Related
In short - I want to convert the first answer to the question here from Python into C#. My current solution to splitting conjoined words is exponential, and I would like a linear solution. I am assuming no spacing and consistent casing in my input text.
Background
I wish to convert conjoined strings such as "wickedweather" into separate words, for example "wicked weather" using C#. I have created a working solution, a recursive function using exponential time, which is simply not efficient enough for my purposes (processing at least over 100 joined words). Here the questions I have read so far, which I believe may be helpful, but I cannot translate their responses from Python to C#.
How can I split multiple joined words?
Need help understanding this Python Viterbi algorithm
How to extract literal words from a consecutive string efficiently?
My Current Recursive Solution
This is for people who only want to split a few words (< 50) in C# and don't really care about efficiency.
My current solution works out all possible combinations of words, finds the most probable output and displays. I am currently defining the most probable output as the one which uses the longest individual words - I would prefer to use a different method. Here is my current solution, using a recursive algorithm.
static public string find_words(string instring)
{
if (words.Contains(instring)) //where words is my dictionary of words
{
return instring;
}
if (solutions.ContainsKey(instring.ToString()))
{
return solutions[instring];
}
string bestSolution = "";
string solution = "";
for (int i = 1; i < instring.Length; i++)
{
string partOne = find_words(instring.Substring(0, i));
string partTwo = find_words(instring.Substring(i, instring.Length - i));
if (partOne == "" || partTwo == "")
{
continue;
}
solution = partOne + " " + partTwo;
//if my current solution is smaller than my best solution so far (smaller solution means I have used the space to separate words fewer times, meaning the words are larger)
if (bestSolution == "" || solution.Length < bestSolution.Length)
{
bestSolution = solution;
}
}
solutions[instring] = bestSolution;
return bestSolution;
}
This algorithm relies on having no spacing or other symbols in the entry text (not really a problem here, I'm not fussed about splitting up punctuation). Random additional letters added within the string can cause an error, unless I store each letter of the alphabet as a "word" within my dictionary. This means that "wickedweatherdykjs" would return "wicked weather d y k j s" using the above algorithm, when I would prefer an output of "wicked weather dykjs".
My updated exponential solution:
static List<string> words = File.ReadLines("E:\\words.txt").ToList();
static Dictionary<char, HashSet<string>> compiledWords = buildDictionary(words);
private void btnAutoSpacing_Click(object sender, EventArgs e)
{
string text = txtText.Text;
text = RemoveSpacingandNewLines(text); //get rid of anything that breaks the algorithm
if (text.Length > 150)
{
//possibly split the text up into more manageable chunks?
//considering using textSplit() for this.
}
else
{
txtText.Text = find_words(text);
}
}
static IEnumerable<string> textSplit(string str, int chunkSize)
{
return Enumerable.Range(0, str.Length / chunkSize)
.Select(i => str.Substring(i * chunkSize, chunkSize));
}
private static Dictionary<char, HashSet<string>> buildDictionary(IEnumerable<string> words)
{
var dictionary = new Dictionary<char, HashSet<string>>();
foreach (var word in words)
{
var key = word[0];
if (!dictionary.ContainsKey(key))
{
dictionary[key] = new HashSet<string>();
}
dictionary[key].Add(word);
}
return dictionary;
}
static public string find_words(string instring)
{
string bestSolution = "";
string solution = "";
if (compiledWords[instring[0]].Contains(instring))
{
return instring;
}
if (solutions.ContainsKey(instring.ToString()))
{
return solutions[instring];
}
for (int i = 1; i < instring.Length; i++)
{
string partOne = find_words(instring.Substring(0, i));
string partTwo = find_words(instring.Substring(i, instring.Length - i));
if (partOne == "" || partTwo == "")
{
continue;
}
solution = partOne + " " + partTwo;
if (bestSolution == "" || solution.Length < bestSolution.Length)
{
bestSolution = solution;
}
}
solutions[instring] = bestSolution;
return bestSolution;
}
How I would like to use the Viterbi Algorithm
I would like to create an algorithm which works out the most probable solution to a conjoined string, where the probability is calculated according to the position of the word in a text file that I provide the algorithm with. Let's say the file starts with the most common word in the English language first, and on the next line the second most common, and so on until the least common word in my dictionary. It looks roughly like this
the
be
and
...
attorney
Here is a link to a small example of such a text file I would like to use.
