Share method between threads - c#

I have a Func like this:
int loopMax = 10, taskMax = 10;
int executionCounter = 0;
Func<int> calculator = new Func<int>(() =>
{
executionCounter++;
int result = 0;
for (int i = 0; i < loopMax; i++)
{
Thread.Sleep(100);
if (result + i >= int.MaxValue)
result = 0;
result += i;
}
return result;
});
Which could be called by multiple threads. For example like this:
Task[] tasks = new Task[taskMax];
for (int i = 0; i < taskMax; i++)
{
tasks[i] = Task.Run(() => _=calculator());
}
Task.WaitAll(tasks);
I need to share the calculator function across all threads, and makes this function being called only once. In fact the executionCounter variable's value after running this code should remain 1, and all of the threads should have the same return value.
UPDATE 1
I think I can solve it if I find a way to server the first thread and block every other threads and after completion of first thread's method call, signal the methods result to other threads and also cancel them, to prevent them calling calculator again.
Using lock inside the method also is not what I am looking for, because in that case again the calculator is being called multiple times...

It seems that you need the Lazy<T> class. This class provides support for lazy initialization. Here is how you could use it:
Lazy<int> lazyCalculator = new Lazy<int>(calculator);
Task[] tasks = new Task[taskMax];
for (int i = 0; i < taskMax; i++)
{
tasks[i] = Task.Run(() => _ = lazyCalculator.Value);
}
Task.WaitAll(tasks);
When a Lazy instance is constructed, it can take an optional LazyThreadSafetyMode argument. The default value of this argument is ExecutionAndPublication, with the behavior described below:
Locks are used to ensure that only a single thread can initialize a Lazy<T> instance in a thread-safe manner.

It looks like you want is that your Calculator method can be executed by any thread, but this method should be executed only once. If it is true, then we would use lock statement.
The purpose of lock statement is:
The lock statement acquires the mutual-exclusion lock for a given
object, executes a statement block, and then releases the lock
An example:
static object lockCalculatorMethod = new object();
static int executionCounter = 0;
static int loopMax = 10;
static int taskMax = 10;
static void Main(string[] args)
{
Task[] tasks = new Task[taskMax];
for (int i = 0; i < taskMax; i++)
{
tasks[i] = Task.Run(() => _ = Calculator());
}
Task.WhenAll(tasks);
}
and Calculator method:
static int Calculator()
{
lock (lockCalculatorMethod)
{
if (executionCounter < 1)
{
executionCounter++;
int result = 0;
for (int i = 0; i < loopMax; i++)
{
Thread.Sleep(100);
if (result + i >= int.MaxValue)
{
result = 0;
result += i;
}
}
return result;
}
else
return -1;
}
}
UPDATE:
If you want to cache result and avoid recalculation while calling by other threads, then you can use threadSafe collection ConcurrentQueue<T> and just get items from this collection:
static object lockCalculatorMethod = new object();
static ConcurrentQueue<int> queue = new ConcurrentQueue<int>();
static int executionCounter = 0;
static int loopMax = 7;
static int taskMax = 7;
static void Main(string[] args)
{
Task[] tasks = new Task[taskMax];
for (int i = 0; i < taskMax; i++)
{
tasks[i] = Task.Run(() =>
{
var result = Calculator();
Console.WriteLine(result);
});
}
Task.WaitAll(tasks);
}
And Calculator method:
static int Calculator()
{
int result = 0;
lock (lockCalculatorMethod)
{
int lockResult = 0;
if (executionCounter < 1)
{
executionCounter++;
for (int i = 0; i < loopMax; i++)
{
Thread.Sleep(100);
lockResult += i;
}
queue.Enqueue(lockResult);
}
}
queue.TryPeek(out result);
return result;
}

