How to make Random.Range() step by a certain amount? - c#

this is a very simple question, but I couldn't find out how to solve it. Lets say I have this line:
Random.Range(2,4);
I want this to generate not only whole numbers but also halves. What I mean is the step should be 0.5. I want it to choose randomly from the following only:
2, 2.5, 3, 3.5
I don't want any other decimal numbers. Can somebody help?

This is a simple solution for your specific case.
var randomNumber = ((float)Random.Range(4, 8)) * 0.5f;
You can also extend the method to work with different values.
public float GetRandomFloat(int min, int max, float value = 0.5f)
{
int multipliedMin = (int) (max / value);
int multipliedMax = (int) (max / value);
return ((float) Random.Range(multipliedMin, multipliedMax)) * value;
}

System.Random class doesn't have the feature you need natively , you can make your own method or extension for it
method
// use only one instance of System.Random to avoid getting duplicates
static System.Random ra = new Random();
static double GenRnadNum(int min,int max,double step)
{
// calc the max-min and round down
int n = (int)((max - min) / step);
int r= ra.Next(0, n);
return min + r * step;
}
usage example dd.Add(GenRnadNum(5, 20, 0.7));
i see many people doing it by dividing the max and min by the step (max/step,min/step)
and then multiplying the result random by the step (randomRestul*step)
but this will generate wrong results for example min=2,max=4,step=0.3 can give you 2.4 with that algorithm (2/0.3=6.66-->7 ,random result=8, 8*0.3=2.4)

Related

Dividing two Ulong integers outputs wrong result

I am writing a program for Catalan number. So here is the formula for that:
I decided to use the middle part of the formula, because the other parts are too abstract for my knowledge (maybe I slept too much in math classes).
Actually my program works fine for n = 0;,n = 5;, n = 10; But if I enter n = 15; - here comes the boom - the output is 2 when it should be 9694845.
So here is my child:
using System;
namespace _8_Numbers_of_Catalan
{
class CatalanNumbers
{
static void Main()
{
Console.Write("n: ");
int n = int.Parse(Console.ReadLine());
Console.WriteLine("Catalan({0})", n);
//calculating the Catan number from the formula
// Catan(n) = [(2*n)!]/[(n+1)! * n!]
Console.WriteLine((factorial(2 * n)) / (factorial(n + 1) * factorial(n)));
}//finding the factorial
private static ulong factorial(int n)
{
ulong fact = 1;
for (int i = 1; i <= n; i++)
{
fact *= (ulong)i;
}
return fact;
}
}
}
Thank you in advance for understanding me if there is something obviously wrong. I am new in programming.
That is because you are performing calculation of these using integer variables that can contain at most 64 bits.
Your call to factorial(15 * 2) is 30! which would result in a value of
265,252,859,812,191,058,636,308,480,000,000
Much more than fits in a 64 bit integer variable:
18,446,744,073,709,551,615 (0xFFFFFFFFFFFFFFFF).
The options you have are to use a System.Numerics.BigInteger type (slow) or a double (up to a maximum value of 1.7976931348623157E+308). Which means you will loose some precision, that may or may not be relevant.
Another option you have is to use an algorithm to approximate the value of large factorials using an asymptotic approximation such as the Schönhage–Strassen algorithm used by Mathematica.
You may also want to check out some existing online resources for calculation of big factorials in .NET
As a last but not least option (and I have not thoroughly checked) it seems likely to me that specific algorithms exists that allow you to calculate (or approximate to a sufficient accuracy and precision) a Catalan number.
you should use a System.Numerics.BigInteger for this. (add System.Numerics as reference in your project).
private static BigInteger factorial(int n)
{
BigInteger fact = 1;
for (int i = 1; i <= n; i++)
{
fact *= i;
}
return fact;
}
// output: 9694845