Here is a much larger text file which I would like to use
The logic behind this file positioning is as follows...
It is reasonable to assume that they follow Zipf's law, that is the
word with rank n in the list of words has probability roughly 1/(n log
N) where N is the number of words in the dictionary.
Generic Human, in his excellent Python solution, explains this much better than I can. I would like to convert his solution to the problem from Python into C#, but after many hours spent attempting this I haven't been able to produce a working solution.
I also remain open to the idea that perhaps relative frequencies with the Viterbi algorithm isn't the best way to split words, any other suggestions for creating a solution using C#?
Written text is highly contextual and you may wish to use a Markov chain to model sentence structure in order to estimate joint probability. Unfortunately, sentence structure breaks the Viterbi assumption -- but there is still hope, the Viterbi algorithm is a case of branch-and-bound optimization aka "pruned dynamic programming" (something I showed in my thesis) and therefore even when the cost-splicing assumption isn't met, you can still develop cost bounds and prune your population of candidate solutions. But let's set Markov chains aside for now... assuming that the probabilities are independent and each follows Zipf's law, what you need to know is that the Viterbi algorithm works on accumulating additive costs.
For independent events, joint probability is the product of the individual probabilities, making negative log-probability a good choice for the cost.
So your single-step cost would be -log(P) or log(1/P) which is log(index * log(N)) which is log(index) + log(log(N)) and the latter term is a constant.
Can't help you with the Viterbi Algorithm but I'll give my two cents concerning your current approach. From your code its not exactly clear what words is. This can be a real bottleneck if you don't choose a good data structure. As a gut feeling I'd initially go with a Dictionary<char, HashSet<string>> where the key is the first letter of each word:
private static Dictionary<char, HashSet<string>> buildDictionary(IEnumerable<string> words)
{
var dictionary = new Dictionary<char, HashSet<string>>();
foreach (var word in words)
{
var key = word[0];
if (!dictionary.ContainsKey(key))
{
dictionary[key] = new HashSet<string>();
}
dictionary[key].Add(word);
}
return dictionary;
}
And I'd also consider serializing it to disk to avoid building it up every time.
Not sure how much improvement you can make like this (dont have full information of you current implementation) but benchmark it and see if you get any improvement.
NOTE: I'm assuming all words are cased consistently.
I have an array and each index contains a string with four characters. I need to select a random point in the string and then slice stringaArray[0] and stringaArray[1] at the same point and swap their sliced parts and add these to splicedStringArray[0] and splicedStringArray[1].
I know how to use split in C# and I have been experimenting with this, but it will only split the string into characters, not parts. I ask this question because my way of thinking is to create lots of variables to hold temporary strings then add them to the splicedStringArray[].
Here is my latest attempt to find the start middle and end of a string and hopefully copy whatever I want to variables to make new strings and then store these in teh second array:
string s = stringaArray[0];
char[] charArray = s.ToCharArray();
int amount = charArray.Length;
int findMiddle = amount / 2 + 1;
int midchar = findMiddle - 1;
int findLast = amount - 1;
char fchar = charArray[0];
char mchar = charArray[midchar];
char lchar = charArray[findLast];
I was also looking at the string builder class in C# and wondering if there was something there I could use, but I think I will spend a lot of time on this and and develop the worst solution so any advice on how to do this would appreciated.
For splitting at the exact position, use String.Substring. This way you can split up to certain point and from certain point. The simplest solution is similar to this:
var offset = 1;
splicedStringArray[0] = stringArray[0].Substring(0, offset) + stringArray[1].Substring(offset);
splicedStringArray[1] = stringArray[1].Substring(0, offset) + stringArray[0].Substring(offset);
Disclaimer: the code is written without testing.
