I am trying to implement a long-running background process, that periodically reports on its progress, to update the UI in a UWP app. How can I accomplish this? I have seen several helpful topics, but none have all of the pieces, and I have been unable to put them all together.
For example, consider a user who picks a very large file, and the app is reading in and/or operating on the data in the file. The user clicks a button, which populates a list stored on the page with data from the file the user picks.
PART 1
The page and button's click event handler look something like this:
public sealed partial class MyPage : Page
{
public List<DataRecord> DataRecords { get; set; }
private DateTime LastUpdate;
public MyPage()
{
this.InitializeComponent();
this.DataRecords = new List<DataRecord>();
this.LastUpdate = DateTime.Now;
// Subscribe to the event handler for updates.
MyStorageWrapper.MyEvent += this.UpdateUI;
}
private async void LoadButton_Click(object sender, RoutedEventArgs e)
{
StorageFile pickedFile = // … obtained from FileOpenPicker.
if (pickedFile != null)
{
this.DataRecords = await MyStorageWrapper.GetDataAsync(pickedFile);
}
}
private void UpdateUI(long lineCount)
{
// This time check prevents the UI from updating so frequently
// that it becomes unresponsive as a result.
DateTime now = DateTime.Now;
if ((now - this.LastUpdate).Milliseconds > 3000)
{
// This updates a textblock to display the count, but could also
// update a progress bar or progress ring in here.
this.MessageTextBlock.Text = "Count: " + lineCount;
this.LastUpdate = now;
}
}
}
Inside of the MyStorageWrapper class:
public static class MyStorageWrapper
{
public delegate void MyEventHandler(long lineCount);
public static event MyEventHandler MyEvent;
private static void RaiseMyEvent(long lineCount)
{
// Ensure that something is listening to the event.
if (MyStorageWrapper.MyEvent!= null)
{
// Call the listening event handlers.
MyStorageWrapper.MyEvent(lineCount);
}
}
public static async Task<List<DataRecord>> GetDataAsync(StorageFile file)
{
List<DataRecord> recordsList = new List<DataRecord>();
using (Stream stream = await file.OpenStreamForReadAsync())
{
using (StreamReader reader = new StreamReader(stream))
{
while (!reader.EndOfStream)
{
string line = reader.ReadLine();
// Does its parsing here, and constructs a single DataRecord …
recordsList.Add(dataRecord);
// Raises an event.
MyStorageWrapper.RaiseMyEvent(recordsList.Count);
}
}
}
return recordsList;
}
}
The code for the time check I got from following this.
As written, this code makes the app unresponsive with a large file (I tested on a text file on the order of about 8.5 million lines). I thought adding async and await to the GetDataAsync() call would prevent this? Does this not do its work on a thread aside from the UI thread? Through Debug mode in Visual Studio, I have verified the program is progressing as expected... it is just tying up the UI thread, making the app unresponsive (see this page from Microsoft about the UI thread and asynchronous programming).
PART 2
I have successfully implemented before an asynchronous, long-running process that runs on a separate thread AND still updates the UI periodically... but this solution does not allow for the return value - specifically the line from PART 1 that says:
this.DataRecords = await MyStorageWrapper.GetDataAsync(pickedFile);
My previous, successful implementation follows (most of the bodies cut out for brevity). Is there a way to adapt this to allow for return values?
In a Page class:
public sealed partial class MyPage : Page
{
public Generator MyGenerator { get; set; }
public MyPage()
{
this.InitializeComponent();
this.MyGenerator = new Generator();
}
private void StartButton_Click(object sender, RoutedEventArgs e)
{
this.MyGenerator.ProgressUpdate += async (s, f) => await Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, delegate ()
{
// Updates UI elements on the page from here.
}
this.MyGenerator.Start();
}
private void StopButton_Click(object sender, RoutedEventArgs e)
{
this.MyGenerator.Stop();
}
}
And in the Generator class:
public class Generator
{
private CancellationTokenSource cancellationTokenSource;
public event EventHandler<GeneratorStatus> ProgressUpdate;
public Generator()
{
this.cancellationTokenSource = new CancellationTokenSource();
}
public void Start()
{
Task task = Task.Run(() =>
{
while(true)
{
// Throw an Operation Cancelled exception if the task is cancelled.
this.cancellationTokenSource.Token.ThrowIfCancellationRequested();
// Does stuff here.