Percentile algorithm

I am writing a program that finds percentile. According to eHow:
Start to calculate the percentile of your test score (as an example we’ll stick with your score of 87). The formula to use is L/N(100) = P where L is the number of tests with scores less than 87, N is the total number of test scores (here 150) and P is the percentile. Count up the total number of test scores that are less than 87. We’ll assume the number is 113. This gives us L = 113 and N = 150.
And so, according to the instructions, I wrote:
string[] n = Interaction.InputBox("Enter the data set. The numbers do not have to be sorted.").Split(',');
List<Single> x = new List<Single> { };
foreach (string i in n)
{
x.Add(Single.Parse(i));
}
x.Sort();
List<double> lowerThan = new List<double> { };
Single score = Single.Parse(Interaction.InputBox("Enter the number."));
uint length = (uint)x.Count;
foreach (Single index in x)
{
if (index > score)
{
lowerThan.Add(index);
}
}
uint lowerThanCount = (uint)lowerThan.Count();
double percentile = lowerThanCount / length * 100;
MessageBox.Show("" + percentile);
Yet the program always returns 0 as the percentile! What errors have I made?
Your calculation
double percentile = lowerThanCount / length * 100;
is all done in integers, since the right hand side consist of all integers. Atleast one of the operand should be of floating point type. So
double percentile = (float) lowerThanCount / length * 100;
This is effectively a rounding problem, lowerThanCount / length are both unit therefore don't support decimal places so any natural percentage calculation (e.g. 0.2/0.5) would result in 0.
For example, If we were to assume lowerThanCount = 10 and length = 20, the sum would look something like
double result = (10 / 20) * 100
Therefore results in
(10 / 20) = 0.5 * 100
As 0.5 cannot be represented as an integer the floating point is truncated which leaves you with 0, so the final calculation eventually becomes
0 * 100 = 0;
You can fix this by forcing the calculation to work with a floating point type instead e.g.
double percentile = (double)lowerThanCount / length * 100
In terms of readability, it probably makes better sense to go with the cast in the calculation given lowerThanCount & length won't ever naturally be floating point numbers.
Also, your code could be simplified a lot using LINQ
string[] n = Interaction.InputBox("Enter the data set. The numbers do not have to be sorted.")
.Split(',');
IList<Single> x = n.Select(n => Single.Parse(n))
.OrderBy(x => x);
Single score = Single.Parse(Interaction.InputBox("Enter the number."));
IList<Single> lowerThan = x.Where(s => s < score);
Single percentile = (Single)lowerThan.Count / x.Count;
MessageBox.Show(percentile.ToString("%"));
The problem is in the types that you used for your variables: in this expression
double percentile = lowerThanCount / length * 100;
// ^^^^^^^^^^^^^^^^^^^^^^^
// | | |
// This is integer division; since length > lowerThanCount, its result is zero
the division is done on integers, so the result is going to be zero.
Change the type of lowerThanCount to double to fix this problem:
double lowerThanCount = (double)lowerThan.Count();
You are using integer division instead of floating point division. Cast length/lowerThanCount to a float before dividing.
Besides the percentile calculation (should be with floats), I think your count is off here:
foreach (Single index in x)
{
if (index > score)
{
lowerThan.Add(index);
}
}
You go through indexes and if they are larger than score, you put them into lowerThan
Just a logical mistake?
EDIT: for the percentile problem, here is my fix:
double percentile = ((double)lowerThanCount / (double)length) * 100.0;
You might not need all the (double)'s there, but just to be safe...

Evenly divisible ceiling number

I need some help with some simple math calculation and the most efficient way to execute them in c#.
10 / 4 = 2.5
How do i determine if the sum is a decimal value and if it is I need to round 4 up to 5 so that it divides into 10 evenly.
Any ideas?
I'm assuming that, given some numbers A and B, you want to find a number x, such that:
x evenly divides A
x is greater than or equal to B
x is minimized
in your given example, A = 10, B = 4, and x = 5.
The simplest-to-code way to find x is:
public int getX(int a, int b){
while(a % b != 0){
b++;
}
return b;
}
Generally speaking, it's not easy to find factors of an arbitrary number. In fact, some computer fields, such as cryptography, depend on the fact that factoring big numbers takes a long time.
That sounds extremely vague. You could figure it out using
if (10%4 != 0) ... //checks if there is a remainder
But how to get it up to 5 would need a lot more context.
Here is my suggestion for a short function doing that:
private int FindCeilingDevider(int numberToDivide, int divisor)
{
double result;
do
{
result = (double) numberToDivide / (double) divisor;
divisor++;
}
while (result != Math.Ceiling(result));
return divisor - 1;
}

how to always round up to the next integer [duplicate]