Given the following string in C#, how would I insert a character in between each character in the string?
For example:
"Hello Sunshine"
would become
"H.e.l.l.o. .S.u.n.s.h.i.n.e"
What is the most efficient, fastest way of doing this in C#?
How about:
string result = string.Join(".", someString.AsEnumerable());
This hides most of the complexity, and will use a StringBuilder internally.
If you want a dot after every character use a StringBuilder:
StringBuilder sb = new StringBuilder(s.Length * 2);
foreach (char c in s) {
sb.Append(c);
sb.Append('.');
}
string result = sb.ToString();
If you don't want the trailing dot then in .NET 4.0 you can use string.Join.
string result = string.Join(".", (IEnumerable<char>)s);
In .NET 3.5 and older the second parameter should be an array, meaning that you will have to temporarily create an array so it would most likely be faster to use the StringBuilder solution shown above and treat the first or last index as a special case.
Note: Often you don't need the most efficient solution but just a solution that is fast enough. If a slightly slower but much simpler solution is sufficient for your needs, use that instead of optimizing for performance unnecessarily.
Do you care about performance on large strings?
var result = string.Join(".", str.Select(c => c.ToString());
This is my proposition, I know it does not looks super sexy, but I believe it's faster (3X faster for the sample string) and requires the exact amount of memory than all the ones using Select, Join, and all that jazz :-)
static string ConvertString(string s)
{
char[] newS = new char[s.Length * 2 + 1];
int i = 0;
do
{
newS[i] = s[i / 2];
if (i == (s.Length * 2 - 2))
break;
i++;
newS[i] = '.';
i++;
}
while (true);
return new string(newS);
}
Plus it does not require the Framework 4.
Mark's answer is probably more readable. But I always enjoy this sort of solution:
string.Join("", "Hello Sunshine".Select(x => x + "."))
I understand the benefits of StringBuilder.
But if I want to concatenate 2 strings, then I assume that it is better (faster) to do it without StringBuilder. Is this correct?
At what point (number of strings) does it become better to use StringBuilder?
I warmly suggest you to read The Sad Tragedy of Micro-Optimization Theater, by Jeff Atwood.
It treats Simple Concatenation vs. StringBuilder vs. other methods.
Now, if you want to see some numbers and graphs, follow the link ;)
But if I want to concatinate 2
strings, then I assume that it is
better (faster) to do it without
StringBuilder. Is this correct?
That is indeed correct, you can find why exactly explained very well on :
Article about strings and StringBuilder
Summed up : if you can concatinate strings in one go like
var result = a + " " + b + " " + c + ..
you are better off without StringBuilder for only on copy is made (the length of the resulting string is calculated beforehand.);
For structure like
var result = a;
result += " ";
result += b;
result += " ";
result += c;
..
new objects are created each time, so there you should consider StringBuilder.
At the end the article sums up these rules of thumb :
Rules Of Thumb
So, when should you use StringBuilder,
and when should you use the string
concatenation operators?
Definitely use StringBuilder when
you're concatenating in a non-trivial
loop - especially if you don't know
for sure (at compile time) how many
iterations you'll make through the
loop. For example, reading a file a
character at a time, building up a
string as you go using the += operator
is potentially performance suicide.
Definitely use the concatenation
operator when you can (readably)
specify everything which needs to be
concatenated in one statement. (If you
have an array of things to
concatenate, consider calling
String.Concat explicitly - or
String.Join if you need a delimiter.)
Don't be afraid to break literals up
into several concatenated bits - the
result will be the same. You can aid
readability by breaking a long literal
into several lines, for instance, with
no harm to performance.