Related

Cannot understand the behaviour of the threads C#

static void Main(string[] args)
{
var sw = new Stopwatch();
sw.Start();
int noOfThreads = Environment.ProcessorCount;
//int minVal = 1;
int maxVal = 10000000;
int blockSize = maxVal / noOfThreads;
List<Thread> threads = new List<Thread>();
List<List<int>> results = new List<List<int>>();
object thisLock = new object();
for (int i = 0; i < noOfThreads; ++i)
{
lock(thisLock)
{
Thread th = new Thread(() =>
{
results.Add(GetPrimeNumbers(i * blockSize, i * blockSize + blockSize));
});
th.Start();
threads.Add(th);
}
}
foreach (var elem in threads)
elem.Join();
}
private static List<int> GetPrimeNumbers(int low, int high)
{
List<int> result = new List<int>();
//Debug.WriteLine("Low: {0}. High: {1}", low, high);
for(int i = low; i <= high; ++i)
{
if (IsPrime(i))
result.Add(i);
}
return result;
}
static bool IsPrime(int number)
{
if (number % 2 == 0)
return false;
else
{
var topLimit = (int)Math.Sqrt(number);
for (int i = 3; i <= topLimit; i += 2)
if (number % i == 0)
return false;
return true;
}
}
With the above code, I was expecting that when I put breakpoint in the GetPrimeNumbers(int low, int high) I would see range of values for low and high, e.g: (0, 1250000), (1250000, 2500000).....(8750000, 10000000). But what I observing is that there are certain blocks that gets passed multiple times - (2500000, 3750000) while certain do not passed at all -(0, 1250000) and this behaviour also matches the results I am getting.
I am curious why I am seeing this behaviour. Is there a way to prevent this?
I am aware of the fact that I can use Parallel.For() and over here I do see the expected behaviour at breakpoint in GetPrimes(int low, int high). But as I mentioned before I am curious why I am seeing the former behaviour.
Thanks in advance!
The problem is that a for loop reuses the same i variable across iterations, and your thread delegate is closing over that variable.
There are various ways to fix this. A simple one is to use a new variable declared within your loop:
for (int i = 0; i < noOfThreads; ++i)
{
int j = i; // capture the value
lock(thisLock)
{
Thread th = new Thread(() =>
{
results.Add(GetPrimeNumbers(j * blockSize, j * blockSize + blockSize));
});
th.Start();
threads.Add(th);
}
}
This still has other issues, though. I'd recommend something more like this:
var allPrimeNumbers = Enumerable.Range(0, numberOfThreads)
.AsParallel()
.SelectMany(i => GetPrimeNumbers(i * blockSize, i * blockSize + blockSize))
.ToList();
Further Reading
Is there a reason for C#'s reuse of the variable in a foreach?
StriplingWarrior had it close, but as mentioned in the comments, you still have a threading bug. You need to move the lock inside the Thread action. Also, to get the best performance, hold the lock for the shortest amount of time possible, which is when modifying the shared results variable. To do that I separated the GetPrimeNumbers call from the results.Add call.
for (int i = 0; i < noOfThreads; ++i)
{
int j = i; // capture the value
Thread th = new Thread(() =>
{
result = GetPrimeNumbers(j * blockSize, j * blockSize + blockSize);
lock(thisLock)
{
results.Add(result);
}
});
th.Start();
threads.Add(th);
}
Also, unless you really need to manage your own threads I would recommend using Tasks (TPL) instead. Here is a modification using Tasks
Task<List<int>> tasks = new Task<List<int>>();
for (int i = 0; i < noOfThreads; ++i)
{
int j = i; // capture the value
tasks.Add(Task.Run(() => GetPrimeNumbers(j * blockSize, j * blockSize + blockSize)));
}
Task.WaitAll(tasks);
results = tasks.Select(t => t.Result).ToList();

C# Tasks that work on different, independent objects, synchronization errors still occur, why? [duplicate]