This question already has answers here:
How can I ensure that a division of integers is always rounded up?
(10 answers)
Closed 6 years ago.
i am trying to find total pages in building a pager on a website (so i want the result to be an integer. i get a list of records and i want to split into 10 per page (the page count)
when i do this:
list.Count() / 10
or
list.Count() / (decimal)10
and the list.Count() =12, i get a result of 1.
How would I code it so i get 2 in this case (the remainder should always add 1)
Math.Ceiling((double)list.Count() / 10);
(list.Count() + 9) / 10
Everything else here is either overkill or simply wrong (except for bestsss' answer, which is awesome). We do not want the overhead of a function call (Math.Truncate(), Math.Ceiling(), etc.) when simple math is enough.
OP's question generalizes (pigeonhole principle) to:
How many boxes do I need to store x objects if only y objects fit into each box?
The solution:
derives from the realization that the last box might be partially empty, and
is (x + y - 1) ÷ y using integer division.
You'll recall from 3rd grade math that integer division is what we're doing when we say 5 ÷ 2 = 2.
Floating-point division is when we say 5 ÷ 2 = 2.5, but we don't want that here.
Many programming languages support integer division. In languages derived from C, you get it automatically when you divide int types (short, int, long, etc.). The remainder/fractional part of any division operation is simply dropped, thus:
5 / 2 == 2
Replacing our original question with x = 5 and y = 2 we have:
How many boxes do I need to store 5 objects if only 2 objects fit into each box?
The answer should now be obvious: 3 boxes -- the first two boxes hold two objects each and the last box holds one.
(x + y - 1) ÷ y =
(5 + 2 - 1) ÷ 2 =
6 ÷ 2 =
3
So for the original question, x = list.Count(), y = 10, which gives the solution using no additional function calls:
(list.Count() + 9) / 10
A proper benchmark or how the number may lie
Following the argument about Math.ceil(value/10d) and (value+9)/10 I ended up coding a proper non-dead code, non-interpret mode benchmark.
I've been telling that writing micro benchmark is not an easy task. The code below illustrates this:
00:21:40.109 starting up....
00:21:40.140 doubleCeil: 19444599
00:21:40.140 integerCeil: 19444599
00:21:40.140 warming up...
00:21:44.375 warmup doubleCeil: 194445990000
00:21:44.625 warmup integerCeil: 194445990000
00:22:27.437 exec doubleCeil: 1944459900000, elapsed: 42.806s
00:22:29.796 exec integerCeil: 1944459900000, elapsed: 2.363s
The benchmark is in Java since I know well how Hotspot optimizes and ensures it's a fair result. With such results, no statistics, noise or anything can taint it.
Integer ceil is insanely much faster.
The code
package t1;
import java.math.BigDecimal;
import java.util.Random;
public class Div {
static int[] vals;
static long doubleCeil(){
int[] v= vals;
long sum = 0;
for (int i=0;i<v.length;i++){
int value = v[i];
sum+=Math.ceil(value/10d);
}
return sum;
}
static long integerCeil(){
int[] v= vals;
long sum = 0;
for (int i=0;i<v.length;i++){
int value = v[i];
sum+=(value+9)/10;
}
return sum;
}
public static void main(String[] args) {
vals = new int[7000];
Random r= new Random(77);
for (int i = 0; i < vals.length; i++) {
vals[i] = r.nextInt(55555);
}
log("starting up....");
log("doubleCeil: %d", doubleCeil());
log("integerCeil: %d", integerCeil());
log("warming up...");
final int warmupCount = (int) 1e4;
log("warmup doubleCeil: %d", execDoubleCeil(warmupCount));
log("warmup integerCeil: %d", execIntegerCeil(warmupCount));
final int execCount = (int) 1e5;
{
long time = System.nanoTime();
long s = execDoubleCeil(execCount);
long elapsed = System.nanoTime() - time;
log("exec doubleCeil: %d, elapsed: %.3fs", s, BigDecimal.valueOf(elapsed, 9));
}
{
long time = System.nanoTime();
long s = execIntegerCeil(execCount);
long elapsed = System.nanoTime() - time;
log("exec integerCeil: %d, elapsed: %.3fs", s, BigDecimal.valueOf(elapsed, 9));
}
}
static long execDoubleCeil(int count){
long sum = 0;
for(int i=0;i<count;i++){
sum+=doubleCeil();
}
return sum;
}
static long execIntegerCeil(int count){
long sum = 0;
for(int i=0;i<count;i++){
sum+=integerCeil();
}
return sum;
}
static void log(String msg, Object... params){
String s = params.length>0?String.format(msg, params):msg;
System.out.printf("%tH:%<tM:%<tS.%<tL %s%n", new Long(System.currentTimeMillis()), s);
}
}
This will also work:
c = (count - 1) / 10 + 1;
I think the easiest way is to divide two integers and increase by one :
int r = list.Count() / 10;
r += (list.Count() % 10 == 0 ? 0 : 1);
No need of libraries or functions.
edited with the right code.
You can use Math.Ceiling
http://msdn.microsoft.com/en-us/library/system.math.ceiling%28v=VS.100%29.aspx
Xform to double (and back) for a simple ceil?
list.Count()/10 + (list.Count()%10 >0?1:0) - this bad, div + mod
edit 1st:
on a 2n thought that's probably faster (depends on the optimization): div * mul (mul is faster than div and mod)
int c=list.Count()/10;
if (c*10<list.Count()) c++;
edit2 scarpe all. forgot the most natural (adding 9 ensures rounding up for integers)
(list.Count()+9)/10
Check by using mod - if there is a remainder, simply increment the value by one.