If you need the intermediate results
of the concatenation for something
other than feeding the next iteration
of concatenation, StringBuilder isn't
going to help you. For instance, if
you build up a full name from a first
name and a last name, and then add a
third piece of information (the
nickname, maybe) to the end, you'll
only benefit from using StringBuilder
if you don't need the (first name +
last name) string for other purpose
(as we do in the example which creates
a Person object).
If you just have a few concatenations
to do, and you really want to do them
in separate statements, it doesn't
really matter which way you go. Which
way is more efficient will depend on
the number of concatenations the sizes
of string involved, and what order
they're concatenated in. If you really
believe that piece of code to be a
performance bottleneck, profile or
benchmark it both ways.
System.String is an immutable object - it means that whenever you modify its content it will allocate a new string and this takes time (and memory?).
Using StringBuilder you modify the actual content of the object without allocating a new one.
So use StringBuilder when you need to do many modifications on the string.
Not really...you should use StringBuilder if you concatenate large strings or you have many concatenations, like in a loop.
If you concatenate strings in a loop, you should consider using StringBuilder instead of regular String
In case it's single concatenation, you may not see the difference in execution time at all
Here is a simple test app to prove the point:
static void Main(string[] args)
{
//warm-up rounds:
Test(500);
Test(500);
//test rounds:
Test(500);
Test(1000);
Test(10000);
Test(50000);
Test(100000);
Console.ReadLine();
}
private static void Test(int iterations)
{
int testLength = iterations;
Console.WriteLine($"----{iterations}----");
//TEST 1 - String
var startTime = DateTime.Now;
var resultString = "test string";
for (var i = 0; i < testLength; i++)
{
resultString += i.ToString();
}
Console.WriteLine($"STR: {(DateTime.Now - startTime).TotalMilliseconds}");
//TEST 2 - StringBuilder
startTime = DateTime.Now;
var stringBuilder = new StringBuilder("test string");
for (var i = 0; i < testLength; i++)
{
stringBuilder.Append(i.ToString());
}
string resultString2 = stringBuilder.ToString();
Console.WriteLine($"StringBuilder: {(DateTime.Now - startTime).TotalMilliseconds}");
Console.WriteLine("---------------");
Console.WriteLine("");
}
Results (in milliseconds):
----500----
STR: 0.1254
StringBuilder: 0
---------------
----1000----
STR: 2.0232
StringBuilder: 0
---------------
----10000----
STR: 28.9963
StringBuilder: 0.9986
---------------
----50000----
STR: 1019.2592
StringBuilder: 4.0079
---------------
----100000----
STR: 11442.9467
StringBuilder: 10.0363
---------------
There's no definitive answer, only rules-of-thumb. My own personal rules go something like this:
If concatenating in a loop, always use a StringBuilder.
If the strings are large, always use a StringBuilder.
If the concatenation code is tidy and readable on the screen then it's probably ok.
If it isn't, use a StringBuilder.
To paraphrase
Then shalt thou count to three, no more, no less. Three shall be the number thou shalt count, and the number of the counting shall be three. Four shalt thou not count, neither count thou two, excepting that thou then proceed to three. Once the number three, being the third number, be reached, then lobbest thou thy Holy Hand Grenade of Antioch
I generally use string builder for any block of code which would result in the concatenation of three or more strings.
Since it's difficult to find an explanation for this that's not either influenced by opinions or followed by a battle of prides I thought to write a bit of code on LINQpad to test this myself.
I found that using small sized strings rather than using i.ToString() changes response times (visible in small loops).
The test uses different sequences of iterations to keep time measurements in sensibly comparable ranges.
I'll copy the code at the end so you can try it yourself (results.Charts...Dump() won't work outside LINQPad).
