I have read a few stackoverflow threads about multi-threading in a foreach loop, but I am not sure I am understanding and using it right.
I have tried multiple scenarios, but I am not seeing much increase in performance.
Here is what I believe runs Asynchronous tasks, but running synchronously in the loop using a single thread:
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
foreach (IExchangeAPI selectedApi in selectedApis)
{
if (exchangeSymbols.TryGetValue(selectedApi.Name, out symbol))
{
ticker = await selectedApi.GetTickerAsync(symbol);
}
}
stopWatch.Stop();
Here is what I hoped to be running Asynchronously (still using a single thread) - I would have expected some speed improvement already here:
List<Task<ExchangeTicker>> exchTkrs = new List<Task<ExchangeTicker>>();
stopWatch.Start();
foreach (IExchangeAPI selectedApi in selectedApis)
{
if (exchangeSymbols.TryGetValue(selectedApi.Name, out symbol))
{
exchTkrs.Add(selectedApi.GetTickerAsync(symbol));
}
}
ExchangeTicker[] retTickers = await Task.WhenAll(exchTkrs);
stopWatch.Stop();
Here is what I would have hoped to run Asynchronously in Multi-thread:
stopWatch.Start();
Parallel.ForEach(selectedApis, async (IExchangeAPI selectedApi) =>
{
if (exchangeSymbols.TryGetValue(selectedApi.Name, out symbol))
{
ticker = await selectedApi.GetTickerAsync(symbol);
}
});
stopWatch.Stop();
Stop watch results interpreted as follows:
Console.WriteLine("Time elapsed (ns): {0}", stopWatch.Elapsed.TotalMilliseconds * 1000000);
Console outputs:
Time elapsed (ns): 4183308100
Time elapsed (ns): 4183946299.9999995
Time elapsed (ns): 4188032599.9999995
Now, the speed improvement looks minuscule. Am I doing something wrong or is that more or less what I should be expecting? I suppose writing to files would be a better to check that.
Would you mind also confirming I am interpreting the different use cases correctly?
Finally, using a foreach loop in order to get the ticker from multiple platforms in parallel may not be the best approach. Suggestions on how to improve this would be welcome.
EDIT
Note that I am using the ExchangeSharp code base that you can find here
Here is what the GerTickerAsync() method looks like:
public virtual async Task<ExchangeTicker> GetTickerAsync(string marketSymbol)
{
marketSymbol = NormalizeMarketSymbol(marketSymbol);
return await Cache.CacheMethod(MethodCachePolicy, async () => await OnGetTickerAsync(marketSymbol), nameof(GetTickerAsync), nameof(marketSymbol), marketSymbol);
}
For the Kraken API, you then have:
protected override async Task<ExchangeTicker> OnGetTickerAsync(string marketSymbol)
{
JToken apiTickers = await MakeJsonRequestAsync<JToken>("/0/public/Ticker", null, new Dictionary<string, object> { { "pair", NormalizeMarketSymbol(marketSymbol) } });
JToken ticker = apiTickers[marketSymbol];
return await ConvertToExchangeTickerAsync(marketSymbol, ticker);
}
And the Caching method:
public static async Task<T> CacheMethod<T>(this ICache cache, Dictionary<string, TimeSpan> methodCachePolicy, Func<Task<T>> method, params object?[] arguments) where T : class
{
await new SynchronizationContextRemover();
methodCachePolicy.ThrowIfNull(nameof(methodCachePolicy));
if (arguments.Length % 2 == 0)
{
throw new ArgumentException("Must pass function name and then name and value of each argument");
}
string methodName = (arguments[0] ?? string.Empty).ToStringInvariant();
string cacheKey = methodName;
for (int i = 1; i < arguments.Length;)
{
cacheKey += "|" + (arguments[i++] ?? string.Empty).ToStringInvariant() + "=" + (arguments[i++] ?? string.Empty).ToStringInvariant("(null)");
}
if (methodCachePolicy.TryGetValue(methodName, out TimeSpan cacheTime))
{
return (await cache.Get<T>(cacheKey, async () =>
{
T innerResult = await method();
return new CachedItem<T>(innerResult, CryptoUtility.UtcNow.Add(cacheTime));
})).Value;
}
else
{
return await method();
}
}
At first it should be pointed out that what you are trying to achieve is performance, not asynchrony. And you are trying to achieve it by running multiple operations concurrently, not in parallel. To keep the explanation simple I'll use a simplified version of your code, and I'll assume that each operation is a direct web request, without an intermediate caching layer, and with no dependencies to values existing in dictionaries.