// Finally raise the event (assume that 'args' is the correct args and datatypes).
this.ProgressUpdate.Raise(this, new GeneratorStatus(args));
}
}, this.cancellationTokenSource.Token);
}
public void Stop()
{
this.cancellationTokenSource.Cancel();
}
}
Finally, there are two supporting classes for the ProgressUpdate event:
public class GeneratorStatus : EventArgs
{
// This class can contain a handful of properties; only one shown.
public int number { get; private set; }
public GeneratorStatus(int n)
{
this.number = n;
}
}
static class EventExtensions
{
public static void Raise(this EventHandler<GeneratorStatus> theEvent, object sender, GeneratorStatus args)
{
theEvent?.Invoke(sender, args);
}
}
It is key to understand that async/await does not directly say the awaited code will run on a different thread. When you do await GetDataAsync(pickedFile); the execution enters the GetDataAsync method still on the UI thread and continues there until await file.OpenStreamForReadAsync() is reached - and this is the only operation that will actually run asynchronously on a different thread (as file.OpenStreamForReadAsync is actually implemented this way).
However, once OpenStreamForReadAsync is completed (which will be really quick), await makes sure the execution returns to the same thread it started on - which means UI thread. So the actual expensive part of your code (reading the file in while) runs on UI thread.
You could marginally improve this by using reader.ReadLineAsync, but still, you will be returning to UI thread after each await.
ConfigureAwait(false)
The first trick you want to introduce to resolve this problem is ConfigureAwait(false).
Calling this on an asynchronous call tells the runtime that the execution does not have to return to the thread that originally called the asynchronous method - hence this can avoid returning execution to the UI thread. Great place to put it in your case is OpenStreamForReadAsync and ReadLineAsync calls:
public static async Task<List<DataRecord>> GetDataAsync(StorageFile file)
{
List<DataRecord> recordsList = new List<DataRecord>();
using (Stream stream = await file.OpenStreamForReadAsync().ConfigureAwait(false))
{
using (StreamReader reader = new StreamReader(stream))
{
while (!reader.EndOfStream)
{
string line = await reader.ReadLineAsync().ConfigureAwait(false);
// Does its parsing here, and constructs a single DataRecord …
recordsList.Add(dataRecord);
// Raises an event.
MyStorageWrapper.RaiseMyEvent(recordsList.Count);
}
}
}
return recordsList;
}
Dispatcher
Now you freed up your UI thread, but introduced yet another problem with the progress reporting. Because now MyStorageWrapper.RaiseMyEvent(recordsList.Count) runs on a different thread, you cannot update the UI in the UpdateUI method directly, as accessing UI elements from non-UI thread throws synchronization exception. Instead, you must use UI thread Dispatcher to make sure the code runs on the right thread.
In the constructor get reference to the UI thread Dispatcher:
private CoreDispatcher _dispatcher;
public MyPage()
{
this.InitializeComponent();
_dispatcher = Window.Current.Dispatcher;
...
}
Reason to do it ahead is that Window.Current is again accessible only from the UI thread, but the page constructor definitely runs there, so it is the ideal place to use.
Now rewrite UpdateUI as follows
private async void UpdateUI(long lineCount)
{
await _dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{
// This time check prevents the UI from updating so frequently
// that it becomes unresponsive as a result.
DateTime now = DateTime.Now;
if ((now - this.LastUpdate).Milliseconds > 3000)
{
// This updates a textblock to display the count, but could also
// update a progress bar or progress ring in here.
this.MessageTextBlock.Text = "Count: " + lineCount;
this.LastUpdate = now;
}
});
}
Related
I have a class in which a method is called on the basis of events received from external application.
public void ProcessItems(Store id,Items items)
{
//Some logic
UpdateValidItems(id,validItems)
}
public void UpdateValidItems(Store id,Items items)
{
//Save in DB
}
The external application may invoke "ProcessItems" while UpdateValidItems is being processed. I want that if UpdateValidItems is being processed and event invoked during UpdateValidItems processing then it should wait until UpdateValidItems completed. Is there any way to do it?
Also, multiple stores can be processed at a time. So it should wait for store based only. If storeId is different then it should not wait.
I'd decouple incoming Events and processing:
Have a thread wait on a Blocking Queue
Event writes to Blocking Queue
Thread from 0.) gets notified, dequeues 1 "Row" (Id and Items)
Said Thread processes the Items
Thread waits again OR if meanwhile the Event added more Rows: Process until queue is empty, then wait again.
This ensures that:
Only one Store is mutated at a time
Event returns fast
Following events for same store do not interfere with current processing.
You may also have a look into DataFlow to implement a similar approach.
