Managing task cancellation and completion on a concurrent thread - c#

[ This question needs to be reimagined. One of my thread queues MUST run on an STA thread, and the code below does not accommodate that. In particular it seems Task<> chooses its own thread and that just is not going to work for me. ]
I have a task queue (BlockingCollection) that I'm running through on a dedicated thread. That queue receives a series of Task<> objects that it runs sequentially within that thread via a while loop.
I need a means of Cancelling that series of tasks, and a means of knowing that the tasks are all complete. I have not been able to figure out how to do this.
Here's a fragment of my queuing class. ProcessQueue is run on a separate thread from main. QueueJob calls occur on the main thread.
using Job = Tuple<Task<bool>, string>;
public class JobProcessor
{
private readonly BlockingCollection<Job> m_queue = new BlockingCollection<Job>();
volatile bool cancel_queue = false;
private bool ProcessQueue()
{
while (true)
{
if (m_queue.IsAddingCompleted)
break;
Job tuple;
if (!m_queue.TryTake(out tuple, Timeout.Infinite))
break;
var task = tuple.Item1;
var taskName = tuple.Item2;
try
{
Console.WriteLine("Task {0}::{1} starting", this.name, taskName);
task.RunSynchronously();
Console.WriteLine("Task {0}::{1} completed", this.name, taskName);
}
catch (Exception e)
{
string message = e.Message;
}
if (cancel_queue) // CANCEL BY ERASING TASKS AND NOT RUNNING.
{
while (m_queue.TryTake(out tuple))
{
}
}
} // while(true)
return true;
}
public Task<bool> QueueJob(Func<bool> input)
{
var task = new Task<bool>(input);
try
{
m_queue.Add(Tuple.Create(task, input.Method.Name));
}
catch (InvalidOperationException)
{
Task<bool> dummy = new Task<bool>(() => false);
dummy.Start();
return dummy;
}
return task;
}
Here are the functions that trouble me:
public void ClearQueue()
{
cancel_queue = true;
// wait for queue to become empty. HOW?
cancel_queue = false;
}
public void WaitForCompletion()
{
// wait for all tasks to be completed.
// not sufficient to wait for empty queue because the last task
// must also execute and finish. HOW?
}
}
Here is some usage:
class SomeClass
{
void Test()
{
JobProcessor jp = new JobProcessor();
// launch Processor loop on separate thread... code not shown.
// send a bunch of jobs via QueueJob... code not show.
// launch dialog... code not shown.
if (dialog_result == Result.Cancel)
jp.ClearQueue();
if (dialog_result == Result.Proceed)
jp.WaitForCompletion();
}
}
The idea is after the work is completed or cancelled, new work may be posted. In general though, new work may come in asynchronously. WaitForCompletion might in fact be "when all work is done, inform the user and then do other stuff", so it doesn't strictly have to be a synchronous function call like above, but I can't figure how to make these happen.
(One further complication, I expect to have several queues that interact. While I am careful to keep things parallelized in a way to prevent deadlocks, I am not confident what happens when cancellation is introduced into the mix, but this is probably beyond scope for this question.)

WaitForCompletion() sounds easy enough. Create a semaphore or event, create a task whose only action is to signal the semaphore, queue up the task, wait on the semaphore.
When the thread finishes the last 'real' task, the semaphore task will be run and so the thread that called WaitForCompletion will become ready/running:)
Would not a similar approach work for cancellation? Have a very high priority thread that you create/signal that drains the queue of all pending jobs, disposing them, queueing up the semaphore task and waiting for the 'last task done' signal?