foreach (var symbol in selectedSymbols)
{
var ticker = await selectedApi.GetTickerAsync(symbol);
}
The above code runs the operations sequentially. Each operation starts after the completion of the previous one.
var tasks = new List<Task<ExchangeTicker>>();
foreach (var symbol in selectedSymbols)
{
tasks.Add(selectedApi.GetTickerAsync(symbol));
}
var tickers = await Task.WhenAll(tasks);
The above code runs the operations concurrently. All operations start at once. The total duration is expected to be the duration of the longest running operation.
Parallel.ForEach(selectedSymbols, async symbol =>
{
var ticker = await selectedApi.GetTickerAsync(symbol);
});
The above code runs the operations concurrently, like the previous version with Task.WhenAll. It offers no advantage, while having the huge disadvantage that you no longer have a way to await the operations to complete. The Parallel.ForEach method will return immediately after launching the operations, because the Parallel class doesn't understand async delegates (it does not accept Func<Task> lambdas). Essentially there are a bunch of async void lambdas in there, that are running out of control, and in case of an exception they will bring down the process.
So the correct way to run the operations concurrently is the second way, using a list of tasks and the Task.WhenAll. Since you've already measured this method and haven't observed any performance improvements, I am assuming that there something else that serializes the concurrent operations. It could be something like a SemaphoreSlim hidden somewhere in your code, or some mechanism on the server side that throttles your requests. You'll have to investigate further to find where and why the throttling happens.
In general, when you do not see an increase by multi threading, it is because your task is not CPU limited or large enough to offset the overhead.
In your example, i.e.:
selectedApi.GetTickerAsync(symbol);
This can hae 2 reasons:
1: Looking up the ticker is brutally fast and it should not be an async to start with. I.e. when you look it up in a dictionary.
2: This is running via a http connection where the runtime is LIMITING THE NUMBER OF CONCURRENT CALLS. Regardless how many tasks you open, it will not use more than 4 at the same time.
Oh, and 3: you think async is using threads. It is not. It is particularly not the case in a codel ike this:
await selectedApi.GetTickerAsync(symbol);
Where you basically IMMEDIATELY WAIT FOR THE RESULT. There is no multi threading involved here at all.
foreach (IExchangeAPI selectedApi in selectedApis) {
if (exchangeSymbols.TryGetValue(selectedApi.Name, out symbol))
{
ticker = await selectedApi.GetTickerAsync(symbol);
} }
This is linear non threaded code using an async interface to not block the current thread while the (likely expensive IO) operation is in place. It starts one, THEN WAITS FOR THE RESULT. No 2 queries ever start at the same time.
If you want a possible (just as example) more scalable way:
In the foreach, do not await but add the task to a list of tasks.
Then start await once all the tasks have started. Likein a 2nd loop.
WAY not perfect, but at least the runtime has a CHANCE to do multiple lookups at the same time. Your await makes sure that you essentially run single threaded code, except async, so your thread goes back into the pool (and is not waiting for results), increasing your scalability - an item possibly not relevant in this case and definitely not measured in your test.
Related
I'm working on a problem where I have to delete records using a service call. The issue is that I have a for each loop where i have multiple await operations.This is making the operation take lot of time and performance is lacking
foreach(var a in list<long>b)
{
await _serviceresolver().DeleteOperationAsync(id,a)
}
The issue is that I have a for each loop where i have multiple await operations.
This is making the operation take lot of time and performance is lacking
The number one solution is to reduce the number of calls. This is often called "chunky" over "chatty". So if your service supports some kind of bulk-delete operation, then expose it in your service type and then you can just do:
await _serviceresolver().BulkDeleteOperationAsync(id, b);
But if that isn't possible, then you can at least use asynchronous concurrency. This is quite different from parallelism; you don't want to use Parallel or PLINQ.
var service = _serviceresolver();
var tasks = b.Select(a => service.DeleteOperationAsync(id, a)).ToList();
await Task.WhenAll(tasks);
I do not know what code is behind this DeleteOperationAsync, but for sure async/await isn't designed to speed things up. It was designated to "spare" threads (colloquially speaking)
The best would be to change the method to take as a parameter the whole list of ids - instead of taking and sending just one id.
