I have a console application which does 3 steps as mentioned below,
Get pending notification records from db
Call service to send email (service returns email address as response)
After getting service response, update the db
For step 2, I am using Parallel.Foreach() and it is working far better than foreach().
I have gone through lot of articles and threads on stackoverflow which is causing more confusion on this topic.
I have few questions
I am running this on a server, does it affect the performance and should I limit the number of threads? (The email count can be from 0-500 or 1000)
I ran into one issue, where in step 2, the service returned an email address as response but it was not available while updating the db. (email count here was 400)
I am suspecting that the issue could be because of using parallel.foreach and that it did not add in notifList.
If this is the case, can I add Thread.Sleep(1000) after Parallel.Foreach() loop ends, does it fix the issue?
In case of any exception, should I explicitly cancel the threads?
Appreciate your time and effort on helping me with this. Thank you!
public void notificationMethod()
{
List<notify> notifList = new List<notify>();
//step 1
List<orders> orderList = GetNotifs();
try
{
if (orderList.Count > 0)
{
Parallel.ForEach(orderList, (orderItem) =>
{
//step 2
SendNotifs(orderItem);
notifList.Add(new notify()
{
//building list by adding email address along with other information
});
});
if (notifList.Count > 0)
{
int index = 0;
int rows = 10;
int skipRows = index * rows;
int updatedRows = 0;
while (skipRows < notifList.Count)
{
//pagination
List<notify> subitem = notifList.Skip(index * rows).Take(rows).ToList<notify>();
updatedRows += subitem.Count;
//step 3
UpdateDatabase(subitem);
index++;
skipRows = index * rows;
}
}
}
}
catch (ApplicationException ex)
{
}
}
I also had a similar scenario regarding whether using Parallel.ForEach() would help improve the performance. But when I saw the below video from Microsoft, it gave me an idea to select Parallel.ForEach() only for CPU intensive workloads.
In this case, your scenario will fall into I/O intensive workloads and could be handled better by async/await.
https://channel9.msdn.com/Series/Three-Essential-Tips-for-Async/Tip-2-Distinguish-CPU-Bound-work-from-IO-bound-work
Related
Hello I just newly started with Cassandra not much familiar, can u please let me know the error here
I am trying to insert 16000 records using the bellow code
public async Task AddSprintsStories(List<SprintStories> sprintStories)
{
var tasks = new List<Task>();
try
{
if (sprintStories.Count > 0)
{
foreach (var item in sprintStories)
{
SprintStories sprintStoryData = new SprintStories();
sprintStoryData.Id = item.Id;
sprintStoryData.ProjectId = item.ProjectId;
sprintStoryData.SprintId = item.SprintId;
tasks.Add(mapper.InsertAsync<SprintStories>(sprintStoryData, new CqlQueryOptions().SetConsistencyLevel(ConsistencyLevel.LocalQuorum)));
}
await Task.WhenAll(tasks);
}
}
catch (Exception e)
{
}
}
but facing the error: c# Server timeout during write query at consistency LOCALQUORUM (0 peer(s) acknowledged the write over 2 required)
can anyone please help me out here
How does the Cassandra cluster look during this cluster? CPU or disk I/O maxed-out? Without knowing that, my guess is that those 16000 writes are happening faster than your cluster can process them, creating write back pressure. Finally, it just can't process anymore, so they start failing.
For a possible solution, try limiting the number of active threads. Something like this should do it.
int maxActiveThreads = 20;
int activeThreads = 0;
foreach (var item in sprintStories)
{
...
tasks.Add(mapper.InsertAsync<SprintStories>(sprintStoryData, new CqlQueryOptions().SetConsistencyLevel(ConsistencyLevel.LocalQuorum)));
activeThreads++;
if (activeThreads >= maxActiveThreads)
{
await Task.WhenAll(tasks);
activeThreads = 0;
}
}
await Task.WhenAll(tasks);
With this code, only 20 writes will be competing for Cassandra cluster resources at any given time. Do note, that I'm just using 20 as an example. Adjust that number to something that meets your requirements for performance and stability.
Ryan Svihla wrote a great blog post on this topic- Cassandra: Batch Loading Without the BATCH - The Nuanced Edition
I have a web service I need to query and it takes a value that supports pagination for its data. Due to the amount of data I need to fetch and how that service is implemented I intended to do a series of concurrent http web requests to accumulate this data.