This question already has answers here:
Captured variable in a loop in C#
(10 answers)
Closed 11 months ago.
My program is running tasks in groups of n tasks at once each time.
Each task writes data to a Queue<string> object of his own, provided by an index to a Queue<string> in a List<Queue<string>> of queues.
the tasks do not share data or Queues, yet I still get synchronization errors.
I know the data structures are not Thread-Safe, I don't understand why they should be, and why I get the errors, since each Task has his own data structure, what could cause the errors?
here is a simple code to demonstrate:
class Program
{
static int j = 0;
List<Queue<string>> queueList = new List<Queue<string>>();
public void StartTasts(int n)
{
for (int i = 0; i < n; i++)
queueList.Add(new Queue<string>());
List<Task> tsk = new List<Task>();
for (int TaskGroup = 0; TaskGroup < 10; TaskGroup++)
{ //10 groups of task
//each group has 'n' tasks working in parallel
for (int i = 0; i < n; i++)
{
//each task gets its own and independent queue from the list
tsk.Add(Task.Factory.StartNew(() =>
{
DoWork(j % n);
}));
j++;
}
//waiting for each task group to finish
foreach (Task t in tsk)
t.Wait();
//after they all finished working with the queues, clear queues
//making them ready for the nest task group
foreach (Queue<string> q in queueList)
q.Clear();
}
}
public void DoWork(int queue)
{
//demonstration of generating strings
//and put them in the correct queue
for (int k = 0; k < 10000; k++)
queueList[queue].Enqueue(k + "");
}
static void Main(string[] args)
{
new Program().StartTasts(10);
}
}
this program generate some errors such as:
System.ArgumentException: 'Destination array was not long enough. Check destIndex and length, and the array's lower bounds.'
System.IndexOutOfRangeException: 'Index was outside the bounds of the array.' (at the Queue)
System.AggregateException: One or more errors occurred. ---> System.ArgumentException: Source array was not long enough. Check srcIndex and length, and the array's lower bounds.
and more errors and would not come up on a Serial case.
I would love to understand why because I cant see how these tasks mess up each other's independent Queues.
The problem is normal variable closure issues. Because all tasks share the same instance of the variable j they will all share the same value, most likely what is happening is your loop starts up 10 tasks super quick, but before any of them can get to j % n the value of j has already become 10.
Make a local copy of k that is declared within the scope of the for loop and it should solve your problem.
public void StartTasts(int n)
{
for (int i = 0; i < n; i++)
queueList.Add(new Queue<string>());
List<Task> tsk = new List<Task>();
for (int TaskGroup = 0; TaskGroup < 10; TaskGroup++)
{ //10 groups of task
//each group has 'n' tasks working in parallel
for (int i = 0; i < n; i++)
{
int k = j; // `int k = i;` would work here too and give you the same results.
tsk.Add(Task.Factory.StartNew(() =>
{
DoWork(k % n);
}));
j++;
}
//waiting for each task group to finish
foreach (Task t in tsk)
t.Wait();
//after they all finished working with the queues, clear queues
//making them ready for the nest task group
foreach (Queue<string> q in queueList)
q.Clear();
}
}
If you want to see the problem in action with a simpler recreation, try this simple code instead.
public static void Main(string[] args)
{
for (int i = 0; i < 10; i++)
{
int j = i;
Task.TaskFactory.StartNew(() =>
{
Thread.Sleep(10); //Give a little time for the for loop to complete.
Console.WriteLine("i: " + i + " j: " + j);
}
});
Console.ReadLine();
}
You have calculated the taskId inside of the task and changed the base for the calculation outside of the task.
I have changed the logic only slightly. I have not had any errors.
namespace Project1
{
using System.Collections.Generic;
using System.Threading.Tasks;
internal class Program
{
private static int j = 0;
private readonly List<Queue<string>> queueList = new List<Queue<string>>();
public void StartTasts(int n)
{
for (var i = 0; i < n; i++)
{
this.queueList.Add(new Queue<string>());
}
var taskList = new List<Task>();
for (var taskGroup = 0; taskGroup < 10; taskGroup++)
{
// 10 groups of task
// each group has 'n' tasks working in parallel
for (var i = 0; i < n; i++)
{
// each task gets its own and independent queue from the list
var taskId = j % n;
taskList.Add(
Task.Factory.StartNew(
() =>
{
this.DoWork(taskId);
}));
j++;
}
// waiting for each task group to finish
foreach (var t in taskList)
{
t.Wait();
}
// after they all finished working with the queues, clear queues
// making them ready for the nest task group
foreach (var q in this.queueList)
{
q.Clear();
}
}
}
public void DoWork(int queue)
{
// demonstration of generating strings
// and put them in the correct queue
for (var k = 0; k < 10000; k++)
{
this.queueList[queue].Enqueue(k + string.Empty);
}
}
private static void Main(string[] args)
{
new Program().StartTasts(10);
}
}
}
I do not think you problem is in the que, it seems like it in the list itself might be an issue.
As the rule of using parallel or synchronous processes the list is not a thread save DS.
Try using the thread save DS Like ConcurrentBag Class

Running a large number of tasks

I want to create a large number of tasks n and use in each task i the result I got from task i-1.
I came up with:
class TaskTest
{
static int count;
public static void Main()
{
int n = 1000000;
var t = Add(n);
var sum = t.GetAwaiter().GetResult();
Console.WriteLine("sum is: " + sum);
}
public static Task<int> Add(int step)
{
Task t = new Task(() => Add(step));
t.Start();
if (step == 0)
return Task.FromResult(0);
return Task.FromResult(Add(step - 1).Result + 1);
}
static void AddWithLock(int step)
{
if (step == 0)
return;
Interlocked.Increment(ref count);
var t = Task.Factory.StartNew(state => AddWithLock(step - 1), CancellationToken.None);
t.Wait();
}
}
Using the method Add() works for a small value of n like 1000, but fails with a StackOwerFlowException for n = 1 000 000.
Usin AddWithLock() is not exactly what I want (it does not use the results from other tasks) and while it works for large numbers it is incredibly slow.
So how can I modify the code that it works for numbers such as n = 1 million?
edit:
I tried using TaskCompletionSource but still get StackOverflowException.
public static Task<int> Add2(int step)
{
var tcs = new TaskCompletionSource<int>();
if (step == 0)
tcs.SetResult(0);
else
{
var r = Add2(step - 1).Result;
tcs.SetResult(r + 1);
}
return tcs.Task;
}
Without using recursion it works good enough. It completes in around 1000 miliseconds on my PC (old i7). No stack exploding.
using System;
using System.Diagnostics;
using System.Threading.Tasks;
namespace ManyTasks
{
class Program
{
public static void Main()
{
int n = 1000000;
Task<int>[] tasks = new Task<int>[n];
var sw = new Stopwatch();
sw.Start();
Task.Factory.StartNew(() =>
{
for (int i = 0; i < n; i++)
{
int j = i;
tasks[i] = new Task<int>(() =>
{
if (j == 0)
return 1;
var result = tasks[j - 1].Result + 1;
return result;
});
tasks[i].Start();
tasks[i].Wait();
}
}).Wait();
sw.Stop();
Console.WriteLine(tasks[n - 1].Result);
Console.WriteLine($"time: {sw.Elapsed.TotalMilliseconds:0.000}ms");
}
}
}