Related

thread safe processing of a queue

I am putting tasks from the UI-thread into a queue, so that they can be processed in another thread. if there is nothing to do, the thread should wait with an AutoResetEvent - obviously all this should be threadsafe.
i am putting tasks in the queue from the UI-thread like this:
lock (_syncObject)
{
_queue.Enqueue(new FakeTask());
}
_autoResetEvent.Set();
here is how my processing thread-loop looks so far:
while (true)
{
FakeTask task = null;
lock (_syncObject)
{
if (_queue.Count > 0)
{
task = _queue.Dequeue();
}
}
if (task != null)
{
task.Run();
Thread.Sleep(1000); //just here for testing purposes
}
if (_queue.Count == 0)
{
_autoResetEvent.WaitOne();
}
}
i am afraid that the last part where i check if something else is in the queue is not thread safe and would like to know how i can make it so. thanks!
In simple case, try using BlockingCollection which has been specially designed for implementing Producer / Consumer pattern:
private async Task Process() {
using (BlockingCollection<FakeTask> _queue = new BlockingCollection<FakeTask>()) {
Task producer = Task.Run(() => {
while (!completed) {
//TODO: put relevant code here
_queue.Add(new FakeTask());
}
_queue.CompleteAdding();
});
Task consumer = Task.Run(() => {
foreach (FakeTask task in _queue.GetConsumingEnumerable()) {
//TODO: process task - put relevant code here
}
});
await Task.WhenAll(producer, consumer).ConfigureAwait(false);
}
}
Edit: if producer is UI thread itself:
private async Task Process() {
using (BlockingCollection<FakeTask> _queue = new BlockingCollection<FakeTask>()) {
Task consumer = Task.Run(() => {
foreach (FakeTask task in _queue.GetConsumingEnumerable()) {
//TODO: process task - put relevant code here
}
});
// If we produce in UI we don't want any separate Task
while (!completed) {
//TODO: put relevant code here
_queue.Add(new FakeTask());
}
_queue.CompleteAdding();
await consumer.ConfigureAwait(false);
}
}
In case of entangled mesh (e.g. producers #1, #2 genetate tasks for consumers #1, #2, #3 which in turn create tasks for...) try DataFlow
It's not useful to create a thread just so that it can spend basically all of its time sitting around doing nothing waiting for work to do.
All you need to do is use an asynchronous locking mechanism around the UI task's scheduling of background work to be done. SemaphoreSlim provides such an asynchronous synchronization mechanism.
await sempahoreSlim.WaitAsync();
try
{
await Task.Run(() => DoWork());
}
finally
{
sempahoreSlim.Release();
}
Not only is it a lot less code, and has much simpler code that more accurately reflects what the business logic of the application is, but you're consuming quite a lot less system resources.
And of course if different background operations can safely run in parallel, then just use the thread pool, rather than your own message loop, and the code becomes even simpler.

Cancel Tasks in c# [duplicate]