Average function without overflow exception

.NET Framework 3.5.
I'm trying to calculate the average of some pretty large numbers.
For instance:
using System;
using System.Linq;
class Program
{
static void Main(string[] args)
{
var items = new long[]
{
long.MaxValue - 100,
long.MaxValue - 200,
long.MaxValue - 300
};
try
{
var avg = items.Average();
Console.WriteLine(avg);
}
catch (OverflowException ex)
{
Console.WriteLine("can't calculate that!");
}
Console.ReadLine();
}
}
Obviously, the mathematical result is 9223372036854775607 (long.MaxValue - 200), but I get an exception there. This is because the implementation (on my machine) to the Average extension method, as inspected by .NET Reflector is:
public static double Average(this IEnumerable<long> source)
{
if (source == null)
{
throw Error.ArgumentNull("source");
}
long num = 0L;
long num2 = 0L;
foreach (long num3 in source)
{
num += num3;
num2 += 1L;
}
if (num2 <= 0L)
{
throw Error.NoElements();
}
return (((double) num) / ((double) num2));
}
I know I can use a BigInt library (yes, I know that it is included in .NET Framework 4.0, but I'm tied to 3.5).
But I still wonder if there's a pretty straight forward implementation of calculating the average of integers without an external library. Do you happen to know about such implementation?
Thanks!!
UPDATE:
The previous example, of three large integers, was just an example to illustrate the overflow issue. The question is about calculating an average of any set of numbers which might sum to a large number that exceeds the type's max value. Sorry about this confusion. I also changed the question's title to avoid additional confusion.
Thanks all!!
This answer used to suggest storing the quotient and remainder (mod count) separately. That solution is less space-efficient and more code-complex.
In order to accurately compute the average, you must keep track of the total. There is no way around this, unless you're willing to sacrifice accuracy. You can try to store the total in fancy ways, but ultimately you must be tracking it if the algorithm is correct.
For single-pass algorithms, this is easy to prove. Suppose you can't reconstruct the total of all preceding items, given the algorithm's entire state after processing those items. But wait, we can simulate the algorithm then receiving a series of 0 items until we finish off the sequence. Then we can multiply the result by the count and get the total. Contradiction. Therefore a single-pass algorithm must be tracking the total in some sense.
Therefore the simplest correct algorithm will just sum up the items and divide by the count. All you have to do is pick an integer type with enough space to store the total. Using a BigInteger guarantees no issues, so I suggest using that.
var total = BigInteger.Zero
var count = 0
for i in values
count += 1
total += i
return total / (double)count //warning: possible loss of accuracy, maybe return a Rational instead?
If you're just looking for an arithmetic mean, you can perform the calculation like this:
public static double Mean(this IEnumerable<long> source)
{
if (source == null)
{
throw Error.ArgumentNull("source");
}
double count = (double)source.Count();
double mean = 0D;
foreach(long x in source)
{
mean += (double)x/count;
}
return mean;
}
Edit:
In response to comments, there definitely is a loss of precision this way, due to performing numerous divisions and additions. For the values indicated by the question, this should not be a problem, but it should be a consideration.
You may try the following approach:
let number of elements is N, and numbers are arr[0], .., arr[N-1].
You need to define 2 variables:
mean and remainder.
initially mean = 0, remainder = 0.
at step i you need to change mean and remainder in the following way:
mean += arr[i] / N;
remainder += arr[i] % N;
mean += remainder / N;
remainder %= N;
after N steps you will get correct answer in mean variable and remainder / N will be fractional part of the answer (I am not sure you need it, but anyway)
If you know approximately what the average will be (or, at least, that all pairs of numbers will have a max difference < long.MaxValue), you can calculate the average difference from that value instead. I take an example with low numbers, but it works equally well with large ones.
// Let's say numbers cannot exceed 40.
List<int> numbers = new List<int>() { 31 28 24 32 36 29 }; // Average: 30
List<int> diffs = new List<int>();
// This can probably be done more effectively in linq, but to show the idea:
