Why isn't an Exception Caught when Thrown Out of Task.WhenAll? - c#

The issue I'm having is that the an exception (marked below) is not being caught when thrown into the catch statement surrounding Task.WhenAll. I'm not sure why this exception is ballooning up to the call stack.
I read the following article that states a try/catch wrapping an awaited Task.WhenAll will catch the first exception thrown out of it, but that doesn't seem to be the case for me....
I have the following code snippet below (you can copy and paste it and just hit 'Run') to reproduce (.netcoreapp2.1).
using System;
using System.Threading.Tasks;
using System.Threading;
namespace TestProgram
{
class Program
{
public static void Main(string[] args)
{
MainAsync(args).GetAwaiter().GetResult();
}
private static async Task MainAsync(string[] args)
{
CancellationTokenSource tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
var thread = new Thread(() => CancelToken(tokenSource));
thread.IsBackground = true;
thread.Start();
var ourTask = SpinUntilCancelled(token);
try
{
await Task.WhenAll(ourTask);
}
catch (Exception ex) // NOT CATCHING AND PRINTING!
{ Console.WriteLine($"{ex}"); }
}
private static void CancelToken(CancellationTokenSource obj)
{
Thread.Sleep(5000);
obj.Cancel();
obj.Dispose();
return;
}
private static Task SpinUntilCancelled(CancellationToken cancellation)
{
int i = 0;
while (true)
{
try
{
if (cancellation.IsCancellationRequested)
throw new ApplicationException("Token cancelled");
Thread.Sleep(1000);
Console.WriteLine($"Text {++i}");
}
catch
{
Console.WriteLine("Cancelled!");
cancellation.ThrowIfCancellationRequested();
}
}
}
}
}
As you can see, my breakpoint is not being hit.

Because of the while (true) and the lack of a break or return statement, the SpinUntilCancelled method never produces a value, so its return type is irrelevant. To make it produce an actual Task that you can later await, you should give it a proper asynchronous implementation, like this:
private static async Task SpinUntilCancelled(CancellationToken cancellationToken)
{
int i = 0;
while (true)
{
cancellationToken.ThrowIfCancellationRequested();
await Task.Delay(1000, cancellationToken);
Console.WriteLine($"Text {++i}");
}
}
As a side note, if you want to get an instant notification when the CancellationTokenSource is canceled, you can Register a callback to its Token like this:
var tokenSource = new CancellationTokenSource();
tokenSource.Token.Register(() => Console.WriteLine("Token canceled"));