And then to perform this async/await heavy operation only once for all of the ids.
If that is not possible, you could just run it in parallel using TPL (but it is ready the worst-case scenario - really:) )
Parallel.ForEach(listOfIdsToDelete,
async idToDelete => await _serviceresolver().DeleteOperationAsync(id,idToDelete)
);
You're waiting for each async operation to finish right now. If you can fire them all off concurrently, you can just call them without the await, or if you need to know when they finish, you can just fire them all off and then wait for them all to finish by tracking the tasks in a list:
List<Task> tasks = new List<Task>();
foreach (var a in List<long> b)
tasks.Add(_serviceresolveer().DeleteOperationAsync(id, a));
await Task.WhenAll(tasks);
You can use PLINQ (to leverage of all the processors of your machine) and the Task.WhenAll method (to no freeze the calling thread). In code, resulting something like this:
class Program {
static async Task Main(string[] args) {
var list = new List<long> {
4, 3, 2
};
var service = new Service();
var response =
from item in list.AsParallel()
select service.DeleteOperationAsync(item);
await Task.WhenAll(response);
}
}
public class Service {
public async Task DeleteOperationAsync(long value) {
await Task.Delay(2000);
Console.WriteLine($"Finished... {value}");
}
}
I am trying to understand parallel programming and I would like my async methods to run on multiple threads. I have written something but it does not work like I thought it should.
Code
public static async Task Main(string[] args)
{
var listAfterParallel = RunParallel(); // Running this function to return tasks
await Task.WhenAll(listAfterParallel); // I want the program exceution to stop until all tasks are returned or tasks are completed
Console.WriteLine("After Parallel Loop"); // But currently when I run program, after parallel loop command is printed first
Console.ReadLine();
}
public static async Task<ConcurrentBag<string>> RunParallel()
{
var client = new System.Net.Http.HttpClient();
client.DefaultRequestHeaders.Add("Accept", "application/json");
client.BaseAddress = new Uri("https://jsonplaceholder.typicode.com");
var list = new List<int>();
var listResults = new ConcurrentBag<string>();
for (int i = 1; i < 5; i++)
{
list.Add(i);
}
// Parallel for each branch to run await commands on multiple threads.
Parallel.ForEach(list, new ParallelOptions() { MaxDegreeOfParallelism = 2 }, async (index) =>
{
var response = await client.GetAsync("posts/" + index);
var contents = await response.Content.ReadAsStringAsync();
listResults.Add(contents);
Console.WriteLine(contents);
});
return listResults;
}
I would like RunParallel function to complete before "After parallel loop" is printed. Also I want my get posts method to run on multiple threads.
Any help would be appreciated!
What's happening here is that you're never waiting for the Parallel.ForEach block to complete - you're just returning the bag that it will eventually pump into. The reason for this is that because Parallel.ForEach expects Action delegates, you've created a lambda which returns void rather than Task. While async void methods are valid, they generally continue their work on a new thread and return to the caller as soon as they await a Task, and the Parallel.ForEach method therefore thinks the handler is done, even though it's kicked that remaining work off into a separate thread.
Instead, use a synchronous method here;
Parallel.ForEach(list, new ParallelOptions() { MaxDegreeOfParallelism = 2 }, index =>
{
var response = client.GetAsync("posts/" + index).Result;
var contents = response.Content.ReadAsStringAsync().Result;
listResults.Add(contents);
Console.WriteLine(contents);
});
If you absolutely must use await inside, Wrap it in Task.Run(...).GetAwaiter().GetResult();
Parallel.ForEach(list, new ParallelOptions() { MaxDegreeOfParallelism = 2 }, index => Task.Run(async () =>
{
var response = await client.GetAsync("posts/" + index);
var contents = await response.Content.ReadAsStringAsync();
listResults.Add(contents);
Console.WriteLine(contents);
}).GetAwaiter().GetResult();
In this case, however, Task.run generally goes to a new thread, so we've subverted most of the control of Parallel.ForEach; it's better to use async all the way down;
var tasks = list.Select(async (index) => {
var response = await client.GetAsync("posts/" + index);
var contents = await response.Content.ReadAsStringAsync();
listResults.Add(contents);
Console.WriteLine(contents);
});
await Task.WhenAll(tasks);
Since Select expects a Func<T, TResult>, it will interpret an async lambda with no return as an async Task method instead of async void, and thus give us something we can explicitly await
Take a look at this: There Is No Thread
When you are making multiple concurrent web requests it's not your CPU that is doing the hard work. It's the CPU of the web server that is serving your requests. Your CPU is doing nothing during this time. It's not in a special "Wait-state" or something. The hardware inside your box that is working is your network card, that writes data to your RAM. When the response is received then your CPU will be notified about the arrived data, so it can do something with them.