We could abort a Thread like this:
Thread thread = new Thread(SomeMethod);
.
.
.
thread.Abort();
But can I abort a Task (in .Net 4.0) in the same way not by cancellation mechanism. I want to kill the Task immediately.
The guidance on not using a thread abort is controversial. I think there is still a place for it but in exceptional circumstance. However you should always attempt to design around it and see it as a last resort.
Example;
You have a simple windows form application that connects to a blocking synchronous web service. Within which it executes a function on the web service within a Parallel loop.
CancellationTokenSource cts = new CancellationTokenSource();
ParallelOptions po = new ParallelOptions();
po.CancellationToken = cts.Token;
po.MaxDegreeOfParallelism = System.Environment.ProcessorCount;
Parallel.ForEach(iListOfItems, po, (item, loopState) =>
{
Thread.Sleep(120000); // pretend web service call
});
Say in this example, the blocking call takes 2 mins to complete. Now I set my MaxDegreeOfParallelism to say ProcessorCount. iListOfItems has 1000 items within it to process.
The user clicks the process button and the loop commences, we have 'up-to' 20 threads executing against 1000 items in the iListOfItems collection. Each iteration executes on its own thread. Each thread will utilise a foreground thread when created by Parallel.ForEach. This means regardless of the main application shutdown, the app domain will be kept alive until all threads have finished.
However the user needs to close the application for some reason, say they close the form.
These 20 threads will continue to execute until all 1000 items are processed. This is not ideal in this scenario, as the application will not exit as the user expects and will continue to run behind the scenes, as can be seen by taking a look in task manger.
Say the user tries to rebuild the app again (VS 2010), it reports the exe is locked, then they would have to go into task manager to kill it or just wait until all 1000 items are processed.
I would not blame you for saying, but of course! I should be cancelling these threads using the CancellationTokenSource object and calling Cancel ... but there are some problems with this as of .net 4.0. Firstly this is still never going to result in a thread abort which would offer up an abort exception followed by thread termination, so the app domain will instead need to wait for the threads to finish normally, and this means waiting for the last blocking call, which would be the very last running iteration (thread) that ultimately gets to call po.CancellationToken.ThrowIfCancellationRequested.
In the example this would mean the app domain could still stay alive for up to 2 mins, even though the form has been closed and cancel called.
Note that Calling Cancel on CancellationTokenSource does not throw an exception on the processing thread(s), which would indeed act to interrupt the blocking call similar to a thread abort and stop the execution. An exception is cached ready for when all the other threads (concurrent iterations) eventually finish and return, the exception is thrown in the initiating thread (where the loop is declared).
I chose not to use the Cancel option on a CancellationTokenSource object. This is wasteful and arguably violates the well known anti-patten of controlling the flow of the code by Exceptions.
Instead, it is arguably 'better' to implement a simple thread safe property i.e. Bool stopExecuting. Then within the loop, check the value of stopExecuting and if the value is set to true by the external influence, we can take an alternate path to close down gracefully. Since we should not call cancel, this precludes checking CancellationTokenSource.IsCancellationRequested which would otherwise be another option.
Something like the following if condition would be appropriate within the loop;
if (loopState.ShouldExitCurrentIteration || loopState.IsExceptional || stopExecuting) {loopState.Stop(); return;}
The iteration will now exit in a 'controlled' manner as well as terminating further iterations, but as I said, this does little for our issue of having to wait on the long running and blocking call(s) that are made within each iteration (parallel loop thread), since these have to complete before each thread can get to the option of checking if it should stop.
In summary, as the user closes the form, the 20 threads will be signaled to stop via stopExecuting, but they will only stop when they have finished executing their long running function call.
We can't do anything about the fact that the application domain will always stay alive and only be released when all foreground threads have completed. And this means there will be a delay associated with waiting for any blocking calls made within the loop to complete.
Only a true thread abort can interrupt the blocking call, and you must mitigate leaving the system in a unstable/undefined state the best you can in the aborted thread's exception handler which goes without question. Whether that's appropriate is a matter for the programmer to decide, based on what resource handles they chose to maintain and how easy it is to close them in a thread's finally block. You could register with a token to terminate on cancel as a semi workaround i.e.
CancellationTokenSource cts = new CancellationTokenSource();
ParallelOptions po = new ParallelOptions();
po.CancellationToken = cts.Token;
po.MaxDegreeOfParallelism = System.Environment.ProcessorCount;
Parallel.ForEach(iListOfItems, po, (item, loopState) =>
{
using (cts.Token.Register(Thread.CurrentThread.Abort))
{
Try
{
Thread.Sleep(120000); // pretend web service call
}
Catch(ThreadAbortException ex)
{
// log etc.
}
Finally
{
// clean up here
}
}
});
but this will still result in an exception in the declaring thread.
All things considered, interrupt blocking calls using the parallel.loop constructs could have been a method on the options, avoiding the use of more obscure parts of the library. But why there is no option to cancel and avoid throwing an exception in the declaring method strikes me as a possible oversight.
But can I abort a Task (in .Net 4.0) in the same way not by
cancellation mechanism. I want to kill the Task immediately.
Other answerers have told you not to do it. But yes, you can do it. You can supply Thread.Abort() as the delegate to be called by the Task's cancellation mechanism. Here is how you could configure this:
class HardAborter
{
public bool WasAborted { get; private set; }
private CancellationTokenSource Canceller { get; set; }
private Task<object> Worker { get; set; }
public void Start(Func<object> DoFunc)
{
WasAborted = false;
// start a task with a means to do a hard abort (unsafe!)
Canceller = new CancellationTokenSource();
Worker = Task.Factory.StartNew(() =>
{
try
{
// specify this thread's Abort() as the cancel delegate
using (Canceller.Token.Register(Thread.CurrentThread.Abort))
{
return DoFunc();
}
}
catch (ThreadAbortException)
{
WasAborted = true;
return false;
}
}, Canceller.Token);
}
public void Abort()
{