Related

Concurrent entrancy occurs despite of use of SemaphoreSlim

I expected the following Connected and Disconnected handlers are called alternately.
But it wasn't. It is not 100% reproducible but sometimes the test failed. Repository is here.
I attach simplified code here because full code will be long. Please refer to the repository for the reproducible example.
public class ClientStressTest3 {
[Fact]
public async Task TestAsync() {
var client = new Client();
int openCloseDifference = 0;
var failures = Channel.CreateUnbounded<string>();
client.Connected += () => {
Interlocked.Increment(ref openCloseDifference);
int difference = openCloseDifference;
Debug.WriteLine("Connected: {}", difference);
if (Math.Abs(difference) > 1) {
// Failure point. Why enter here?
_ = failures.Writer.WriteAsync($"open close difference {difference}");
}
};
client.Disconnected += () => {
Interlocked.Decrement(ref openCloseDifference);
int difference = openCloseDifference;
Debug.WriteLine("Disconnected: {}", difference);
if (Math.Abs(difference) > 1) {
_ = failures.Writer.WriteAsync($"open close difference {difference}");
}
};
var tasks = new List<Task>();
for (int i = 0; i < 625; i++) {
tasks.Add(Task.Run(async () => {
try {
await client.ConnectAsync().ConfigureAwait(false);
}
catch (Exception ex) { }
}));
tasks.Add(Task.Run(async () => {
try {
await client.CloseAsync().ConfigureAwait(false);
}
catch (Exception ex) { }
}));
}
await Task.WhenAll(tasks).ConfigureAwait(false);
while (await failures.Reader.WaitToReadAsync().ConfigureAwait(false)) {
string failure = await failures.Reader.ReadAsync().ConfigureAwait(false);
throw new Exception(failure);
}
}
}
class Client {
public event Action Connected = delegate { };
public event Action Disconnected = delegate { };
private readonly SemaphoreSlim _connectSemaphore = new(1);
private Task _dispatch = Task.CompletedTask;
private WebSocket _clientSocket;
public async Task ConnectAsync() {
await _connectSemaphore.WaitAsync().ConfigureAwait(false);
// _dispatch may be same among multiple threads if restored at the same time.
try {
await _clientSocket.ConnectAsync().ConfigureAwait(false);
if (_dispatch != null) {
_dispatch = _dispatch.ContinueWith((_) => DispatchEventAsync(), TaskScheduler.Default);
}
}
finally {
_connectSemaphore.Release();
}
}
private async Task DispatchEventAsync() {
try {
Connected();
}
catch (Exception exception) { }
try {
while (await events.WaitToReadAsync().ConfigureAwait(false)) {
DispatchEvent(await events.ReadAsync().ConfigureAwait(false));
}
}
catch (Exception exception) { }
try {
Disconnected();
}
catch (Exception ex) { }
}
}
I think _connectSemaphore will guard the inner code execution, and only one thread will execute DispatchEventAsync.
But it seems sometimes two threads enter DispatchEventAsync at the same time. I can't understand this.
ContinueWith is a low-level method with dangerous default behavior (link is to my blog). In this case, your code is not behaving how you think it should because ContinueWith (like StartNew) doesn't understand asynchronous delegates.
Specifically, the task returned from ContinueWith (the same task stored in _dispatch) will complete when DispatchEventAsync asynchronously yields (i.e., hits its first await that asynchronously waits). This is likely the call to WaitToReadAsync, which is after Connected and before Disconnected. So the _dispatch task completes after Connected and before Disconnected.
Ideally, you should avoid ContinueWith completely. Sometimes a local asynchronous method helps, e.g.:
public async Task ConnectAsync() {
await _connectSemaphore.WaitAsync().ConfigureAwait(false);
try {
await _clientSocket.ConnectAsync().ConfigureAwait(false);
if (_dispatch != null) {
_dispatch = ChainAsync(_dispatch);
}
}
finally {
_connectSemaphore.Release();
}
static async Task ChainAsync(Task dispatch)
{
await dispatch;
await DispatchEventAsync();
}
}
If you do want to continue using ContinueWith for some reason, then you can use Unwrap:
public async Task ConnectAsync() {
await _connectSemaphore.WaitAsync().ConfigureAwait(false);
try {
await _clientSocket.ConnectAsync().ConfigureAwait(false);
if (_dispatch != null) {
_dispatch = _dispatch.ContinueWith(_ => DispatchEventAsync(), TaskScheduler.Default)
.Unwrap();
}
}
finally {
_connectSemaphore.Release();
}
}
Using either of these approaches, the _dispatch task will now complete at the end of DispatchEventAsync.
I think _connectSemaphore will guard the inner code execution, and only one thread will execute DispatchEventAsync.
Nope. Because you don't wait or await _dispatch. The semaphore only protects starting the task. The execution of the task happens in the background sometime after you release the semaphore.
But I'm chaining it with ContinueWith. Isn't it sufficien
No. That just adds another task that runs after; it doesn't actually run the task or wait for it to complete. If you want to run the _dispatch and then another task while holding the semaphore, just
await _dispatch;
await DispatchEventAsync();

How can I delay my task before it returns?