Say I have number of threads and page size how could I assign each thread to pick its starting point that doesn't overlap with the other thread? Its been a long time since I took parallel programming and I'm floundering a bit. I know I could find my start point with something like start = N/numThreads * threadNum however I don't know N. Right now I just spin up X threads and each loop until they get no more data. Problem is they tend to overlap and I end up with duplicate data. I need unique data and not to waste requests.
Right now I have code that looks something like this. This is one of many attempts and I see why this is wrong but its better to show something. The goal is to in parallel collect pages of data from a webservice:
int limit = pageSize;
data = new List<RequestStuff>();
List<Task> tasks = new List<Task>();
for (int i = 0; i < numThreads; i++)
{
tasks.Add(Task.Factory.StartNew(() =>
{
try
{
List<RequestStuff> someData;
do
{
int start;
lock(myLock)
{
start = data.Count;
}
someKeys = GetDataFromService(start, limit);
lock (myLock)
{
if (someData != null && someData.Count > 0)
{
data.AddRange(someData);
}
}
} while (hasData);
}
catch (AggregateException ex)
{
//Exception things
}
}));
}
Task.WaitAll(tasks.ToArray());
Any inspiration to solve this without race conditions? I need to stick to .NET 4 if that matters.
I'm not sure there's a way to do this without wasting some requests unless you know the actual limit. The code below might help eliminate the duplicate data as you will only query on each index once:
private int _index = -1; // -1 so first request starts at 0
private bool _shouldContinue = true;
public IEnumerable<RequestStuff> GetAllData()
{
var tasks = new List<Task<RequestStuff>>();
while (_shouldContinue)
{
tasks.Add(new Task<RequestStuff>(() => GetDataFromService(GetNextIndex())));
}
Task.WaitAll(tasks.ToArray());
return tasks.Select(t => t.Result).ToList();
}
private RequestStuff GetDataFromService(int id)
{
// Get the data
// If there's no data returned set _shouldContinue to false
// return the RequestStuff;
}
private int GetNextIndex()
{
return Interlocked.Increment(ref _index);
}
It could also be improved by adding cancellation tokens to cancel any indexes you know to be wasteful, i.e, if index 4 returns nothing you can cancel all queries on indexes above 4 that are still active.
Or if you could make a reasonable guess at the max index you might be able to implement an algorithm to pinpoint the exact limit before retrieving any data. This would probably only be more efficient if your guess was fairly accurate though.
Are you attempting to force parallelism on the part of the remote service by issuing multiple concurrent requests? Paging is generally used to limit the amount of data returned to only that which is needed, but if you need all of the data, then attempting to first page and then reconstruct it later seems like a poor design. Your code becomes needlessly complex, difficult to maintain, you'll likely just move the bottleneck from code you control to somewhere else, and now you've introduced data integrity issues (what happens if all of these threads access different versions of the data you are trying to query?). By increasing the complexity and number of calls, you are also increasing the likelihood of problems occurring (eg. one of the connections gets dropped).
Can you state the problem you are attempting to solve so perhaps instead we can help architect a better solution?
I have a service layer project on an MVC 5 ASP.NET application I am creating on .NET 4.5.2 which calls out to an External 3rd Party WCF Service to Get Information asynchronously. An original method to call external service was as below (there are 3 of these all similar in total which I call in order from my GetInfoFromExternalService method (note it isnt actually called that - just naming it for illustration)
private async Task<string> GetTokenIdForCarsAsync(Car[] cars)
{
try
{
if (_externalpServiceClient == null)
{
_externalpServiceClient = new ExternalServiceClient("WSHttpBinding_IExternalService");
}
string tokenId= await _externalpServiceClient .GetInfoForCarsAsync(cars).ConfigureAwait(false);
return tokenId;
}
catch (Exception ex)
{
//TODO plug in log 4 net
throw new Exception("Failed" + ex.Message);
}
finally
{
CloseExternalServiceClient(_externalpServiceClient);
_externalpServiceClient= null;
}
}
So that meant that when each async call had completed the finally block ran - the WCF client was closed and set to null and then newed up when another request was made. This was working fine until a change needed to be made whereby if the number of cars passed in by User exceeds 1000 I create a Split Function and then call my GetInfoFromExternalService method in a WhenAll with each 1000 - as below:
if (cars.Count > 1000)
{
const int packageSize = 1000;
var packages = SplitCarss(cars, packageSize);
//kick off the number of split packages we got above in Parallel and await until they all complete
await Task.WhenAll(packages.Select(GetInfoFromExternalService));
}
However this now falls over as if I have 3000 cars the method call to GetTokenId news up the WCF service but the finally blocks closes it so the second batch of 1000 that is attempting to be run throws an exception. If I remove the finally block the code works ok - but it is obviously not good practice to not be closing this WCF client.