Output (X-Axis: Number of iterations tested, Y-Axis: Time taken in ticks):
Iterations sequence: 2, 3, 4, 5, 6, 7, 8, 9, 10
Iterations sequence: 10, 20, 30, 40, 50, 60, 70, 80
Iterations sequence: 100, 200, 300, 400, 500
Code (Written using LINQPad 5):
void Main()
{
Test(2, 3, 4, 5, 6, 7, 8, 9, 10);
Test(10, 20, 30, 40, 50, 60, 70, 80);
Test(100, 200, 300, 400, 500);
}
void Test(params int[] iterationsCounts)
{
$"Iterations sequence: {string.Join(", ", iterationsCounts)}".Dump();
int testStringLength = 10;
RandomStringGenerator.Setup(testStringLength);
var sw = new System.Diagnostics.Stopwatch();
var results = new Dictionary<int, TimeSpan[]>();
// This call before starting to measure time removes initial overhead from first measurement
RandomStringGenerator.GetRandomString();
foreach (var iterationsCount in iterationsCounts)
{
TimeSpan elapsedForString, elapsedForSb;
// string
sw.Restart();
var str = string.Empty;
for (int i = 0; i < iterationsCount; i++)
{
str += RandomStringGenerator.GetRandomString();
}
sw.Stop();
elapsedForString = sw.Elapsed;
// string builder
sw.Restart();
var sb = new StringBuilder(string.Empty);
for (int i = 0; i < iterationsCount; i++)
{
sb.Append(RandomStringGenerator.GetRandomString());
}
sw.Stop();
elapsedForSb = sw.Elapsed;
results.Add(iterationsCount, new TimeSpan[] { elapsedForString, elapsedForSb });
}
// Results
results.Chart(r => r.Key)
.AddYSeries(r => r.Value[0].Ticks, LINQPad.Util.SeriesType.Line, "String")
.AddYSeries(r => r.Value[1].Ticks, LINQPad.Util.SeriesType.Line, "String Builder")
.DumpInline();
}
static class RandomStringGenerator
{
static Random r;
static string[] strings;
public static void Setup(int testStringLength)
{
r = new Random(DateTime.Now.Millisecond);
strings = new string[10];
for (int i = 0; i < strings.Length; i++)
{
strings[i] = Guid.NewGuid().ToString().Substring(0, testStringLength);
}
}
public static string GetRandomString()
{
var indx = r.Next(0, strings.Length);
return strings[indx];
}
}
But if I want to concatenate 2 strings, then I assume that it's better and faster to do so without StringBuilder. Is this correct?
Yes. But more importantly, it is vastly more readable to use a vanilla String in such situations. Using it in a loop, on the other hand, makes sense and can also be as readable as concatenation.
I’d be wary of rules of thumb that cite specific numbers of concatenation as a threshold. Using it in loops (and loops only) is probably just as useful, easier to remember and makes more sense.
As long as you can physically type the number of concatenations (a + b + c ...) it shouldn't make a big difference. N squared (at N = 10) is a 100X slowdown, which shouldn't be too bad.
The big problem is when you are concatenating hundreds of strings. At N=100, you get a 10000X times slowdown. Which is pretty bad.
A single concatenation is not worth using a StringBuilder. I've typically used 5 concatenations as a rule of thumb.
I don't think there's a fine line between when to use or when not to. Unless of course someone performed some extensive testings to come out with the golden conditions.
For me, I will not use StringBuilder if just concatenating 2 huge strings. If there's loop with an undeterministic count, I'm likely to, even if the loop might be small counts.
I am reading each line of a CSV file and need to get the individual values in each column. So right now I am just using:
values = line.Split(delimiter);
where line is the a string that holds the values that are seperated by the delimiter.
Measuring the performance of my ReadNextRow method I noticed that it spends 66% on String.Split, so I was wondering if someone knows of a faster method to do this.
Thanks!
The BCL implementation of string.Split is actually quite fast, I've done some testing here trying to out preform it and it's not easy.
But there's one thing you can do and that's to implement this as a generator:
public static IEnumerable<string> GetSplit( this string s, char c )
{
int l = s.Length;
int i = 0, j = s.IndexOf( c, 0, l );
if ( j == -1 ) // No such substring
{
yield return s; // Return original and break
yield break;
}
while ( j != -1 )
{
if ( j - i > 0 ) // Non empty?