My assertion of acceptor.IsStarted.Should().BeTrue(); (see unit test below) always fails, as it's getting evaluated too early. The call to await task returns immediately and doesn't give this.acceptor.Start() enough time to spin up.
I would like to make the startup of my FixAcceptor() more deterministic and therefor introduced the parameter TimeSpan startupDelay.
However I simply have no clue where and how I can delay the startup.
Putting an additional Thread.Sleep(startupDelay) between this.acceptor.Start() and this.IsStarted = true won't help as it will only block the worker task itself, but not the calling thread.
I hope it's clear what I'd like to archive and what I am struggling with. Thanks in advance.
public class FixAcceptor
{
// Type provided by QuickFix.net
private readonly ThreadedSocketAcceptor acceptor;
public FixAcceptor(IFixSettings settings)
{
// Shortened
}
public bool IsStarted { get; private set; }
public async void Run(CancellationToken cancellationToken, TimeSpan startupDelay)
{
var task = Task.Run(() =>
{
cancellationToken.ThrowIfCancellationRequested();
this.acceptor.Start();
this.IsStarted = true;
while (true)
{
// Stop if token has been canceled
if (cancellationToken.IsCancellationRequested)
{
this.acceptor.Stop();
this.IsStarted = false;
cancellationToken.ThrowIfCancellationRequested();
}
// Save some CPU cycles
Thread.Sleep(TimeSpan.FromSeconds(1));
}
}, cancellationToken);
try
{
await task;
}
catch (OperationCanceledException e)
{
Debug.WriteLine(e.Message);
}
}
}
And the corresponding consumer code
[Fact]
public void Should_Run_Acceptor_And_Stop_By_CancelationToken()
{
// Arrange
var acceptor = new FixAcceptor(new FixAcceptorSettings("test_acceptor.cfg", this.logger));
var tokenSource = new CancellationTokenSource();
// Act
tokenSource.CancelAfter(TimeSpan.FromSeconds(10));
acceptor.Run(tokenSource.Token, TimeSpan.FromSeconds(3));
// Assert
acceptor.IsStarted.Should().BeTrue();
IsListeningOnTcpPort(9823).Should().BeTrue();
// Wait for cancel event to occur
Thread.Sleep(TimeSpan.FromSeconds(15));
acceptor.IsStarted.Should().BeFalse();
}
Adding time delays to achieve determinism is not a recommended practice. You can achieve 100% determinism by using a TaskCompletionSource for controlling the completion of a task at just the right moment:
public Task<bool> Start(CancellationToken cancellationToken)
{
var startTcs = new TaskCompletionSource<bool>();
var task = Task.Run(() =>
{
cancellationToken.ThrowIfCancellationRequested();
this.acceptor.Start();
this.IsStarted = true;
startTcs.TrySetResult(true); // Signal that the starting phase is completed
while (true)
{
// ...
}
}, cancellationToken);
HandleTaskCompletion();
return startTcs.Task;
async void HandleTaskCompletion() // async void method = should never throw
{
try
{
await task;
}
catch (OperationCanceledException ex)
{
Debug.WriteLine(ex.Message);
startTcs.TrySetResult(false); // Signal that start failed
}
catch
{
startTcs.TrySetResult(false); // Signal that start failed
}
}
}
Then replace this line in your test:
acceptor.Run(tokenSource.Token, TimeSpan.FromSeconds(3));
...with this one:
bool startResult = await acceptor.Start(tokenSource.Token);
Another issue that caught my eye is the bool IsStarted property which is mutated from one thread and observed by another, without synchronization. This is not really a problem because you could rely on the undocumented memory barrier that is inserted automatically on every await, and be quite confident that you'll not have visibility issues, but if you want to be extra sure you could synchronize the access by using a lock (most robust), or backup the property with a volatile private field like this:
private volatile bool _isStarted;
public bool IsStarted => _isStarted;
I would recommend that you structure your FixAcceptor.Run() methode a little bit different
public async Task Run(CancellationToken cancellationToken, TimeSpan startupDelay)
{
var task = Task.Run(async () =>
{
try
{
cancellationToken.ThrowIfCancellationRequested();
this.acceptor.Start();
this.IsStarted = true;
while (true)
{
// Stop if token has been canceled
if (cancellationToken.IsCancellationRequested)
{
this.acceptor.Stop();
this.IsStarted = false;
cancellationToken.ThrowIfCancellationRequested();
}
// Save some CPU cycles
await Task.Delay(TimeSpan.FromSeconds(1));
}
}
catch (OperationCanceledException e)
{
Debut.WriteLine(e.Message);
}
}, cancellationToken);
await Task.Delay(startupDelay);
}
so the exception handling is in the inner task and the Run methode returns a Task that completes after the startupDelay.
(I also exchanged the Thread.Sleep() with a Task.Delay())
Then in the test methode you can await the Task returned by Run
[Fact]
public async Task Should_Run_Acceptor_And_Stop_By_CancelationToken()
{
// Arrange
var acceptor = new FixAcceptor(new FixAcceptorSettings("test_acceptor.cfg", this.logger));
var tokenSource = new CancellationTokenSource();
// Act
tokenSource.CancelAfter(TimeSpan.FromSeconds(10));
await acceptor.Run(tokenSource.Token, TimeSpan.FromSeconds(3));
// Assert
acceptor.IsStarted.Should().BeTrue();
IsListeningOnTcpPort(9823).Should().BeTrue();
// Wait for cancel event to occur
Thread.Sleep(TimeSpan.FromSeconds(15));
acceptor.IsStarted.Should().BeFalse();
}
It should be okay to make the mehtode async (it seams like you use xunit)