I had tried putting it after my if else block where the cars.count is evaluated - but if a User uploads for e.g 2000 cars and that completes and runs in say 1 min - in the meantime as the user had control in the Webpage they could upload another 2000 or another User could upload and again it falls over with an Exception.
Is there a good way anyone can see to correctly close the External Service Client?
Based on the related question of yours, your "split" logic doesn't seem to give you what you're trying to achieve. WhenAll still executes requests in parallel, so you may end up running more than 1000 requests at any given moment of time. Use SemaphoreSlim to throttle the number of simultaneously active requests and limit that number to 1000. This way, you don't need to do any splits.
Another issue might be in how you handle the creation/disposal of ExternalServiceClient client. I suspect there might a race condition there.
Lastly, when you re-throw from the catch block, you should at least include a reference to the original exception.
Here's how to address these issues (untested, but should give you the idea):
const int MAX_PARALLEL = 1000;
SemaphoreSlim _semaphoreSlim = new SemaphoreSlim(MAX_PARALLEL);
volatile int _activeClients = 0;
readonly object _lock = new Object();
ExternalServiceClient _externalpServiceClient = null;
ExternalServiceClient GetClient()
{
lock (_lock)
{
if (_activeClients == 0)
_externalpServiceClient = new ExternalServiceClient("WSHttpBinding_IExternalService");
_activeClients++;
return _externalpServiceClient;
}
}
void ReleaseClient()
{
lock (_lock)
{
_activeClients--;
if (_activeClients == 0)
{
_externalpServiceClient.Close();
_externalpServiceClient = null;
}
}
}
private async Task<string> GetTokenIdForCarsAsync(Car[] cars)
{
var client = GetClient();
try
{
await _semaphoreSlim.WaitAsync().ConfigureAwait(false);
try
{
string tokenId = await client.GetInfoForCarsAsync(cars).ConfigureAwait(false);
return tokenId;
}
catch (Exception ex)
{
//TODO plug in log 4 net
throw new Exception("Failed" + ex.Message, ex);
}
finally
{
_semaphoreSlim.Release();
}
}
finally
{
ReleaseClient();
}
}
Updated based on the comment:
the External WebService company can accept me passing up to 5000 car
objects in one call - though they recommend splitting into batches of
1000 and run up to 5 in parallel at one time - so when I mention 7000
- I dont mean GetTokenIdForCarAsync would be called 7000 times - with my code currently it should be called 7 times - i.e giving me back 7
token ids - I am wondering can I use your semaphore slim to run first
5 in parallel and then 2
The changes are minimal (but untested). First:
const int MAX_PARALLEL = 5;
Then, using Marc Gravell's ChunkExtension.Chunkify, we introduce GetAllTokenIdForCarsAsync, which in turn will be calling GetTokenIdForCarsAsync from above:
private async Task<string[]> GetAllTokenIdForCarsAsync(Car[] cars)
{
var results = new List<string>();
var chunks = cars.Chunkify(1000);
var tasks = chunks.Select(chunk => GetTokenIdForCarsAsync(chunk)).ToArray();
await Task.WhenAll(tasks);
return tasks.Select(task => task.Result).ToArray();
}
Now you can pass all 7000 cars into GetAllTokenIdForCarsAsync. This is a skeleton, it can be improved with some retry logic if any of the batch requests has failed (I'm leaving that up to you).
Will parallelism help with performance for a locked object, should it be run single threaded, or is there another technique?