You need parallelism when you have heavy work to do inside your box, not when you want the heavy work to be done by the external world. From the point of view of your CPU, even your hard disk is part of the external world. So everything that applies to web requests, applies also to requests targeting filesystems and databases. These workloads are called I/O bound, to be distinguished from the so called CPU bound workloads.
For I/O bound workloads the tool offered by the .NET platform is the asynchronous Task. There are multiple APIs throughout the libraries that return Task objects. To achieve concurrency you typically start multiple tasks and then await them with Task.WhenAll. There are also more advanced tools like the TPL Dataflow library, that is build on top of Tasks. It offers capabilities like buffering, batching, configuring the maximum degree of concurrency, and much more.
I have two versions of my program that submit ~3000 HTTP GET requests to a web server.
The first version is based off of what I read here. That solution makes sense to me because making web requests is I/O bound work, and the use of async/await along with Task.WhenAll or Task.WaitAll means that you can submit 100 requests all at once and then wait for them all to finish before submitting the next 100 requests so that you don't bog down the web server. I was surprised to see that this version completed all of the work in ~12 minutes - way slower than I expected.
The second version submits all 3000 HTTP GET requests inside a Parallel.ForEach loop. I use .Result to wait for each request to finish before the rest of the logic within that iteration of the loop can execute. I thought that this would be a far less efficient solution, since using threads to perform tasks in parallel is usually better suited for performing CPU bound work, but I was surprised to see that the this version completed all of the work within ~3 minutes!
My question is why is the Parallel.ForEach version faster? This came as an extra surprise because when I applied the same two techniques against a different API/web server, version 1 of my code was actually faster than version 2 by about 6 minutes - which is what I expected. Could performance of the two different versions have something to do with how the web server handles the traffic?
You can see a simplified version of my code below:
private async Task<ObjectDetails> TryDeserializeResponse(HttpResponseMessage response)
{
try
{
using (Stream stream = await response.Content.ReadAsStreamAsync())
using (StreamReader readStream = new StreamReader(stream, Encoding.UTF8))
using (JsonTextReader jsonTextReader = new JsonTextReader(readStream))
{
JsonSerializer serializer = new JsonSerializer();
ObjectDetails objectDetails = serializer.Deserialize<ObjectDetails>(
jsonTextReader);
return objectDetails;
}
}
catch (Exception e)
{
// Log exception
return null;
}
}
private async Task<HttpResponseMessage> TryGetResponse(string urlStr)
{
try
{
HttpResponseMessage response = await httpClient.GetAsync(urlStr)
.ConfigureAwait(false);
if (response.StatusCode != HttpStatusCode.OK)
{
throw new WebException("Response code is "
+ response.StatusCode.ToString() + "... not 200 OK.");
}
return response;
}
catch (Exception e)
{
// Log exception
return null;
}
}
private async Task<ListOfObjects> GetObjectDetailsAsync(string baseUrl, int id)
{
string urlStr = baseUrl + #"objects/id/" + id + "/details";
HttpResponseMessage response = await TryGetResponse(urlStr);
ObjectDetails objectDetails = await TryDeserializeResponse(response);
return objectDetails;
}
// With ~3000 objects to retrieve, this code will create 100 API calls
// in parallel, wait for all 100 to finish, and then repeat that process
// ~30 times. In other words, there will be ~30 batches of 100 parallel
// API calls.