C# how to cancel task? [duplicate]

I created a small wrapper around CancellationToken and CancellationTokenSource. The problem I have is that the CancelAsync method of CancellationHelper doesn't work as expected.
I'm experiencing the problem with the ItShouldThrowAExceptionButStallsInstead method. To cancel the running task, it calls await coordinator.CancelAsync();, but the task is not cancelled actually and doesn't throw an exception on task.Wait
ItWorksWellAndThrowsException seems to be working well and it uses coordinator.Cancel, which is not an async method at all.
The question why is the task is not cancelled when I call CancellationTokenSource's Cancel method in async method?
Don't let the waitHandle confuse you, it's only for not letting the task finish early.
Let the code speak for itself:
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace TestCancellation
{
class Program
{
static void Main(string[] args)
{
ItWorksWellAndThrowsException();
//ItShouldThrowAExceptionButStallsInstead();
}
private static void ItShouldThrowAExceptionButStallsInstead()
{
Task.Run(async () =>
{
var coordinator = new CancellationHelper();
var waitHandle = new ManualResetEvent(false);
var task = Task.Run(() =>
{
waitHandle.WaitOne();
//this works well though - it throws
//coordinator.ThrowIfCancellationRequested();
}, coordinator.Token);
await coordinator.CancelAsync();
//waitHandle.Set(); -- with or without this it will throw
task.Wait();
}).Wait();
}
private static void ItWorksWellAndThrowsException()
{
Task.Run(() =>
{
var coordinator = new CancellationHelper();
var waitHandle = new ManualResetEvent(false);
var task = Task.Run(() => { waitHandle.WaitOne(); }, coordinator.Token);
coordinator.Cancel();
task.Wait();
}).Wait();
}
}
public class CancellationHelper
{
private CancellationTokenSource cancellationTokenSource;
private readonly List<Task> tasksToAwait;
public CancellationHelper()
{
cancellationTokenSource = new CancellationTokenSource();
tasksToAwait = new List<Task>();
}
public CancellationToken Token
{
get { return cancellationTokenSource.Token; }
}
public void AwaitOnCancellation(Task task)
{
if (task == null) return;
tasksToAwait.Add(task);
}
public void Reset()
{
tasksToAwait.Clear();
cancellationTokenSource = new CancellationTokenSource();
}
public void ThrowIfCancellationRequested()
{
cancellationTokenSource.Token.ThrowIfCancellationRequested();
}
public void Cancel()
{
cancellationTokenSource.Cancel();
Task.WaitAll(tasksToAwait.ToArray());
}
public async Task CancelAsync()
{
cancellationTokenSource.Cancel();
try
{
await Task.WhenAll(tasksToAwait.ToArray());
}
catch (AggregateException ex)
{
ex.Handle(p => p is OperationCanceledException);
}
}
}
}
Cancellation in .NET is cooperative.
That means that the one holding the CancellationTokenSource signals cancellation and the one holding the CancellationToken needs to check whether cancellation was signaled (either by polling the CancellationToken or by registering a delegate to run when it is signaled).
In your Task.Run you use the CancellationToken as a parameter, but you don't check it inside the task itself so the task will only be cancelled if the token was signaled before the task had to a chance to start.
To cancel the task while it's running you need to check the CancellationToken:
var task = Task.Run(() =>
{
token.ThrowIfCancellationRequested();
}, token);
In your case you block on a ManualResetEvent so you wouldn't be able to check the CancellationToken. You can register a delegate to the CancellationToken that frees up the reset event:
token.Register(() => waitHandle.Set())