Canceller.Cancel();
}
}
disclaimer: don't do this.
Here is an example of what not to do:
var doNotDoThis = new HardAborter();
// start a thread writing to the console
doNotDoThis.Start(() =>
{
while (true)
{
Thread.Sleep(100);
Console.Write(".");
}
return null;
});
// wait a second to see some output and show the WasAborted value as false
Thread.Sleep(1000);
Console.WriteLine("WasAborted: " + doNotDoThis.WasAborted);
// wait another second, abort, and print the time
Thread.Sleep(1000);
doNotDoThis.Abort();
Console.WriteLine("Abort triggered at " + DateTime.Now);
// wait until the abort finishes and print the time
while (!doNotDoThis.WasAborted) { Thread.CurrentThread.Join(0); }
Console.WriteLine("WasAborted: " + doNotDoThis.WasAborted + " at " + DateTime.Now);
Console.ReadKey();
You shouldn't use Thread.Abort()
Tasks can be Cancelled but not aborted.
The Thread.Abort() method is (severely) deprecated.
Both Threads and Tasks should cooperate when being stopped, otherwise you run the risk of leaving the system in a unstable/undefined state.
If you do need to run a Process and kill it from the outside, the only safe option is to run it in a separate AppDomain.
This answer is about .net 3.5 and earlier.
Thread-abort handling has been improved since then, a.o. by changing the way finally blocks work.
But Thread.Abort is still a suspect solution that you should always try to avoid.
And in .net Core (.net 5+) Thread.Abort() will now throw a PlatformNotSupportedException .
Kind of underscoring the 'deprecated' point.
Everyone knows (hopefully) its bad to terminate thread. The problem is when you don't own a piece of code you're calling. If this code is running in some do/while infinite loop , itself calling some native functions, etc. you're basically stuck. When this happens in your own code termination, stop or Dispose call, it's kinda ok to start shooting the bad guys (so you don't become a bad guy yourself).
So, for what it's worth, I've written those two blocking functions that use their own native thread, not a thread from the pool or some thread created by the CLR. They will stop the thread if a timeout occurs:
// returns true if the call went to completion successfully, false otherwise
public static bool RunWithAbort(this Action action, int milliseconds) => RunWithAbort(action, new TimeSpan(0, 0, 0, 0, milliseconds));
public static bool RunWithAbort(this Action action, TimeSpan delay)
{
if (action == null)
throw new ArgumentNullException(nameof(action));
var source = new CancellationTokenSource(delay);
var success = false;
var handle = IntPtr.Zero;
var fn = new Action(() =>
{
using (source.Token.Register(() => TerminateThread(handle, 0)))
{
action();
success = true;
}
});
handle = CreateThread(IntPtr.Zero, IntPtr.Zero, fn, IntPtr.Zero, 0, out var id);
WaitForSingleObject(handle, 100 + (int)delay.TotalMilliseconds);
CloseHandle(handle);
return success;
}
// returns what's the function should return if the call went to completion successfully, default(T) otherwise
public static T RunWithAbort<T>(this Func<T> func, int milliseconds) => RunWithAbort(func, new TimeSpan(0, 0, 0, 0, milliseconds));
public static T RunWithAbort<T>(this Func<T> func, TimeSpan delay)
{
if (func == null)
throw new ArgumentNullException(nameof(func));
var source = new CancellationTokenSource(delay);
var item = default(T);
var handle = IntPtr.Zero;
var fn = new Action(() =>
{
using (source.Token.Register(() => TerminateThread(handle, 0)))
{
item = func();
}
});
handle = CreateThread(IntPtr.Zero, IntPtr.Zero, fn, IntPtr.Zero, 0, out var id);
WaitForSingleObject(handle, 100 + (int)delay.TotalMilliseconds);
CloseHandle(handle);
return item;
}
[DllImport("kernel32")]
private static extern bool TerminateThread(IntPtr hThread, int dwExitCode);
[DllImport("kernel32")]
private static extern IntPtr CreateThread(IntPtr lpThreadAttributes, IntPtr dwStackSize, Delegate lpStartAddress, IntPtr lpParameter, int dwCreationFlags, out int lpThreadId);
[DllImport("kernel32")]
private static extern bool CloseHandle(IntPtr hObject);
[DllImport("kernel32")]
private static extern int WaitForSingleObject(IntPtr hHandle, int dwMilliseconds);
While it's possible to abort a thread, in practice it's almost always a very bad idea to do so. Aborthing a thread means the thread is not given a chance to clean up after itself, leaving resources undeleted, and things in unknown states.
In practice, if you abort a thread, you should only do so in conjunction with killing the process. Sadly, all too many people think ThreadAbort is a viable way of stopping something and continuing on, it's not.
Since Tasks run as threads, you can call ThreadAbort on them, but as with generic threads you almost never want to do this, except as a last resort.
I faced a similar problem with Excel's Application.Workbooks.
If the application is busy, the method hangs eternally. My approach was simply to try to get it in a task and wait, if it takes too long, I just leave the task be and go away (there is no harm "in this case", Excel will unfreeze the moment the user finishes whatever is busy).
In this case, it's impossible to use a cancellation token. The advantage is that I don't need excessive code, aborting threads, etc.
public static List<Workbook> GetAllOpenWorkbooks()
{
//gets all open Excel applications
List<Application> applications = GetAllOpenApplications();
//this is what we want to get from the third party library that may freeze
List<Workbook> books = null;
//as Excel may freeze here due to being busy, we try to get the workbooks asynchronously
Task task = Task.Run(() =>
{
try
{
books = applications
.SelectMany(app => app.Workbooks.OfType<Workbook>()).ToList();
}
catch { }
});
//wait for task completion
task.Wait(5000);
return books; //handle outside if books is null
}
This is my implementation of an idea presented by #Simon-Mourier, using the dotnet thread, short and simple code:
public static bool RunWithAbort(this Action action, int milliseconds)
{
if (action == null) throw new ArgumentNullException(nameof(action));
var success = false;
var thread = new Thread(() =>
{
action();
success = true;
});
thread.IsBackground = true;
thread.Start();
thread.Join(milliseconds);
thread.Abort();
return success;
}
You can "abort" a task by running it on a thread you control and aborting that thread. This causes the task to complete in a faulted state with a ThreadAbortException. You can control thread creation with a custom task scheduler, as described in this answer. Note that the caveat about aborting a thread applies.
(If you don't ensure the task is created on its own thread, aborting it would abort either a thread-pool thread or the thread initiating the task, neither of which you typically want to do.)
using System;
using System.Threading;
using System.Threading.Tasks;
...
var cts = new CancellationTokenSource();
var task = Task.Run(() => { while (true) { } });
Parallel.Invoke(() =>
{
task.Wait(cts.Token);
}, () =>
{
Thread.Sleep(1000);
cts.Cancel();
});
This is a simple snippet to abort a never-ending task with CancellationTokenSource.