foreach(int number in numbers.Skip(1))
{
diffs.Add(numbers.First()-number);
}
// diffs now contains { -3 -6 1 5 -2 }
var avgDiff = diffs.Sum() / diffs.Count(); // the average is -1
// To get the average value, just add the average diff to the first value:
var totalAverage = numbers.First()+avgDiff;
You can of course implement this in some way that makes it easier to reuse, for example as an extension method to IEnumerable<long>.
Here is how I would do if given this problem. First let's define very simple RationalNumber class, which contains two properties - Dividend and Divisor and an operator for adding two complex numbers. Here is how it looks:
public sealed class RationalNumber
{
public RationalNumber()
{
this.Divisor = 1;
}
public static RationalNumberoperator +( RationalNumberc1, RationalNumber c2 )
{
RationalNumber result = new RationalNumber();
Int64 nDividend = ( c1.Dividend * c2.Divisor ) + ( c2.Dividend * c1.Divisor );
Int64 nDivisor = c1.Divisor * c2.Divisor;
Int64 nReminder = nDividend % nDivisor;
if ( nReminder == 0 )
{
// The number is whole
result.Dividend = nDividend / nDivisor;
}
else
{
Int64 nGreatestCommonDivisor = FindGreatestCommonDivisor( nDividend, nDivisor );
if ( nGreatestCommonDivisor != 0 )
{
nDividend = nDividend / nGreatestCommonDivisor;
nDivisor = nDivisor / nGreatestCommonDivisor;
}
result.Dividend = nDividend;
result.Divisor = nDivisor;
}
return result;
}
private static Int64 FindGreatestCommonDivisor( Int64 a, Int64 b)
{
Int64 nRemainder;
while ( b != 0 )
{
nRemainder = a% b;
a = b;
b = nRemainder;
}
return a;
}
// a / b = a is devidend, b is devisor
public Int64 Dividend { get; set; }
public Int64 Divisor { get; set; }
}
Second part is really easy. Let's say we have an array of numbers. Their average is estimated by Sum(Numbers)/Length(Numbers), which is the same as Number[ 0 ] / Length + Number[ 1 ] / Length + ... + Number[ n ] / Length. For to be able to calculate this we will represent each Number[ i ] / Length as a whole number and a rational part ( reminder ). Here is how it looks:
Int64[] aValues = new Int64[] { long.MaxValue - 100, long.MaxValue - 200, long.MaxValue - 300 };
List<RationalNumber> list = new List<RationalNumber>();
Int64 nAverage = 0;
for ( Int32 i = 0; i < aValues.Length; ++i )
{
Int64 nReminder = aValues[ i ] % aValues.Length;
Int64 nWhole = aValues[ i ] / aValues.Length;
nAverage += nWhole;
if ( nReminder != 0 )
{
list.Add( new RationalNumber() { Dividend = nReminder, Divisor = aValues.Length } );
}
}
RationalNumber rationalTotal = new RationalNumber();
foreach ( var rational in list )
{
rationalTotal += rational;
}
nAverage = nAverage + ( rationalTotal.Dividend / rationalTotal.Divisor );
At the end we have a list of rational numbers, and a whole number which we sum together and get the average of the sequence without an overflow. Same approach can be taken for any type without an overflow for it, and there is no lost of precision.
EDIT:
Why this works:
Define: A set of numbers.
if Average( A ) = SUM( A ) / LEN( A ) =>
Average( A ) = A[ 0 ] / LEN( A ) + A[ 1 ] / LEN( A ) + A[ 2 ] / LEN( A ) + ..... + A[ N ] / LEN( 2 ) =>
if we define An to be a number that satisfies this: An = X + ( Y / LEN( A ) ), which is essentially so because if you divide A by B we get X with a reminder a rational number ( Y / B ).
=> so
Average( A ) = A1 + A2 + A3 + ... + AN = X1 + X2 + X3 + X4 + ... + Reminder1 + Reminder2 + ...;
Sum the whole parts, and sum the reminders by keeping them in rational number form. In the end we get one whole number and one rational, which summed together gives Average( A ). Depending on what precision you'd like, you apply this only to the rational number at the end.
Simple answer with LINQ...
var data = new[] { int.MaxValue, int.MaxValue, int.MaxValue };
var mean = (int)data.Select(d => (double)d / data.Count()).Sum();
Depending on the size of the set fo data you may want to force data .ToList() or .ToArray() before your process this method so it can't requery count on each pass. (Or you can call it before the .Select(..).Sum().)
If you know in advance that all your numbers are going to be 'big' (in the sense of 'much nearer long.MaxValue than zero), you can calculate the average of their distance from long.MaxValue, then the average of the numbers is long.MaxValue less that.
However, this approach will fail if (m)any of the numbers are far from long.MaxValue, so it's horses for courses...