Task.WaitAll() hangs in console application

I have a console application in which I need to retrieve some data from 4 different sites. I placed each HTTP request in a task and I wait for them all to complete.
It was working when I only had to get data from 2 sites. but then I needed to add other sources of data and when adding 3 or more requests, the Task.WaitAll() hangs.
Below is my code.
The reason I ended up using Task.WaitAll() was because I need to stop and prevent the console application from exiting - i.e. I need to perform other tasks only after all the HTTP requests come back with data.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp1
{
class Program
{
static Task[] tasks = new Task[3];
static void Main(string[] args)
{
try
{
Run();
}
catch (System.Exception ex)
{
}
}
public static async void Run()
{
//works when using one or two tasks
tasks[0] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[1] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
//fails when add 3 or more task
tasks[2] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
//tasks[3] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
Task.WaitAll(tasks);
var result4 = ((Task<Stream>)tasks[2]).Result;
}
}
public static class HttpExtensions
{
public static Stopwatch sw;
public static long http_ticks = 0;
public static Task<HttpWebResponse> GetResponseAsync(this HttpWebRequest request)
{
var taskComplete = new TaskCompletionSource<HttpWebResponse>();
request.BeginGetResponse(asyncResponse =>
{
try
{
HttpWebRequest responseRequest = (HttpWebRequest)asyncResponse.AsyncState;
HttpWebResponse someResponse = (HttpWebResponse)responseRequest.EndGetResponse(asyncResponse);
taskComplete.TrySetResult(someResponse);
}
catch (WebException webExc)
{
HttpWebResponse failedResponse = (HttpWebResponse)webExc.Response;
taskComplete.TrySetResult(failedResponse);
}
}, request);
return taskComplete.Task;
}
public static async Task<Stream> GetMyData(string urlToCall)
{
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(urlToCall);
request.Method = HttpMethod.Get;
HttpWebResponse response = (HttpWebResponse)await request.GetResponseAsync();
//using (var sr = new StreamReader(response.GetResponseStream()))
//{
return response.GetResponseStream();
//}
}
}
public static class HttpMethod
{
public static string Head { get { return "HEAD"; } }
public static string Post { get { return "POST"; } }
public static string Put { get { return "PUT"; } }
public static string Get { get { return "GET"; } }
public static string Delete { get { return "DELETE"; } }
public static string Trace { get { return "TRACE"; } }
public static string Options { get { return "OPTIONS"; } }
public static string Connect { get { return "CONNECT"; } }
public static string Patch { get { return "PATCH"; } }
}
}
There a number of concerns.
First, as I mentioned in the comments above, by not returning a Task you are more or less hanging your application since it can't tell when the Task is completed.
However, once you change the Run() method to return a task, you need to invoke it via a Task.Run call in your Main method.
Second, you are over-complicating your code by using WebClient. Switch to HttpClient and take advantage of its natural async/await API.
Third, you aren't actually awaiting anything in your Run() method so changing it to a task does nothing since you aren't awaiting a result which will cause it to run synchronously (no pun intended). Update your method to await a result.
Finally, WaitAll blocks the thread, which may not be what you want. You can use WhenAll instead and await that call, allowing your application to release the thread while your tasks run.
