(someFlag)
throw new Exception();
someFlag = true;
}
//execute your code
}
}
In general when exposed to issues like these try and follow well know patters like the one above.
This makes it recognizable and less error prone since you are less likely to miss something when following a pattern, especially when it comes to threading.
In your case the first if does not make a lot of sense but often you will want to execute the actual logic and then set the flag. A second thread would be blocked while you are executing your (maybe quite costly) code.
About the second sample:
Yes it is correct, but don't make it more complicated than it is. You should have very good reasons to not use the simple locking and in this situation it makes the code more complicated (because Interlocked.CompareExchange() is less known) without achieving anything (as you pointed out being lock less against locking to set a boolean flag is not really a benefit in this case).
Task task = new Task((Action)(() => { Console.WriteLine("Called!"); }));
public void Foo()
{
task.Start();
}
public void Bar()
{
Foo();
Foo();//this line will throws different exceptions depends on
//whether task in progress or task has already been completed
}

Categories

Resources