I guess there has to be a compromise somewhere or the other. If the numbers are really getting so large then few digits of lower orders (say lower 5 digits) might not affect the result as much.
Another issue is where you don't really know the size of the dataset coming in, especially in stream/real time cases. Here I don't see any solution other then the
(previousAverage*oldCount + newValue) / (oldCount <- oldCount+1)
Here's a suggestion:
*LargestDataTypePossible* currentAverage;
*SomeSuitableDatatypeSupportingRationalValues* newValue;
*int* count;
addToCurrentAverage(value){
newValue = value/100000;
count = count + 1;
currentAverage = (currentAverage * (count-1) + newValue) / count;
}
getCurrentAverage(){
return currentAverage * 100000;
}
Averaging numbers of a specific numeric type in a safe way while also only using that numeric type is actually possible, although I would advise using the help of BigInteger in a practical implementation. I created a project for Safe Numeric Calculations that has a small structure (Int32WithBoundedRollover) which can sum up to 2^32 int32s without any overflow (the structure internally uses two int32 fields to do this, so no larger data types are used).
Once you have this sum you then need to calculate sum/total to get the average, which you can do (although I wouldn't recommend it) by creating and then incrementing by total another instance of Int32WithBoundedRollover. After each increment you can compare it to the sum until you find out the integer part of the average. From there you can peel off the remainder and calculate the fractional part. There are likely some clever tricks to make this more efficient, but this basic strategy would certainly work without needing to resort to a bigger data type.
That being said, the current implementation isn't build for this (for instance there is no comparison operator on Int32WithBoundedRollover, although it wouldn't be too hard to add). The reason is that it is just much simpler to use BigInteger at the end to do the calculation. Performance wise this doesn't matter too much for large averages since it will only be done once, and it is just too clean and easy to understand to worry about coming up with something clever (at least so far...).
As far as your original question which was concerned with the long data type, the Int32WithBoundedRollover could be converted to a LongWithBoundedRollover by just swapping int32 references for long references and it should work just the same. For Int32s I did notice a pretty big difference in performance (in case that is of interest). Compared to the BigInteger only method the method that I produced is around 80% faster for the large (as in total number of data points) samples that I was testing (the code for this is included in the unit tests for the Int32WithBoundedRollover class). This is likely mostly due to the difference between the int32 operations being done in hardware instead of software as the BigInteger operations are.
How about BigInteger in Visual J#.
If you're willing to sacrifice precision, you could do something like:
long num2 = 0L;
foreach (long num3 in source)
{
num2 += 1L;
}
if (num2 <= 0L)
{
throw Error.NoElements();
}
double average = 0;
foreach (long num3 in source)
{
average += (double)num3 / (double)num2;
}
return average;
Perhaps you can reduce every item by calculating average of adjusted values and then multiply it by the number of elements in collection. However, you'll find a bit different number of of operations on floating point.
var items = new long[] { long.MaxValue - 100, long.MaxValue - 200, long.MaxValue - 300 };
var avg = items.Average(i => i / items.Count()) * items.Count();
You could keep a rolling average which you update once for each large number.
Use the IntX library on CodePlex.
NextAverage = CurrentAverage + (NewValue - CurrentAverage) / (CurrentObservations + 1)
Here is my version of an extension method that can help with this.
public static long Average(this IEnumerable<long> longs)
{
long mean = 0;
long count = longs.Count();
foreach (var val in longs)
{
mean += val / count;
}
return mean;
}
Let Avg(n) be the average in first n number, and data[n] is the nth number.
Avg(n)=(double)(n-1)/(double)n*Avg(n-1)+(double)data[n]/(double)n
Can avoid value overflow however loss precision when n is very large.
For two positive numbers (or two negative numbers) , I found a very elegant solution from here.
where an average computation of (a+b)/2 can be replaced with a+((b-a)/2.

Categories

Resources