Below is a complete, working example of my recommended modifications, simplified to show a working program. The Main method recommendation is taken from https://social.msdn.microsoft.com/Forums/vstudio/en-US/fe9acdfc-66cd-4b43-9460-a8053ca51885/using-new-asyncawait-in-console-app?forum=netfxbcl
class Program
{
static Task[] tasks = new Task[3];
static HttpClient _client = new HttpClient();
static void Main(string[] args)
{
Console.WriteLine("Main start");
Task t = Run();
t.ContinueWith((str) =>
{
Console.WriteLine(str.Status.ToString());
Console.WriteLine("Main end");
});
t.Wait();
}
public static async Task Run()
{
tasks[0] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[1] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[2] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
await Task.WhenAll(tasks);
var result4 = (await (Task<Stream>)tasks[2]);
}
public static async Task<Stream> GetMyData(string urlToCall)
{
return await _client.GetStreamAsync(urlToCall);
}
}
I think the issue is more of understanding Task and async await; and I may be wrong so apologies up front.
Task is a managed thread that goes into a thread pool. Task has a Task.Result of Type T.
You can create a Task and then Start it and then Wait it. (Never a good idea to start and then immediately wait a task but for understanding...)
var task = new Task(() => DoWork());
task.Start();
task.Wait();
The task will perform the DoWork() method in a new thread.
The calling thread will BLOCK at task.Wait();
You can also give a Task a ContinueWith Action that will perform the remaining work on the calling thread.
var task = new Task(() => DoWorkOnNewThread());
task.ContinueWith(() => MainThreadWork());
task.Start(); //Notice no more task.Wait();
So, if you're following that little bit then you can sort of use async await correctly.
The async keyword tells the compiler to wrap all remaing code AFTER reaching the await keyword WHERE A GetAwaiter() is returned. This is important because until you actually create a task (preferably started also) and return it then you have no GetAwaiter();
private Task DoWorkAsync()
{
var task = new Task(() => DoWork());
task.Start();
return task;
}
private async void Method()
{
//Main thread code...
await DoWorkAsync(); //Returns to whoever called Method()
//More main thread code to be QUEUED to run AFTER DoWorkAsync is complete.
//This portion of code, when compiled, is essentially wrapped in the ContinueWith(...
}
So if you're still following along then here's the kicker. You're on the same thread UNTIL you return a GetAwaiter() which is only found in a Task. If the Task has never started then you'll await that Task forever technically. So here's some comments showing the thread transitions.
private Task DoWorkAsync()
{
Debug.WriteLine("Still on main thread")
var task = new Task(() =>
{
Debug.WriteLine("On background thread");
});
task.Start(); //On main thread.
return task; //On main thread.
}
private async void Method()
{
Debug.WriteLine("On main thread");
await DoWorkAsync(); //returns to caller after DoWorkAsync returns Task
Debug.WriteLine("Back on main thread"); //Works here after the task DoWorkAsync returned is complete
}
An easier way to return the task running is to return Task.Run(() => DoWork()); If you look at the return value of Run it is Task and that task has already been started.
Forgive me if this isn't what you wanted but I felt like there is more of a confusion about using async await correctly than there is confusion about your code. I may be wrong but I felt that if you could understand more about the Task itself and how async await works you would see your issue. If this isn't what you're looking for I'll delete the answer.

A pattern to pause/resume an async task?