Always Running Threads on Windows Service

I'm writing a Windows Service that will kick off multiple worker threads that will listen to Amazon SQS queues and process messages. There will be about 20 threads listening to 10 queues.
The threads will have to be always running and that's why I'm leaning towards to actually using actual threads for the worker loops rather than threadpool threads.
Here is a top level implementation. Windows service will kick off multiple worker threads and each will listen to it's queue and process messages.
protected override void OnStart(string[] args)
{
for (int i = 0; i < _workers; i++)
{
new Thread(RunWorker).Start();
}
}
Here is the implementation of the work
public async void RunWorker()
{
while(true)
{
// .. get message from amazon sqs sync.. about 20ms
var message = sqsClient.ReceiveMessage();
try
{
await PerformWebRequestAsync(message);
await InsertIntoDbAsync(message);
}
catch(SomeExeception)
{
// ... log
//continue to retry
continue;
}
sqsClient.DeleteMessage();
}
}
I know I can perform the same operation with Task.Run and execute it on the threadpool thread rather than starting individual thread, but I don't see a reason for that since each thread will always be running.
Do you see any problems with this implementation? How reliable would it be to leave threads always running in this fashion and what can I do to make sure that each thread is always running?
One problem with your existing solution is that you call your RunWorker in a fire-and-forget manner, albeit on a new thread (i.e., new Thread(RunWorker).Start()).
RunWorker is an async method, it will return to the caller when the execution point hits the first await (i.e. await PerformWebRequestAsync(message)). If PerformWebRequestAsync returns a pending task, RunWorker returns and the new thread you just started terminates.
I don't think you need a new thread here at all, just use AmazonSQSClient.ReceiveMessageAsync and await its result. Another thing is that you shouldn't be using async void methods unless you really don't care about tracking the state of the asynchronous task. Use async Task instead.
Your code might look like this:
List<Task> _workers = new List<Task>();
CancellationTokenSource _cts = new CancellationTokenSource();
protected override void OnStart(string[] args)
{
for (int i = 0; i < _MAX_WORKERS; i++)
{
_workers.Add(RunWorkerAsync(_cts.Token));
}
}
public async Task RunWorkerAsync(CancellationToken token)
{
while(true)
{
token.ThrowIfCancellationRequested();
// .. get message from amazon sqs sync.. about 20ms
var message = await sqsClient.ReceiveMessageAsync().ConfigureAwait(false);
try
{
await PerformWebRequestAsync(message);
await InsertIntoDbAsync(message);
}
catch(SomeExeception)
{
// ... log
//continue to retry
continue;
}
sqsClient.DeleteMessage();
}
}
Now, to stop all pending workers, you could simple do this (from the main "request dispatcher" thread):
_cts.Cancel();
try
{
Task.WaitAll(_workers.ToArray());
}
catch (AggregateException ex)
{
ex.Handle(inner => inner is OperationCanceledException);
}
Note, ConfigureAwait(false) is optional for Windows Service, because there's no synchronization context on the initial thread, by default. However, I'd keep it that way to make the code independent of the execution environment (for cases where there is synchronization context).
Finally, if for some reason you cannot use ReceiveMessageAsync, or you need to call another blocking API, or simply do a piece of CPU intensive work at the beginning of RunWorkerAsync, just wrap it with Task.Run (as opposed to wrapping the whole RunWorkerAsync):
var message = await Task.Run(
() => sqsClient.ReceiveMessage()).ConfigureAwait(false);
Well, for one I'd use a CancellationTokenSource instantiated in the service and passed down to the workers. Your while statement would become:
while(!cancellationTokenSource.IsCancellationRequested)
{
//rest of the code
}
This way you can cancel all your workers from the OnStop service method.
Additionally, you should watch for:
If you're playing with thread states from outside of the thread, then a ThreadStateException, or ThreadInterruptedException or one of the others might be thrown. So, you want to handle a proper thread restart.
Do the workers need to run without pause in-between iterations? I would throw in a sleep in there (even a few ms's) just so they don't keep the CPU up for nothing.
You need to handle ThreadStartException and restart the worker, if it occurs.
Other than that there's no reason why those 10 treads can't run for as long as the service runs (days, weeks, months at a time).