{
yield return s.Substring( i, j - i ); // Return non-empty match
}
i = j + 1;
j = s.IndexOf( c, i, l - i );
}
if ( i < l ) // Has remainder?
{
yield return s.Substring( i, l - i ); // Return remaining trail
}
}
The above method is not necessarily faster than string.Split for small strings but it returns results as it finds them, this is the power of lazy evaluation. If you have long lines or need to conserve memory, this is the way to go.
The above method is bounded by the performance of IndexOf and Substring which does too much index of out range checking and to be faster you need to optimize away these and implement your own helper methods. You can beat the string.Split performance but it's gonna take cleaver int-hacking. You can read my post about that here.
It should be pointed out that split() is a questionable approach for parsing CSV files in case you come across commas in the file eg:
1,"Something, with a comma",2,3
The other thing I'll point out without knowing how you profiled is be careful about profiling this kind of low level detail. The granularity of the Windows/PC timer might come into play and you may have a significant overhead in just looping so use some sort of control value.
That being said, split() is built to handle regular expressions, which are obviously more complex than you need (and the wrong tool to deal with escaped commas anyway). Also, split() creates lots of temporary objects.
So if you want to speed it up (and I have trouble believing that performance of this part is really an issue) then you want to do it by hand and you want to reuse your buffer objects so you're not constantly creating objects and giving the garbage collector work to do in cleaning them up.
The algorithm for that is relatively simple:
Stop at every comma;
When you hit quotes continue until you hit the next set of quotes;
Handle escaped quotes (ie \") and arguably escaped commas (\,).
Oh and to give you some idea of the cost of regex, there was a question (Java not C# but the principle was the same) where someone wanted to replace every n-th character with a string. I suggested using replaceAll() on String. Jon Skeet manually coded the loop. Out of curiosity I compared the two versions and his was an order of magnitude better.
So if you really want performance, it's time to hand parse.
Or, better yet, use someone else's optimized solution like this fast CSV reader.
By the way, while this is in relation to Java it concerns the performance of regular expressions in general (which is universal) and replaceAll() vs a hand-coded loop: Putting char into a java string for each N characters.
Here's a very basic example using ReadOnlySpan. On my machine this takes around 150ns as opposed to string.Split() which takes around 250ns. That's a nice 40% improvement right there.
string serialized = "1577836800;1000;1";
ReadOnlySpan<char> span = serialized.AsSpan();
Trade result = new Trade();
index = span.IndexOf(';');
result.UnixTimestamp = long.Parse(span.Slice(0, index));
span = span.Slice(index + 1);
index = span.IndexOf(';');
result.Price = float.Parse(span.Slice(0, index));
span = span.Slice(index + 1);
index = span.IndexOf(';');
result.Quantity = float.Parse(span.Slice(0, index));
return result;
Note that a ReadOnlySpan.Split() will soon be part of the framework. See
https://github.com/dotnet/runtime/pull/295
Depending on use, you can speed this up by using Pattern.split instead of String.split. If you have this code in a loop (which I assume you probably do since it sounds like you are parsing lines from a file) String.split(String regex) will call Pattern.compile on your regex string every time that statement of the loop executes. To optimize this, Pattern.compile the pattern once outside the loop and then use Pattern.split, passing the line you want to split, inside the loop.
Hope this helps
I found this implementation which is 30% faster from Dejan Pelzel's blog. I qoute from there:
The Solution
With this in mind, I set to create a string splitter that would use an internal buffer similarly to a StringBuilder. It uses very simple logic of going through the string and saving the value parts into the buffer as it goes along.
public int Split(string value, char separator)
{
int resultIndex = 0;
int startIndex = 0;
// Find the mid-parts
for (int i = 0; i < value.Length; i++)
{
if (value[i] == separator)
{
this.buffer[resultIndex] = value.Substring(startIndex, i - startIndex);
resultIndex++;
startIndex = i + 1;
}
}
// Find the last part
this.buffer[resultIndex] = value.Substring(startIndex, value.Length - startIndex);
resultIndex++;
return resultIndex;
How To Use
The StringSplitter class is incredibly simple to use as you can see in the example below. Just be careful to reuse the StringSplitter object and not create a new instance of it in loops or for a single time use. In this case it would be better to juse use the built in String.Split.