I have a mostly IO-bound continuous task (a background spellchecker talking to a spellcheck server). Sometimes, this task needs to be put on hold and resumed later, depending on the user activity.
While suspend/resume is essentially what async/await does, I've found little information on how to implement the actual pause/play logic for an asynchronous method. Is there a recommended pattern for this?
I've also looked at using Stephen Toub's AsyncManualResetEvent for this, but thought it might be an overkill.
Updated for 2019, I've recently had a chance to revisit this code, below is complete example as a console app (warning: PauseTokenSource needs good unit testing).
Note, in my case, the requirement was that when the consumer-side code (which requested the pause) would continue, the producer-side code should have already reached the paused state. Thus, by the time the UI is ready to reflect the paused state, all background activity is expected to have been already paused.
using System;
using System.Threading.Tasks;
using System.Threading;
namespace Console_19613444
{
class Program
{
// PauseTokenSource
public class PauseTokenSource
{
bool _paused = false;
bool _pauseRequested = false;
TaskCompletionSource<bool> _resumeRequestTcs;
TaskCompletionSource<bool> _pauseConfirmationTcs;
readonly SemaphoreSlim _stateAsyncLock = new SemaphoreSlim(1);
readonly SemaphoreSlim _pauseRequestAsyncLock = new SemaphoreSlim(1);
public PauseToken Token { get { return new PauseToken(this); } }
public async Task<bool> IsPaused(CancellationToken token = default(CancellationToken))
{
await _stateAsyncLock.WaitAsync(token);
try
{
return _paused;
}
finally
{
_stateAsyncLock.Release();
}
}
public async Task ResumeAsync(CancellationToken token = default(CancellationToken))
{
await _stateAsyncLock.WaitAsync(token);
try
{
if (!_paused)
{
return;
}
await _pauseRequestAsyncLock.WaitAsync(token);
try
{
var resumeRequestTcs = _resumeRequestTcs;
_paused = false;
_pauseRequested = false;
_resumeRequestTcs = null;
_pauseConfirmationTcs = null;
resumeRequestTcs.TrySetResult(true);
}
finally
{
_pauseRequestAsyncLock.Release();
}
}
finally
{
_stateAsyncLock.Release();
}
}
public async Task PauseAsync(CancellationToken token = default(CancellationToken))
{
await _stateAsyncLock.WaitAsync(token);
try
{
if (_paused)
{
return;
}
Task pauseConfirmationTask = null;
await _pauseRequestAsyncLock.WaitAsync(token);
try
{
_pauseRequested = true;
_resumeRequestTcs = new TaskCompletionSource<bool>(TaskCreationOptions.RunContinuationsAsynchronously);
_pauseConfirmationTcs = new TaskCompletionSource<bool>(TaskCreationOptions.RunContinuationsAsynchronously);
pauseConfirmationTask = WaitForPauseConfirmationAsync(token);
}
finally
{
_pauseRequestAsyncLock.Release();
}
await pauseConfirmationTask;
_paused = true;
}
finally
{
_stateAsyncLock.Release();
}
}
private async Task WaitForResumeRequestAsync(CancellationToken token)
{
using (token.Register(() => _resumeRequestTcs.TrySetCanceled(), useSynchronizationContext: false))
{
await _resumeRequestTcs.Task;
}
}
private async Task WaitForPauseConfirmationAsync(CancellationToken token)
{
using (token.Register(() => _pauseConfirmationTcs.TrySetCanceled(), useSynchronizationContext: false))
{
await _pauseConfirmationTcs.Task;
}
}
internal async Task PauseIfRequestedAsync(CancellationToken token = default(CancellationToken))
{
Task resumeRequestTask = null;
await _pauseRequestAsyncLock.WaitAsync(token);
try
{
if (!_pauseRequested)
{
return;
}
resumeRequestTask = WaitForResumeRequestAsync(token);
_pauseConfirmationTcs.TrySetResult(true);
}
finally
{
_pauseRequestAsyncLock.Release();
}
await resumeRequestTask;
}
}
// PauseToken - consumer side
public struct PauseToken
{
readonly PauseTokenSource _source;
public PauseToken(PauseTokenSource source) { _source = source; }
public Task<bool> IsPaused() { return _source.IsPaused(); }
public Task PauseIfRequestedAsync(CancellationToken token = default(CancellationToken))