c# do the equivalent of restarting a Task with some parameter

The main idea here is to fetch some data from somewhere, when it's fetched start writing it, and then prepare the next batch of data to be written, while waiting for the previous write to be complete.
I know that a Task cannot be restarted or reused (nor should it be), although I am trying to find a way to do something like this :
//The "WriteTargetData" method should take the "data" variable
//created in the loop below as a parameter
//WriteData basically do a shedload of mongodb upserts in a separate thread,
//it takes approx. 20-30 secs to run
var task = new Task(() => WriteData(somedata));
//GetData also takes some time.
foreach (var data in queries.Select(GetData))
{
if (task.Status != TaskStatus.Running)
{
//start task with "data" as a parameter
//continue the loop to prepare the next batch of data to be written
}
else
{
//wait for task to be completed
//"restart" task
//continue the loop to prepare the next batch of data to be written
}
}
Any suggestion appreciated ! Thanks. I don't necessarily want to use Task, I just think it might be the way to go.
This may be over simplifying your requirements, but would simply "waiting" for the previous task to complete work for you? You can use Task.WaitAny and Task.WaitAll to wait for previous operations to complete.
pseudo code:
// Method that makes calls to fetch and write data.
public async Task DoStuff()
{
Task currTask = null;
object somedata = await FetchData();
while (somedata != null)
{
// Wait for previous task.
if (currTask != null)
Task.WaitAny(currTask);
currTask = WriteData(somedata);
somedata = await FetchData();
}
}
// Whatever method fetches data.
public Task<object> FetchData()
{
var data = new object();
return Task.FromResult(data);
}
// Whatever method writes data.
public Task WriteData(object somedata)
{
return Task.Factory.StartNew(() => { /* write data */});
}
The Task class is not designed to be restarted. so you Need to create a new task and run the body with the same Parameters. Next i do not see where you start the task with the WriteData function in its body. That will property Eliminate the call of if (task.Status != TaskStatus.Running) There are AFAIK only the class Task and Thread where task is only the abstraction of an action that will be scheduled with the TaskScheduler and executed in different threads ( when we talking about the Common task Scheduler, the one you get when you call TaskFactory.Scheduler ) and the Number of the Threads are equal to the number of Processor Cores.
To you Business App. Why do you wait for the execution of WriteData? Would it be not a lot more easy to gater all data and than submit them into one big Write?
something like ?
public void Do()
{
var task = StartTask(500);
var array = new[] {1000, 2000, 3000};
foreach (var data in array)
{
if (task.IsCompleted)
{
task = StartTask(data);
}
else
{
task.Wait();
task = StartTask(data);
}
}
}
private Task StartTask(int data)
{
var task = new Task(DoSmth, data);
task.Start();
return task;
}
private void DoSmth(object time)
{
Thread.Sleep((int) time);
}
You can use a thread and an AutoResetEvent. I have code like this for several different threads in my program:
These are variable declarations that belong to the main program.
public AutoResetEvent StartTask = new AutoResetEvent(false);
public bool IsStopping = false;
public Thread RepeatingTaskThread;
Somewhere in your initialization code:
RepeatingTaskThread = new Thread( new ThreadStart( RepeatingTaskProcessor ) ) { IsBackground = true; };
RepeatingTaskThread.Start();
Then the method that runs the repeating task would look something like this:
private void RepeatingTaskProcessor() {
// Keep looping until the program is going down.
while (!IsStopping) {
// Wait to receive notification that there's something to process.
StartTask.WaitOne();
// Exit if the program is stopping now.
if (IsStopping) return;
// Execute your task
PerformTask();
}
}
If there are several different tasks you want to run, you can add a variable that would indicate which one to process and modify the logic in PerformTask to pick which one to run.
I know that it doesn't use the Task class, but there's more than one way to skin a cat & this will work.