private Dictionary<int, Task<ObjectDetails>> GetAllObjectDetailsInBatches(
string baseUrl, Dictionary<int, MyObject> incompleteObjects)
{
int batchSize = 100;
int numberOfBatches = (int)Math.Ceiling(
(double)incompleteObjects.Count / batchSize);
Dictionary<int, Task<ObjectDetails>> objectTaskDict
= new Dictionary<int, Task<ObjectDetails>>(incompleteObjects.Count);
var orderedIncompleteObjects = incompleteObjects.OrderBy(pair => pair.Key);
for (int i = 0; i < 1; i++)
{
var batchOfObjects = orderedIncompleteObjects.Skip(i * batchSize)
.Take(batchSize);
var batchObjectsTaskList = batchOfObjects.Select(
pair => GetObjectDetailsAsync(baseUrl, pair.Key));
Task.WaitAll(batchObjectsTaskList.ToArray());
foreach (var objTask in batchObjectsTaskList)
objectTaskDict.Add(objTask.Result.id, objTask);
}
return objectTaskDict;
}
public void GetObjectsVersion1()
{
string baseUrl = #"https://mywebserver.com:/api";
// GetIncompleteObjects is not shown, but it is not relevant to
// the question
Dictionary<int, MyObject> incompleteObjects = GetIncompleteObjects();
Dictionary<int, Task<ObjectDetails>> objectTaskDict
= GetAllObjectDetailsInBatches(baseUrl, incompleteObjects);
foreach (KeyValuePair<int, MyObject> pair in incompleteObjects)
{
ObjectDetails objectDetails = objectTaskDict[pair.Key].Result
.objectDetails;
// Code here that copies fields from objectDetails to pair.Value
// (the incompleteObject)
AllObjects.Add(pair.Value);
};
}
public void GetObjectsVersion2()
{
string baseUrl = #"https://mywebserver.com:/api";
// GetIncompleteObjects is not shown, but it is not relevant to
// the question
Dictionary<int, MyObject> incompleteObjects = GetIncompleteObjects();
Parallel.ForEach(incompleteHosts, pair =>
{
ObjectDetails objectDetails = GetObjectDetailsAsync(
baseUrl, pair.Key).Result.objectDetails;
// Code here that copies fields from objectDetails to pair.Value
// (the incompleteObject)
AllObjects.Add(pair.Value);
});
}
A possible reason why Parallel.ForEach may run faster is because it creates the side-effect of throttling. Initially x threads are processing the first x elements (where x in the number of the available cores), and progressively more threads may be added depending on internal heuristics. Throttling IO operations is a good thing because it protects the network and the server that handles the requests from becoming overburdened. Your alternative improvised method of throttling, by making requests in batches of 100, is far from ideal for many reasons, one of them being that 100 concurrent requests are a lot of requests! Another one is that a single long running operation may delay the completion of the batch until long after the completion of the other 99 operations.
Note that Parallel.ForEach is also not ideal for parallelizing IO operations. It just happened to perform better than the alternative, wasting memory all along. For better approaches look here: How to limit the amount of concurrent async I/O operations?
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.foreach?view=netframework-4.8
Basically the parralel foreach allows iterations to run in parallel so you are not constraining the iteration to run in serial, on a host that is not thread constrained this will tend to lead to improved throughput
In short:
Parallel.Foreach() is most useful for CPU bound tasks.
Task.WaitAll() is more useful for IO bound tasks.
So in your case, you are getting information from webservers, which is IO. If the async methods are implemented correctly, it won't block any thread. (It will use IO Completion ports to wait on) This way the threads can do other stuff.
By running the async methods GetObjectDetailsAsync(baseUrl, pair.Key).Result synchroniced, it will block a thread. So the threadpool will be flood by waiting threads.
So I think the Task solution will have a better fit.
I was noticing an initial slow down in my process and upon taking multiple hangdumps, I was able to isolate the issue and reproduce the scenario using the following code. I am using a library that has locks and what not, which eventually calls the user side implementation of certain methods. These methods make async calls using httpclient. These async calls are made from within these locks inside the library.
Now, my theory as to what is happening (do correct me if I am wrong):
The tasks that get spun try to acquire the lock and hold on to the threads fast enough such that the first PingAsync method needs to wait for the default task scheduler to spin up a new thread for it to run on, which is 0.5 s based on the default .net scheduling algorithm. This is why I think I notice delays for total tasks greater than 32, which also increases linearly with increasing total tasks count.
The workaround:
Increase the minthreads count, which I think is treating the symptom and not the actual problem.
Another way is to have a limited concurrency to control the number of tasks fired. But these are tasks spun by a webserver for incoming httprequests and typically we will not have control over it (or will we?)