var splitter = new StringSplitter(2);
splitter.Split("Hello World", ' ');
if (splitter.Results[0] == "Hello" && splitter.Results[1] == "World")
{
Console.WriteLine("It works!");
}
The Split methods returns the number of items found, so you can easily iterate through the results like this:
var splitter = new StringSplitter(2);
var len = splitter.Split("Hello World", ' ');
for (int i = 0; i < len; i++)
{
Console.WriteLine(splitter.Results[i]);
}
This approach has advantages and disadvantages.
You might think that there are optimizations to be had, but the reality will be you'll pay for them elsewhere.
You could, for example, do the split 'yourself' and walk through all the characters and process each column as you encounter it, but you'd be copying all the parts of the string in the long run anyhow.
One of the optimizations we could do in C or C++, for example, is replace all the delimiters with '\0' characters, and keep pointers to the start of the column. Then, we wouldn't have to copy all of the string data just to get to a part of it. But this you can't do in C#, nor would you want to.
If there is a big difference between the number of columns that are in the source, and the number of columns that you need, walking the string manually may yield some benefit. But that benefit would cost you the time to develop it and maintain it.
I've been told that 90% of the CPU time is spent in 10% of the code. There are variations to this "truth". In my opinion, spending 66% of your time in Split is not that bad if processing CSV is the thing that your app needs to do.
Dave
Some very thorough analysis on String.Slit() vs Regex and other methods.
We are talking ms savings over very large strings though.
The main problem(?) with String.Split is that it's general, in that it caters for many needs.
If you know more about your data than Split would, it can make an improvement to make your own.
For instance, if:
You don't care about empty strings, so you don't need to handle those any special way
You don't need to trim strings, so you don't need to do anything with or around those
You don't need to check for quoted commas or quotes
You don't need to handle quotes at all
If any of these are true, you might see an improvement by writing your own more specific version of String.Split.
Having said that, the first question you should ask is whether this actually is a problem worth solving. Is the time taken to read and import the file so long that you actually feel this is a good use of your time? If not, then I would leave it alone.
The second question is why String.Split is using that much time compared to the rest of your code. If the answer is that the code is doing very little with the data, then I would probably not bother.
However, if, say, you're stuffing the data into a database, then 66% of the time of your code spent in String.Split constitutes a big big problem.
CSV parsing is actually fiendishly complex to get right, I used classes based on wrapping the ODBC Text driver the one and only time I had to do this.
The ODBC solution recommended above looks at first glance to be basically the same approach.
I thoroughly recommend you do some research on CSV parsing before you get too far down a path that nearly-but-not-quite works (all too common). The Excel thing of only double-quoting strings that need it is one of the trickiest to deal with in my experience.