{
return _source.PauseIfRequestedAsync(token);
}
}
// Basic usage
public static async Task DoWorkAsync(PauseToken pause, CancellationToken token)
{
try
{
while (true)
{
token.ThrowIfCancellationRequested();
Console.WriteLine("Before await pause.PauseIfRequestedAsync()");
await pause.PauseIfRequestedAsync();
Console.WriteLine("After await pause.PauseIfRequestedAsync()");
await Task.Delay(1000);
}
}
catch (Exception e)
{
Console.WriteLine("Exception: {0}", e);
throw;
}
}
static async Task Test(CancellationToken token)
{
var pts = new PauseTokenSource();
var task = DoWorkAsync(pts.Token, token);
while (true)
{
token.ThrowIfCancellationRequested();
Console.WriteLine("Press enter to pause...");
Console.ReadLine();
Console.WriteLine("Before pause requested");
await pts.PauseAsync();
Console.WriteLine("After pause requested, paused: " + await pts.IsPaused());
Console.WriteLine("Press enter to resume...");
Console.ReadLine();
Console.WriteLine("Before resume");
await pts.ResumeAsync();
Console.WriteLine("After resume");
}
}
static async Task Main()
{
await Test(CancellationToken.None);
}
}
}
AsyncManualResetEvent is exactly what you need, considering how messy your current code is. But a slightly better solution would be to use another approach from Stephen Toub: PauseToken. It works similarly to AsyncManualResetEvent, except its interface is made specifically for this purpose.
All the other answers seem either complicated or missing the mark when it comes to async/await programming by holding the thread which is CPU expensive and can lead to deadlocks. After lots of trial, error and many deadlocks, this finally worked for my high usage test.
var isWaiting = true;
while (isWaiting)
{
try
{
//A long delay is key here to prevent the task system from holding the thread.
//The cancellation token allows the work to resume with a notification
//from the CancellationTokenSource.
await Task.Delay(10000, cancellationToken);
}
catch (TaskCanceledException)
{
//Catch the cancellation and it turns into continuation
isWaiting = false;
}
}
it is works for me
using System;
using System.Threading;
using System.Threading.Tasks;
namespace TaskTest2
{
class Program
{
static ManualResetEvent mre = new ManualResetEvent(false);
static void Main(string[] args)
{
mre.Set();
Task.Factory.StartNew(() =>
{
while (true)
{
Console.WriteLine("________________");
mre.WaitOne();
}
} );
Thread.Sleep(10000);
mre.Reset();
Console.WriteLine("Task Paused");
Thread.Sleep(10000);
Console.WriteLine("Task Will Resume After 1 Second");
Thread.Sleep(1000);
mre.Set();
Thread.Sleep(10000);
mre.Reset();
Console.WriteLine("Task Paused");
Console.Read();
}
}
}
Ok, maybe this deserves an answer, but I'm not so familiar with C# and I don't have MonoDevelop here, and it's 3 o' clock AM, so please have pity.
I'm suggesting something like this
class Spellchecker
{
private CancellationTokenSource mustStop = null;
private volatile Task currentTask = null;
//TODO add other state variables as needed
public void StartSpellchecker()
{
if (currentTask != null)
{
/*
* A task is already running,
* you can either throw an exception
* or silently return
*/
}
mustStop = new CancellationTokenSource();
currentTask = SpellcheckAsync(mustStop.Token);
currentTask.Start();
}
private async Task SpellcheckAsync(CancellationToken ct)
{
while (!ct.IsCancellationRequested))
{
/*
* TODO perform spell check
* This method must be the only one accessing
* the spellcheck-related state variables
*/
}
currentTask = null;
}
public async Task StopSpellchecker()
{
if (currentTask == null)
{
/*
* There is no task running
* you can either throw an exception
* or silently return
*/
}
else
{
/*
* A CancelAfter(TimeSpan) method
* is also available, which might interest you
*/
mustStop.Cancel();
//Remove the following lines if you don't want to wait for the task to actually stop
var task = currentTask;
if (task != null)
{
await task;
}
}
}
}

Categories

Resources