Edit / Basic Example:
public class Handler
{
private readonly BlockingCollection<QueueEntry> _queue = new BlockingCollection<QueueEntry>();
private readonly CancellationTokenSource _cts = new CancellationTokenSource();
// I used a Form with a button to simulate events, so you'll have to adapt that..
public Handler(Form1 parent)
{
// register for incoming Items
parent.NewItems += Parent_NewItems;
// Start processing on a long running Pool-Thread
Task.Factory.StartNew(QueueWorker, TaskCreationOptions.LongRunning);
}
// Stop Processing
public void Shutdown( bool doitnow )
{
// Mark the queue "complete" - adding is now forbidden.
_queue.CompleteAdding();
// If you want to stop NOW, cancel all operations
if (doitnow ) { _cts.Cancel(); }
// Else the Task will run until the queue has been processed.
}
// This is all that happens on the EDT / Main / UI Thread
private void Parent_NewItems(object sender, NewItemsEventArgs e)
{
try
{
_queue.Add(new QueueEntry { Sender = sender, Event = e });
}
catch (InvalidOperationException)
{
// dontcare ? I didn't - You may, though.
// Will be thrown if the queue has been marked complete.
}
}
private async Task QueueWorker()
{
// While the queue has not been marked complete and is empty
while (!_queue.IsCompleted)
{
QueueEntry entry = null;
try
{
// Wait until an entry is available or until canceled.
entry = _queue.Take(_cts.Token);
}
catch ( OperationCanceledException )
{
// dontcare
}
if (entry != null)
{
await Process(entry, _cts.Token);
}
}
}
private async Task Process(QueueEntry entry, CancellationToken cancel)
{
// Dummy Processing...
await Task.Delay(TimeSpan.FromSeconds(entry.Event.Items), cancel);
}
}
public class QueueEntry
{
public object Sender { get; set; }
public NewItemsEventArgs Event { get; set; }
}
Of, course, this can be tuned to allow for some concurrency / parallel processing.
private object lock_object = new object();
public void ProcessItems(Store id,Items items)
{
//Some logic
lock(lock_object)
{
UpdateValidItems(id,validItems)
}
}
I have recently created a helper method to throttle the speed of property changed event in order to save the data to my local database with a given delay. The only problem I got with it is that the method is apparently not running asynchronously and blocking my UI thread.
To test it, I have attached the event in my SettingsViewModel to the PercentageSliderViewModel:
public class SettingsViewModel : BaseVM
{
public PercentageSliderViewModel Activity { get; set; }
[...]
public SettingsViewModel() {
Activity.PropertyChanged += CreateThrottledCallback(Save, 1000);
}
[...]
public async Task Save()
{
// Save data
}
}
This is my helper method:
public PropertyChangedEventHandler CreateThrottledCallback(
Func<Task> callback, int throttle = 1000)
{
bool throttling = false;
bool callFinal = false;
return async(s, e) =>
{
if (throttling)
{
callFinal = true;
return;
}
throttling = true;
await callback?.Invoke();
await Task.Delay(throttle).ContinueWith(_ => throttling = false);
if (callFinal)
{
await callback?.Invoke().ContinueWith(_ => callFinal = false);
}
};
}
Even though the throttling is working fine, when I move the slider from left to right and the callback occurs it is 'freezing' for a small amount of time.
Debugging shows that it is running on the UI thread.
How can run CreateThrottledCallback method asynchronously so it wont block my main thread then?
It's unclear what your Save method really does and whether it's actually a truly asynchronous method. You could try to execute it an a background thread in your CreateThrottledCallback method:
if (callback != null)
await Task.Run(() => callback.Invoke());
As it has nothing to do with UI, you can use ConfigureAwait(false). This will avoid capturing the current synchronization context and the task will run on TaskScheduler.Default thread pool context.
await callback().ConfigureAwait(false);
When I call BuildCustomer.StartTask, I then call a method WriteToDatabase. Inside WriteToDatabase, I want to send a status back to the MainForm to write the status to the GUI. When the code reaches that point, my application freezes up and gives no error. I did find out that if I remove task.Wait(), it stops freezing and works. But I think I want the wait in because my BuildCustomer takes a bit of time and writes a lot of updates (including more updates from Common class) to the GUI. Can someone tell me what is wrong or what I should be doing differently? This is a .Net 4 project so I cannot use async, which I've seen other answers for.
public partial class MainForm : Window
{
public MainForm()
{
Common.SendMessage += UpdateStatus;
}
private void Button_Click(object sender, EventArgs e)
{
BuildCustomer.StartTask();
}
private void UpdateStatus(string message)
{
Dispatcher.Invoke(new Action(() =>
{
StatusTextBox.Text = message;
}));
}
}
public class BuildCustomer
{
public static void StartTask()
{
var action = new Action<object>(BuildCustomer);
var task = new Task(() => action(buildDetails));
task.Start();
task.Wait();
}
private void BuildCustomerDetails(object buildDetails)
{
Common.WriteToDatabase();
}
}
public class Common
{
public delegate void MessageLogDelegate(string message);
public static event MessageLogDelegate SendMessage;
public static void WriteToDatabase()
{
SendMessage("Some status message to write back to the GUI");
}
}
You have a deadlock. The StartTask waits on task.Wait() to complete but this occurs (is called on) on the calling thread which is the main UI thread.