I understand that combining asyc and non-async is bad design and using sempahores' async calls would be a better way to go. Assuming I do not have control over this library, how does one go about mitigating this problem?
const int ParallelCount = 16;
const int TotalTasks = 33;
static object _lockObj = new object();
static HttpClient _httpClient = new HttpClient();
static int count = 0;
static void Main(string[] args)
{
ThreadPool.GetMinThreads(out int workerThreads, out int ioThreads);
Console.WriteLine($"Min threads count. Worker: {workerThreads}. IoThreads: {ioThreads}");
ThreadPool.GetMaxThreads(out workerThreads, out ioThreads);
Console.WriteLine($"Max threads count. Worker: {workerThreads}. IoThreads: {ioThreads}");
//var done = ThreadPool.SetMaxThreads(1024, 1000);
//ThreadPool.GetMaxThreads(out workerThreads, out ioThreads);
//Console.WriteLine($"Set Max Threads success? {done}.");
//Console.WriteLine($"Max threads count. Worker: {workerThreads}. IoThreads: {ioThreads}");
//var done = ThreadPool.SetMinThreads(1024, 1000);
//ThreadPool.GetMinThreads(out workerThreads, out ioThreads);
//Console.WriteLine($"Set Min Threads success? {done}.");
//Console.WriteLine($"Min threads count. Worker: {workerThreads}. IoThreads: {ioThreads}");
var startTime = DateTime.UtcNow;
var tasks = new List<Task>();
for (int i = 0; i < TotalTasks; i++)
{
tasks.Add(Task.Run(() => LibraryMethod()));
//while (tasks.Count > ParallelCount)
//{
// var task = Task.WhenAny(tasks.ToArray()).GetAwaiter().GetResult();
// if (task.IsFaulted)
// {
// throw task.Exception;
// }
// tasks.Remove(task);
//}
}
Task.WaitAll(tasks.ToArray());
//while (tasks.Count > 0)
//{
// var task = Task.WhenAny(tasks.ToArray()).GetAwaiter().GetResult();
// if (task.IsFaulted)
// {
// throw task.Exception;
// }
// tasks.Remove(task);
// Console.Write(".");
//}
Console.Write($"\nDone in {(DateTime.UtcNow-startTime).TotalMilliseconds}");
Console.ReadLine();
}
Assuming this is the part where library methods are called,
public static void LibraryMethod()
{
lock (_lockObj)
{
SimpleNonAsync();
}
}
Eventually, the user implementation of this method gets called which is async.
public static void SimpleNonAsync()
{
//PingAsync().Result;
//PingAsync().ConfigureAwaiter(false).Wait();
PingAsync().Wait();
}
private static async Task PingAsync()
{
Console.Write($"{Interlocked.Increment(ref count)}.");
await _httpClient.SendAsync(new HttpRequestMessage
{
RequestUri = new Uri($#"http://127.0.0.1"),
Method = HttpMethod.Get
});
}
These async calls are made from within these locks inside the library.
This is a design flaw. No one should call arbitrary code while under a lock.
That said, the locks have nothing to do with the problem you're seeing.
I understand that combining asyc and non-async is bad design and using sempahores' async calls would be a better way to go. Assuming I do not have control over this library, how does one go about mitigating this problem?
The problem is that the library is forcing your code to be synchronous. This means one thread is being blocked for every download; there's no way around that as long as the library's callbacks are synchronous.
Increase the minthreads count, which I think is treating the symptom and not the actual problem.
If you can't modify the library, then you must use one thread per request, and this becomes a viable workaround. You have to treat the symptom because you can't fix the problem (i.e., the library).
Another way is to have a limited concurrency to control the number of tasks fired. But these are tasks spun by a webserver for incoming httprequests and typically we will not have control over it (or will we?)
No; the tasks causing problems are the ones you're spinning up yourself using Task.Run. The tasks on the server are completely independent; your code can't influence or even detect them.
If you want higher concurrency without waiting for thread injection, then you'll need to increase min threads, and you'll also probably need to increase ServicePointManager.DefaultConnectionLimit. You can then continue to use Task.Run, or (as I would prefer) Parallel or Parallel LINQ to do parallel processing. One nice aspect of Parallel / Parallel LINQ is that it has built-in support for throttling, if that is also desired.