Cancel Long Running task [duplicate]

In a thread, I create some System.Threading.Task and start each task.
When I do a .Abort() to kill the thread, the tasks are not aborted.
How can I transmit the .Abort() to my tasks ?
You can't. Tasks use background threads from the thread pool. Also canceling threads using the Abort method is not recommended. You may take a look at the following blog post which explains a proper way of canceling tasks using cancellation tokens. Here's an example:
class Program
{
static void Main()
{
var ts = new CancellationTokenSource();
CancellationToken ct = ts.Token;
Task.Factory.StartNew(() =>
{
while (true)
{
// do some heavy work here
Thread.Sleep(100);
if (ct.IsCancellationRequested)
{
// another thread decided to cancel
Console.WriteLine("task canceled");
break;
}
}
}, ct);
// Simulate waiting 3s for the task to complete
Thread.Sleep(3000);
// Can't wait anymore => cancel this task
ts.Cancel();
Console.ReadLine();
}
}
Like this post suggests, this can be done in the following way:
int Foo(CancellationToken token)
{
Thread t = Thread.CurrentThread;
using (token.Register(t.Abort))
{
// compute-bound work here
}
}
Although it works, it's not recommended to use such approach. If you can control the code that executes in task, you'd better go with proper handling of cancellation.
Aborting a Task is easily possible if you capture the thread in which the task is running in. Here is an example code to demonstrate this:
void Main()
{
Thread thread = null;
Task t = Task.Run(() =>
{
//Capture the thread
thread = Thread.CurrentThread;
//Simulate work (usually from 3rd party code)
Thread.Sleep(1000);
//If you comment out thread.Abort(), then this will be displayed
Console.WriteLine("Task finished!");
});
//This is needed in the example to avoid thread being still NULL
Thread.Sleep(10);
//Cancel the task by aborting the thread
thread.Abort();
}
I used Task.Run() to show the most common use-case for this - using the comfort of Tasks with old single-threaded code, which does not use the CancellationTokenSource class to determine if it should be canceled or not.
This sort of thing is one of the logistical reasons why Abort is deprecated. First and foremost, do not use Thread.Abort() to cancel or stop a thread if at all possible. Abort() should only be used to forcefully kill a thread that is not responding to more peaceful requests to stop in a timely fashion.
That being said, you need to provide a shared cancellation indicator that one thread sets and waits while the other thread periodically checks and gracefully exits. .NET 4 includes a structure designed specifically for this purpose, the CancellationToken.
I use a mixed approach to cancel a task.
Firstly, I'm trying to Cancel it politely with using the Cancellation.
If it's still running (e.g. due to a developer's mistake), then misbehave and kill it using an old-school Abort method.
Checkout an example below:
private CancellationTokenSource taskToken;
private AutoResetEvent awaitReplyOnRequestEvent = new AutoResetEvent(false);
void Main()
{
// Start a task which is doing nothing but sleeps 1s
LaunchTaskAsync();
Thread.Sleep(100);
// Stop the task
StopTask();
}
/// <summary>
/// Launch task in a new thread
/// </summary>
void LaunchTaskAsync()
{
taskToken = new CancellationTokenSource();
Task.Factory.StartNew(() =>
{
try
{ //Capture the thread
runningTaskThread = Thread.CurrentThread;
// Run the task
if (taskToken.IsCancellationRequested || !awaitReplyOnRequestEvent.WaitOne(10000))
return;
Console.WriteLine("Task finished!");
}
catch (Exception exc)
{
// Handle exception
}
}, taskToken.Token);
}
/// <summary>
/// Stop running task
/// </summary>
void StopTask()
{
// Attempt to cancel the task politely
if (taskToken != null)
{
if (taskToken.IsCancellationRequested)
return;
else
taskToken.Cancel();
}
// Notify a waiting thread that an event has occurred
if (awaitReplyOnRequestEvent != null)
awaitReplyOnRequestEvent.Set();
// If 1 sec later the task is still running, kill it cruelly
if (runningTaskThread != null)
{
try
{
runningTaskThread.Join(TimeSpan.FromSeconds(1));
}
catch (Exception ex)
{
runningTaskThread.Abort();
}
}
}
To answer Prerak K's question about how to use CancellationTokens when not using an anonymous method in Task.Factory.StartNew(), you pass the CancellationToken as a parameter into the method you're starting with StartNew(), as shown in the MSDN example here.
e.g.
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
Task.Factory.StartNew( () => DoSomeWork(1, token), token);
static void DoSomeWork(int taskNum, CancellationToken ct)
{
// Do work here, checking and acting on ct.IsCancellationRequested where applicable,
}
You should not try to do this directly. Design your tasks to work with a CancellationToken, and cancel them this way.
In addition, I would recommend changing your main thread to function via a CancellationToken as well. Calling Thread.Abort() is a bad idea - it can lead to various problems that are very difficult to diagnose. Instead, that thread can use the same Cancellation that your tasks use - and the same CancellationTokenSource can be used to trigger the cancellation of all of your tasks and your main thread.