The Task being waited eventually reaches UpdateStatus which calls an Invoke on the UI thread as well but this thread is currently waiting on task.Wait() (so it is blocking which results in the UI thread not being available indefinitely).
Try to add async keyword to method signature and use this:
await task;
It cause to does not sleep main thread(UI thread).
I want to asynchronously update UI status when doing a long-time task . The program is a console application , however , when I execute the async operations , the UI thread will exit soon after the task begins .
How should I let the UI thread wait when my long-time task finish ?
I simplify my code as below :
public static class Program
{
static void Main()
{
WorkerWrapper wp = new WorkerWrapper();
wp.ProcessData();
}
}
public class WorkerWrapper
{
private RateBar bar;
public void ProcessData()
{
bar = new RateBar();
bar.Show();
Worker wk = new Worker();
wk.WorkProcess += wk_WorkProcess;
Action handler = new Action(wk.DoWork);
var result = handler.BeginInvoke(new AsyncCallback(this.AsyncCallback), handler);
}
private void AsyncCallback(IAsyncResult ar)
{
Action handler = ar.AsyncState as Action;
handler.EndInvoke(ar);
}
private void wk_WorkProcess(object sender, PrecentArgs e)
{
if (e.Precent < 100)
{
bar.Precent = e.Precent;
}
}
}
public class Worker
{
public event EventHandler<PrecentArgs> WorkProcess;
public void DoWork()
{
for (int i = 0; i < 100; i++)
{
WorkProcess(this, new PrecentArgs(i));
Thread.Sleep(100);
}
}
}
public class PrecentArgs : EventArgs
{
public int Precent { get; set; }
public PrecentArgs(int precent)
{
Precent = precent;
}
}
public partial class RateBar : Form
{
public int Precent
{
set
{
System.Windows.Forms.MethodInvoker invoker = () => this.progressBar1.Value = value;
if (this.progressBar1.InvokeRequired)
{
this.progressBar1.Invoke(invoker);
}
else
{
invoker();
}
}
}
public RateBar()
{
InitializeComponent();
}
}
However , in method ProcessData() , if I add result.AsyncWaitHandle.WaitOne() in the end to wait my operation to complete , the Form will freeze .
Is there anything wrong with my way to wait the thread to complete ?
Reason that your application exiting before your "background threads" completed is when there are multiple threads application exists soon after there are not any foreground threads. This is explained more in here http://msdn.microsoft.com/en-us/library/system.threading.thread.isbackground(v=vs.110).aspx
You should add proper waiting mechanisms to your background threads to be completed. There are multiple ways of letting other threads know that the thread is complete. Please refer here. How to wait for thread to finish with .NET?
You shouldn't block the UI thread waiting for the result, but rather retrieve the result from EndInvoke. Your deadlock probably occurs because you are using both result.AsyncWaitHandle.WaitOne() and EndInvoke, both will block until the result is available.
In my opinion the best option is to not call result.AsyncWaitHandle.WaitOne() and just retrieve the result in the AsyncCallback
private void AsyncCallback(IAsyncResult ar)
{
Action handler = ar.AsyncState as Action;
var result = handler.EndInvoke(ar);
}
More information here. Also if you are using .net 4.0 or higher, this sort of thing can be done much easier with async/await.
I write down this solution and hope it may helps others with same question .
The key to this problem is to use a new thread to run RateBar's ShowDialog function .
public void ProcessData()
{
new Thread(() => new RateBar().ShowDialog()).Start();
Worker wk = new Worker();
wk.WorkProcess += wk_WorkProcess;
Action handler = new Action(wk.DoWork);
var result = handler.BeginInvoke(new AsyncCallback(this.AsyncCallback), handler);
}
I tried to wrap the dispatcher in a thread. But the result is not what i expect. How can i solve that problem?
public void Start()
{
ThreadStart ts = inner;
Thread wrapper = new Thread(ts);
wrapper.Start();
}
private void inner()
{
_Runner.Dispatcher.Invoke(_Runner.Action, DispatcherPriority.Normal);
}
You have not shown us enough code/explained yourself well enough to be able to provide a good answer, but I'm guessing your action (_Runner.Action) is expensive and slow to execute. If so, that is why your UI is unresponsive. You're essentially telling the Dispatcher to run that expensive operation on the UI thread when what you really want to do is run as much of your operation on the background thread as possible, and then marshal back to the UI thread via the Dispatcher only when necessary.