I have an enumeration of items (RunData.Demand), each representing some work involving calling an API over HTTP. It works great if I just foreach through it all and call the API during each iteration. However, each iteration takes a second or two so I'd like to run 2-3 threads and divide up the work between them. Here's what I'm doing:
ThreadPool.SetMaxThreads(2, 5); // Trying to limit the amount of threads
var tasks = RunData.Demand
.Select(service => Task.Run(async delegate
{
var availabilityResponse = await client.QueryAvailability(service);
// Do some other stuff, not really important
}));
await Task.WhenAll(tasks);
The client.QueryAvailability call basically calls an API using the HttpClient class:
public async Task<QueryAvailabilityResponse> QueryAvailability(QueryAvailabilityMultidayRequest request)
{
var response = await client.PostAsJsonAsync("api/queryavailabilitymultiday", request);
if (response.IsSuccessStatusCode)
{
return await response.Content.ReadAsAsync<QueryAvailabilityResponse>();
}
throw new HttpException((int) response.StatusCode, response.ReasonPhrase);
}
This works great for a while, but eventually things start timing out. If I set the HttpClient Timeout to an hour, then I start getting weird internal server errors.
What I started doing was setting a Stopwatch within the QueryAvailability method to see what was going on.
What's happening is all 1200 items in RunData.Demand are being created at once and all 1200 await client.PostAsJsonAsync methods are being called. It appears it then uses the 2 threads to slowly check back on the tasks, so towards the end I have tasks that have been waiting for 9 or 10 minutes.
Here's the behavior I would like:
I'd like to create the 1,200 tasks, then run them 3-4 at a time as threads become available. I do not want to queue up 1,200 HTTP calls immediately.
Is there a good way to go about doing this?
As I always recommend.. what you need is TPL Dataflow (to install: Install-Package System.Threading.Tasks.Dataflow).
You create an ActionBlock with an action to perform on each item. Set MaxDegreeOfParallelism for throttling. Start posting into it and await its completion:
var block = new ActionBlock<QueryAvailabilityMultidayRequest>(async service =>
{
var availabilityResponse = await client.QueryAvailability(service);
// ...
},
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 4 });
foreach (var service in RunData.Demand)
{
block.Post(service);
}
block.Complete();
await block.Completion;
Old question, but I would like to propose an alternative lightweight solution using the SemaphoreSlim class. Just reference System.Threading.
SemaphoreSlim sem = new SemaphoreSlim(4,4);
foreach (var service in RunData.Demand)
{
await sem.WaitAsync();
Task t = Task.Run(async () =>
{
var availabilityResponse = await client.QueryAvailability(serviceCopy));
// do your other stuff here with the result of QueryAvailability
}
t.ContinueWith(sem.Release());
}
The semaphore acts as a locking mechanism. You can only enter the semaphore by calling Wait (WaitAsync) which subtracts one from the count. Calling release adds one to the count.
You're using async HTTP calls, so limiting the number of threads will not help (nor will ParallelOptions.MaxDegreeOfParallelism in Parallel.ForEach as one of the answers suggests). Even a single thread can initiate all requests and process the results as they arrive.
One way to solve it is to use TPL Dataflow.
Another nice solution is to divide the source IEnumerable into partitions and process items in each partition sequentially as described in this blog post:
public static Task ForEachAsync<T>(this IEnumerable<T> source, int dop, Func<T, Task> body)
{
return Task.WhenAll(
from partition in Partitioner.Create(source).GetPartitions(dop)
select Task.Run(async delegate
{
using (partition)
while (partition.MoveNext())
await body(partition.Current);
}));
}
While the Dataflow library is great, I think it's a bit heavy when not using block composition. I would tend to use something like the extension method below.
Also, unlike the Partitioner method, this runs the async methods on the calling context - the caveat being that if your code is not truly async, or takes a 'fast path', then it will effectively run synchronously since no threads are explicitly created.
public static async Task RunParallelAsync<T>(this IEnumerable<T> items, Func<T, Task> asyncAction, int maxParallel)
{
var tasks = new List<Task>();
foreach (var item in items)
{
tasks.Add(asyncAction(item));
if (tasks.Count < maxParallel)
continue;
var notCompleted = tasks.Where(t => !t.IsCompleted).ToList();
if (notCompleted.Count >= maxParallel)
await Task.WhenAny(notCompleted);
}
await Task.WhenAll(tasks);
}