I noticed that when accessing a dataset and adding rows from multiple threads exceptions were thrown. Therefore I created a "thread-safe" version to add rows by locking the table prior to updating the row. This implementation works but is appears slow with many transactions.
public partial class HaMmeRffl
{
public partial class PlayerStatsDataTable
{
public void AddPlayerStatsRow(int PlayerID, int Year, int StatEnum, int Value, DateTime Timestamp)
{
lock (TeamMemberData.Dataset.PlayerStats)
{
HaMmeRffl.PlayerStatsRow testrow = TeamMemberData.Dataset.PlayerStats.FindByPlayerIDYearStatEnum(PlayerID, Year, StatEnum);
if (testrow == null)
{
HaMmeRffl.PlayerStatsRow newRow = TeamMemberData.Dataset.PlayerStats.NewPlayerStatsRow();
newRow.PlayerID = PlayerID;
newRow.Year = Year;
newRow.StatEnum = StatEnum;
newRow.Value = Value;
newRow.Timestamp = Timestamp;
TeamMemberData.Dataset.PlayerStats.AddPlayerStatsRow(newRow);
}
else
{
testrow.Value = Value;
testrow.Timestamp = Timestamp;
}
}
}
}
}
Now I can call this safely from multiple threads, but does it actually buy me anything? Can I do this differently for better performance. For instance is there any way to use System.Collections.Concurrent namespace to optimize performance or any other methods?
In addition, I update the underlying database after the entire dataset is updated and that takes a very long time. Would that be considered an I/O operation and be worth using parallel processing by updating it after each row is updated in the dataset (or some number of rows).
UPDATE
I wrote some code to test concurrent vs sequential processing which shows it takes about 30% longer to do concurrent processing and I should use sequential processing here. I assume this is because the lock on the database is causing the overhead on the ConcurrentQueue to be more costly than the gains from parallel processing. Is this conclusion correct and is there anything that I can do to speed up the processing, or am I stuck as for a Datatable "You must synchronize any write operations".
Here is my test code which might not be scientifically correct. Here is the timer and calls between them.
dbTimer.Restart();
Queue<HaMmeRffl.PlayersRow.PlayerValue> addPlayerRow = InsertToPlayerQ(addUpdatePlayers);
Queue<HaMmeRffl.PlayerStatsRow.PlayerStatValue> addPlayerStatRow = InsertToPlayerStatQ(addUpdatePlayers);
UpdatePlayerStatsInDB(addPlayerRow, addPlayerStatRow);
dbTimer.Stop();
System.Diagnostics.Debug.Print("Writing to the dataset took {0} seconds single threaded", dbTimer.Elapsed.TotalSeconds);
dbTimer.Restart();
ConcurrentQueue<HaMmeRffl.PlayersRow.PlayerValue> addPlayerRows = InsertToPlayerQueue(addUpdatePlayers);
ConcurrentQueue<HaMmeRffl.PlayerStatsRow.PlayerStatValue> addPlayerStatRows = InsertToPlayerStatQueue(addUpdatePlayers);
UpdatePlayerStatsInDB(addPlayerRows, addPlayerStatRows);
dbTimer.Stop();
System.Diagnostics.Debug.Print("Writing to the dataset took {0} seconds concurrently", dbTimer.Elapsed.TotalSeconds);
In both examples I add to the Queue and ConcurrentQueue in an identical manner single threaded. The only difference is the insertion into the datatable. The single-threaded approach inserts as follows:
private static void UpdatePlayerStatsInDB(Queue<HaMmeRffl.PlayersRow.PlayerValue> addPlayerRows, Queue<HaMmeRffl.PlayerStatsRow.PlayerStatValue> addPlayerStatRows)
{
try
{
HaMmeRffl.PlayersRow.PlayerValue row;
while (addPlayerRows.Count > 0)
{
row = addPlayerRows.Dequeue();
TeamMemberData.Dataset.Players.AddPlayersRow(
row.PlayerID, row.Name, row.PosEnum, row.DepthEnum,
row.TeamID, row.RosterTimestamp, row.DepthTimestamp,
row.Active, row.NewsUpdate);
}
}
catch (Exception)
{
TeamMemberData.Dataset.Players.RejectChanges();
}
try
{
HaMmeRffl.PlayerStatsRow.PlayerStatValue row;
while (addPlayerStatRows.Count > 0)
{
row = addPlayerStatRows.Dequeue();
TeamMemberData.Dataset.PlayerStats.AddUpdatePlayerStatsRow(
row.PlayerID, row.Year, row.StatEnum, row.Value, row.Timestamp);
}
}
catch (Exception)
{
TeamMemberData.Dataset.PlayerStats.RejectChanges();
}
TeamMemberData.Dataset.Players.AcceptChanges();
TeamMemberData.Dataset.PlayerStats.AcceptChanges();
}
The concurrent adds as follows
private static void UpdatePlayerStatsInDB(ConcurrentQueue<HaMmeRffl.PlayersRow.PlayerValue> addPlayerRows, ConcurrentQueue<HaMmeRffl.PlayerStatsRow.PlayerStatValue> addPlayerStatRows)
{
Action actionPlayer = () =>
{
HaMmeRffl.PlayersRow.PlayerValue row;
while (addPlayerRows.TryDequeue(out row))
{
TeamMemberData.Dataset.Players.AddPlayersRow(
row.PlayerID, row.Name, row.PosEnum, row.DepthEnum,
row.TeamID, row.RosterTimestamp, row.DepthTimestamp,
row.Active, row.NewsUpdate);
}
};
Action actionPlayerStat = () =>
{
HaMmeRffl.PlayerStatsRow.PlayerStatValue row;
while (addPlayerStatRows.TryDequeue(out row))
{
TeamMemberData.Dataset.PlayerStats.AddUpdatePlayerStatsRow(
row.PlayerID, row.Year, row.StatEnum, row.Value, row.Timestamp);
}
};
Action[] actions = new Action[Environment.ProcessorCount * 2];
for (int i = 0; i < Environment.ProcessorCount; i++)
{
actions[i * 2] = actionPlayer;
actions[i * 2 + 1] = actionPlayerStat;
}
try
{
// Start ProcessorCount concurrent consuming actions.