This will lead to a far simpler, and safer, design.
Tasks have first class support for cancellation via cancellation tokens. Create your tasks with cancellation tokens, and cancel the tasks via these explicitly.
You can use a CancellationToken to control whether the task gets cancelled. Are you talking about aborting it before it's started ("nevermind, I already did this"), or actually interrupting it in middle? If the former, the CancellationToken can be helpful; if the latter, you will probably need to implement your own "bail out" mechanism and check at appropriate points in the task execution whether you should fail fast (you can still use the CancellationToken to help you, but it's a little more manual).
MSDN has an article about cancelling Tasks:
http://msdn.microsoft.com/en-us/library/dd997396.aspx
Task are being executed on the ThreadPool (at least, if you are using the default factory), so aborting the thread cannot affect the tasks. For aborting tasks, see Task Cancellation on msdn.
I tried CancellationTokenSource but i can't do this. And i did do this with my own way. And it works.
namespace Blokick.Provider
{
public class SignalRConnectProvider
{
public SignalRConnectProvider()
{
}
public bool IsStopRequested { get; set; } = false; //1-)This is important and default `false`.
public async Task<string> ConnectTab()
{
string messageText = "";
for (int count = 1; count < 20; count++)
{
if (count == 1)
{
//Do stuff.
}
try
{
//Do stuff.
}
catch (Exception ex)
{
//Do stuff.
}
if (IsStopRequested) //3-)This is important. The control of the task stopping request. Must be true and in inside.
{
return messageText = "Task stopped."; //4-) And so return and exit the code and task.
}
if (Connected)
{
//Do stuff.
}
if (count == 19)
{
//Do stuff.
}
}
return messageText;
}
}
}
And another class of the calling the method:
namespace Blokick.Views
{
[XamlCompilation(XamlCompilationOptions.Compile)]
public partial class MessagePerson : ContentPage
{
SignalRConnectProvider signalR = new SignalRConnectProvider();
public MessagePerson()
{
InitializeComponent();
signalR.IsStopRequested = true; // 2-) And this. Make true if running the task and go inside if statement of the IsStopRequested property.
if (signalR.ChatHubProxy != null)
{
signalR.Disconnect();
}
LoadSignalRMessage();
}
}
}
You can abort a task like a thread if you can cause the task to be created on its own thread and call Abort on its Thread object. By default, a task runs on a thread pool thread or the calling thread - neither of which you typically want to abort.
To ensure the task gets its own thread, create a custom scheduler derived from TaskScheduler. In your implementation of QueueTask, create a new thread and use it to execute the task. Later, you can abort the thread, which will cause the task to complete in a faulted state with a ThreadAbortException.
Use this task scheduler:
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException(); // Unused
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException(); // Unused
}
Start your task like this:
var scheduler = new SingleThreadTaskScheduler();
var task = Task.Factory.StartNew(action, cancellationToken, TaskCreationOptions.LongRunning, scheduler);
Later, you can abort with:
scheduler.TaskThread.Abort();
Note that the caveat about aborting a thread still applies:
The Thread.Abort method should be used with caution. Particularly when you call it to abort a thread other than the current thread, you do not know what code has executed or failed to execute when the ThreadAbortException is thrown, nor can you be certain of the state of your application or any application and user state that it is responsible for preserving. For example, calling Thread.Abort may prevent static constructors from executing or prevent the release of unmanaged resources.
You can use this class..:
It works for all typs of returned Values..
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace CarNUChargeTester
{
public class TimeOutTaskRunner<T>
{
private Func<T> func;
private int sec;
private T result;
public TimeOutTaskRunner(Func<T> func, int sec)
{
this.func = func;
this.sec = sec;
}
public bool run()
{
var scheduler = new SingleThreadTaskScheduler();
Task<T> task = Task<T>.Factory.StartNew(func, (new CancellationTokenSource()).Token, TaskCreationOptions.LongRunning, scheduler);
if (!task.Wait(TimeSpan.FromSeconds(sec)))
{
scheduler.TaskThread.Abort();
return false;
}
result = task.Result;
return true;
}
public T getResult() { return result; }
}
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException();
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException();
}
}
To use it you can write:
TimeOutTaskRunner<string> tr = new TimeOutTaskRunner<string>(f, 10); // 10 sec to run f
if (!tr.run())
errorMsg("TimeOut"); !! My func
tr.getResult() // get the results if it done without timeout..

Categories

Resources