As others have said, String.Split() will not always work well with CSV files. Consider a file that looks like this:
"First Name","Last Name","Address","Town","Postcode"
David,O'Leary,"12 Acacia Avenue",London,NW5 3DF
June,Robinson,"14, Abbey Court","Putney",SW6 4FG
Greg,Hampton,"",,
Stephen,James,"""Dunroamin"" 45 Bridge Street",Bristol,BS2 6TG
(e.g. inconsistent use of speechmarks, strings including commas and speechmarks, etc)
This CSV reading framework will deal with all of that, and is also very efficient:
LumenWorks.Framework.IO.Csv by Sebastien Lorien
This is my solution:
Public Shared Function FastSplit(inputString As String, separator As String) As String()
Dim kwds(1) As String
Dim k = 0
Dim tmp As String = ""
For l = 1 To inputString.Length - 1
tmp = Mid(inputString, l, 1)
If tmp = separator Then k += 1 : tmp = "" : ReDim Preserve kwds(k + 1)
kwds(k) &= tmp
Next
Return kwds
End Function
Here is a version with benchmarking:
Public Shared Function FastSplit(inputString As String, separator As String) As String()
Dim sw As New Stopwatch
sw.Start()
Dim kwds(1) As String
Dim k = 0
Dim tmp As String = ""
For l = 1 To inputString.Length - 1
tmp = Mid(inputString, l, 1)
If tmp = separator Then k += 1 : tmp = "" : ReDim Preserve kwds(k + 1)
kwds(k) &= tmp
Next
sw.Stop()
Dim fsTime As Long = sw.ElapsedTicks
sw.Start()
Dim strings() As String = inputString.Split(separator)
sw.Stop()
Debug.Print("FastSplit took " + fsTime.ToString + " whereas split took " + sw.ElapsedTicks.ToString)
Return kwds
End Function
Here are some results on relatively small strings but with varying sizes, up to 8kb blocks. (times are in ticks)
FastSplit took 8 whereas split took 10
FastSplit took 214 whereas split took 216
FastSplit took 10 whereas split took 12
FastSplit took 8 whereas split took 9
FastSplit took 8 whereas split took 10
FastSplit took 10 whereas split took 12
FastSplit took 7 whereas split took 9
FastSplit took 6 whereas split took 8
FastSplit took 5 whereas split took 7
FastSplit took 10 whereas split took 13
FastSplit took 9 whereas split took 232
FastSplit took 7 whereas split took 8
FastSplit took 8 whereas split took 9
FastSplit took 8 whereas split took 10
FastSplit took 215 whereas split took 217
FastSplit took 10 whereas split took 231
FastSplit took 8 whereas split took 10
FastSplit took 8 whereas split took 10
FastSplit took 7 whereas split took 9
FastSplit took 8 whereas split took 10
FastSplit took 10 whereas split took 1405
FastSplit took 9 whereas split took 11
FastSplit took 8 whereas split took 10
Also, I know someone will discourage my use of ReDim Preserve instead of using a list... The reason is, the list really didn't provide any speed difference in my benchmarks so I went back to the "simple" way.
public static unsafe List<string> SplitString(char separator, string input)
{
List<string> result = new List<string>();
int i = 0;
fixed(char* buffer = input)
{
for (int j = 0; j < input.Length; j++)
{
if (buffer[j] == separator)
{
buffer[i] = (char)0;
result.Add(new String(buffer));
i = 0;
}
else
{
buffer[i] = buffer[j];
i++;
}
}
buffer[i] = (char)0;
result.Add(new String(buffer));
}
return result;
}
You can assume that String.Split will be close to optimal; i.e. it could be quite hard to improve on it. By far the easier solution is to check whether you need to split the string at all. It's quite likely that you'll be using the individual strings directly. If you define a StringShim class (reference to String, begin & end index) you'll be able to split a String into a set of shims instead. These will have a small, fixed size, and will not cause string data copies.
String.split is rather slow, if you want some faster methods, here you go. :)
However CSV is much better parsed by a rule based parser.
This guy, has made a rule based tokenizer for java. (requires some copy and pasting unfortunately)
http://www.csdgn.org/code/rule-tokenizer
private static final String[] fSplit(String src, char delim) {
ArrayList<String> output = new ArrayList<String>();
int index = 0;
int lindex = 0;
while((index = src.indexOf(delim,lindex)) != -1) {
output.add(src.substring(lindex,index));
lindex = index+1;
}
output.add(src.substring(lindex));
return output.toArray(new String[output.size()]);
}
private static final String[] fSplit(String src, String delim) {
ArrayList<String> output = new ArrayList<String>();
int index = 0;
int lindex = 0;
while((index = src.indexOf(delim,lindex)) != -1) {
output.add(src.substring(lindex,index));
lindex = index+delim.length();
}
output.add(src.substring(lindex));
return output.toArray(new String[output.size()]);
}