Arithmetic operations using console application

I am trying to create an application to record the time elapsed per machine using simple arithmetic operations.
Using console application, with parameters of number of loop and the threads to use with the code below:
public static Int64 IterationCount { get; set; }
static void Main(string[] args)
{
int iterations = int.Parse(args[0]);
int threads = int.Parse(args[1]);
IterationCount = iterations * 1000000000;
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 0; i < threads; i++)
{
Task.Factory.StartNew(() => Calculate());
Task.WaitAll();
}
sw.Stop();
Console.WriteLine("Elapsed={0}", sw.Elapsed);
}
And my Calculate method:
private static void Calculate()
{
for (int i = 0; i < IterationCount; i++)
{
a = 1 + 2;
b = 1 - 2;
c = 1 * 2;
a = 1 / 2;
}
}
Now I think this is not working because the result of my elapsed time when I entered 10 iterations (I am multiplying the first parameter to 1 billion: 10 * 1,000,000,000) and 4 threads is:
00:00:00:0119747
Any thing I missed?
Your call to Task.WaitAll() has no effect as the signature of the function is
public static void WaitAll(params Task[] tasks).
You see, you can supply a variable count of Tasks to wait for and you call this function with no task; so it will not wait at all.
If you replace your code by the following, you will see the effect.
Task[] tasks = new Task[threads];
for (int i = 0; i < threads; i++)
{
tasks[i] = Task.Factory.StartNew(() => Calculate());
}
Task.WaitAll(tasks);
Turns out my comment is accurate. If I copy the contents of your Calculate method into Visual Studio:
private static void Calculate()
{
for (int i = 0; i < IterationCount; i++)
{
a = 1 + 2;
b = 1 - 2;
c = 1 * 2;
d = 1 / 2;
}
}
after compilation, the generated C# code looks like this:
private static void Calculate()
{
for (int i = 0; i < Program.IterationCount; i++)
{
Program.a = 3;
Program.b = -1;
Program.c = 2;
Program.d = 0;
}
}
Instead, you're going to have to make one of the constants into a variable:
private static void Calculate()
{
int x = 1;
for (int i = 0; i < IterationCount; i++)
{
a = x + 2;
b = x - 2;
c = x * 2;
d = x / 2;
}
}
This code becomes:
private static void Calculate()
{
int x = 1;
for (int i = 0; i < Program.IterationCount; i++)
{
Program.a = x + 2;
Program.b = x - 2;
Program.c = x * 2;
Program.d = x / 2;
}
}

Asynchronous Tasks Only Runs a Last Task in List [duplicate]

This question already has an answer here:
Only last task runs!
(1 answer)
Closed 6 years ago.
I am trying to understand how I might be able to make better use of the .Net 4.5 TPL. Traditionally I used to manage the threads the old-school way, queueing and managing the threads directly.
I have created a silly program to explore the TPL, however, the code only seems to execute the last of the tasks added to my tasks list - I cannot determine why:
class Program {
static void Main(string[] args) {
var a = new A();
var b = new B();
var tasks = new List<Task<string>>();
for (int j = 33; j < 64; j++) {
tasks.Add(Task.Run(() => a.Go(j, 20)).ContinueWith((i) => b.Do(i)));
}
var finalTask = Task.Factory.ContinueWhenAll(tasks.ToArray(), r => {
foreach (var t in r)
Console.Write(t.Result);
});
finalTask.Wait();
Console.WriteLine("Finished.");
Console.ReadLine();
}
}
public class A {
public int Go(int chr, int loops) {
for (int i = 0; i < loops; i++) {
Thread.Sleep(10);
Console.Write((char)chr);
}
return loops;
}
}
public class B {
public string Do(Task<int> value) {
string s = "";
for (int i = 0; i < value.Result; i++) {
s = s + "a";
}
return s;
}
}
Any ideas why the other threads do not execute?
You have to capture the running variable j within the closure context:
for (int j = 33; j < 64; j++) {
var num = j;
tasks.Add(Task.Run(() => a.Go(num, 20)).ContinueWith((i) => b.Do(i)));
}
See also Captured variable in a loop in C#

Categories

Resources