Parallel.Invoke(actions);
}
catch (Exception)
{
TeamMemberData.Dataset.Players.RejectChanges();
TeamMemberData.Dataset.PlayerStats.RejectChanges();
}
TeamMemberData.Dataset.Players.AcceptChanges();
TeamMemberData.Dataset.PlayerStats.AcceptChanges();
}
The difference in time is 4.6 seconds for the single-threaded and 6.1 for the parallel.Invoke.
Lock & transactions are not good for parallelism and performance.
1)Try avoid lock:Will different threads need to update the same Row in dataset?
2)minimize lock time.
For db operation use may try Batch Update future of ADO.NET: http://msdn.microsoft.com/en-us/library/ms810297.aspx
Multithreading can help upto an extent because once the data across your app boundary , you will start waiting for I/O , here you can do asynchronous processing because your app does not have control over various parameters ( Resource access , Network speed etc),this will give better user experience (If UI app).
Now for your scenario , you may want to use some sort of producer/consumer queue , as soon as a row is available in queue , a different thread start processing it but again this will work upto an extent.
I'm working on an ASP.NET MVC application that uses the Google Maps Geocoding API. In a single batch there may be upto 1000 queries to submit to the Geocoding API, so I'm trying to use a parallel processing approach to imporove performance. The method responsible for starting a process for each core is:
public void GeoCode(Queue<Job> qJobs, bool bolKeepTrying, bool bolSpellCheck, Action<Job, bool, bool> aWorker)
{
// Get the number of processors, initialize the number of remaining
// threads, and set the starting point for the iteration.
int intCoreCount = Environment.ProcessorCount;
int intRemainingWorkItems = intCoreCount;
using(ManualResetEvent mreController = new ManualResetEvent(false))
{
// Create each of the work items.
for(int i = 0; i < intCoreCount; i++)
{
ThreadPool.QueueUserWorkItem(delegate
{
Job jCurrent = null;
while(qJobs.Count > 0)
{
lock(qJobs)
{
if(qJobs.Count > 0)
{
jCurrent = qJobs.Dequeue();
}
else
{
if(jCurrent != null)
{
jCurrent = null;
}
}
}
aWorker(jCurrent, bolKeepTrying, bolSpellCheck);
}
if(Interlocked.Decrement(ref intRemainingWorkItems) == 0)
{
mreController.Set();
}
});
}
// Wait for all threads to complete.
mreController.WaitOne();
}
}
This is based on patterns document I found on Microsoft's parallel computing web site.
The problem is that the Google API has a limit of 10 QPS (enterprise customer) - which I'm hitting - then I get HTTP 403 error's. Is this a way I can benefit from parallel processing but limit the requests I'm making? I've tried using Thread.Sleep but it doesn't solve the problem. Any help or suggestions would be very much appreciated.
It sounds like your missing some sort of Max in Flight parameter. Rather than just looping while there are jobs in the queue, you need to throttle your submissions based on jobs finishing.
Seems like your algorithm should be something like the following:
submit N jobs (where N is your max in flight)
Wait for a job to complete, and if queue is not empty, submit next job.