When you fire an action through/on the dispatcher, that action is called on the UI thread.
My guess is that you are doing the work/processing in the _Runner.Action function and it is tying up the UI thread. You'll have to do the main processing part in the inner() function and then call the Dispatcher for the final update details.
If you absolutely must process on the dispatcher, break your process into smaller pieces and call Dispatcher.BeginInvoke() for each piece so other events can be processed in between your process.
You need to break Runner.Action into two parts - the long running part that does the calculation and the part that updates the GUI.
After you do that you call the long running part in the background thread and use the dispatcher only on the UI update part.
By the way, you should also probably use BeginInvoke and not Invoke.
If the long running part of Runner.Action is updating the GUI than you can't use a background thread to solve your problem - there are solutions for slow GUI operations but they change depending on what exactly you are trying to do.
Here is an example that will let you run WPF applications with multiple UI threads. I believe this will help you. Refer to this http://eprystupa.wordpress.com/2008/07/28/running-wpf-application-with-multiple-ui-threads/
Thread lThread = new Thread(() =>
{
var lWnd = new Window1();
lWnd.Show();
lWnd.Closed += (sender2, e2) => lWnd.Dispatcher.InvokeShutdown();
System.Windows.Threading.Dispatcher.Run();
});
lThread.SetApartmentState(ApartmentState.STA);
lThread.Start();
Ditto what everyone here has said.
Additionally, you may want to look into using the BackgroundWorker class.
This is what I have started using for background tasks... I have not been using it long, so I don't know if there are bugs.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace SSA.Utility
{
public class BackgroundTaskManager : IDisposable
{
private System.Windows.Threading.Dispatcher _OwnerDispatcher;
private System.Windows.Threading.Dispatcher _WorkerDispatcher;
private System.Threading.Thread _WorkerThread;
private Boolean _WorkerBusy;
private System.Threading.EventWaitHandle _WorkerStarted = new System.Threading.EventWaitHandle(false, System.Threading.EventResetMode.ManualReset);
public BackgroundTaskManager()
{
_OwnerDispatcher = System.Windows.Threading.Dispatcher.CurrentDispatcher;
_WorkerThread = new System.Threading.Thread(new System.Threading.ThreadStart(WorkerStart));
_WorkerThread.Name = "BackgroundTaskManager:" + DateTime.Now.Ticks.ToString();
_WorkerThread.IsBackground = true;
_WorkerThread.Start();
_WorkerStarted.WaitOne();
}
public Boolean IsBusy
{
get { return _WorkerBusy; }
}
public System.Windows.Threading.Dispatcher Dispatcher
{
get {
return _WorkerDispatcher;
}
}
public System.Windows.Threading.Dispatcher OwnerDispatcher
{
get
{
return _OwnerDispatcher;
}
}
private void WorkerStart()
{
_WorkerDispatcher = System.Windows.Threading.Dispatcher.CurrentDispatcher;
_WorkerDispatcher.Hooks.DispatcherInactive += WorkDone;
_WorkerDispatcher.Hooks.OperationPosted += WorkAdded;
_WorkerStarted.Set();
System.Windows.Threading.Dispatcher.Run();
}
private void WorkAdded(Object sender, System.Windows.Threading.DispatcherHookEventArgs e)
{
_WorkerBusy = true;
}
private void WorkDone(Object sender, EventArgs e)
{
_WorkerBusy = false;
}
public void Dispose()
{
if (_WorkerDispatcher != null)
{
_WorkerDispatcher.InvokeShutdown();
_WorkerDispatcher = null;
}
}
}
}
// Useage (not tested)
private SSA.Utility.BackgroundTaskManager _background = new SSA.Utility.BackgroundTaskManager();
public void LongTaskAsync()
{
_background.Dispatcher.BeginInvoke(new Action(LongTask), null);
}
public void LongTask()
{
System.Threading.Thread.Sleep(10000); // simulate a long task
_background.OwnerDispatcher.BeginInvoke(new Action<STATUSCLASS>(LongTaskUpdate), statusobject);
}
public void LongTaskUpdate(STATUSCLASS statusobject) {
}
Yes. _Runner.Action is the problem. Some long-timed methods used in the Dispatcher block. But solution is "dont use the any thread not related to UI in the dispatcher"