Why do these random events follow a specific pattern? - c#

I have created a grid layout. It displays 100 balls. Initially, all the balls will be in a random position. Every 25 ms a ball will move some unit (this is common for all the balls) in a random direction. You can see this in action in the below image:
Even though the direction of the balls is random, after some time all the balls move towards the bottom right corner. This behavior repeats every time. You can see this in the below image:
Why do these random events follow a specific pattern?
Are random numbers truly random?
Is there is a problem with the C# random number generator?
Is there is any mathematical explanation for this?
C# Code
Random random = new Random();
var direction = random.NextDouble() * 360;
var ballTranslate = child.RenderTransform.TransformPoint(new Point(0, 0));
var x = ballTranslate.X;
var y = ballTranslate.Y;
var x1 = x + (parm.Speed * Math.Cos(direction));
while (x1 < 0 || x1 > (parm.CellSize * parm.NoOfSplit))
{
direction = random.NextDouble() * 360;
x1 = x + (parm.Speed * Math.Cos(direction));
}
var y1 = y + (parm.Speed * Math.Sin(direction));
while (y1 < 0 || y1 > (parm.CellSize * parm.NoOfSplit))
{
direction = random.NextDouble() * 360;
y1 = y + (parm.Speed * Math.Sin(direction));
}
TranslateTransform myTranslate = new TranslateTransform();
myTranslate.X = x1;
myTranslate.Y = y1;
child.RenderTransform = myTranslate;
Full Code
https://github.com/Vijay-Nirmal/ProjectChaos

You appear to be generating a direction in degrees and passing it to Math.Sin, which takes an angle in radians. 360/2PI = 57.3 (approximately), so you're slightly more likely to pick an angle between 0 and 0.3 radians than other, larger angles.
When you have so many iterations, it's also possible that there's a tiny rounding error somewhere

Related

Finding the true anomaly from state vectors

I'm attempting to convert from state vectors (position and speed) into Kepler elements, however I'm running into problems where a negative velocity or position will give me wrong results when trying to calculate true anomaly.
Here are the different ways I'm trying to calculate the True Anomaly:
/// <summary>
/// https://en.wikipedia.org/wiki/True_anomaly#From_state_vectors
/// </summary>
public static double TrueAnomaly(Vector4 eccentVector, Vector4 position, Vector4 velocity)
{
var dotEccPos = Vector4.Dot(eccentVector, position);
var talen = eccentVector.Length() * position.Length();
talen = dotEccPos / talen;
talen = GMath.Clamp(talen, -1, 1);
var trueAnomoly = Math.Acos(talen);
if (Vector4.Dot(position, velocity) < 0)
trueAnomoly = Math.PI * 2 - trueAnomoly;
return trueAnomoly;
}
//sgp = standard gravitational parameter
public static double TrueAnomaly(double sgp, Vector4 position, Vector4 velocity)
{
var H = Vector4.Cross(position, velocity).Length();
var R = position.Length();
var q = Vector4.Dot(position, velocity); // dot product of r*v
var TAx = H * H / (R * sgp) - 1;
var TAy = H * q / (R * sgp);
var TA = Math.Atan2(TAy, TAx);
return TA;
}
public static double TrueAnomalyFromEccentricAnomaly(double eccentricity, double eccentricAnomaly)
{
var x = Math.Sqrt(1 - Math.Pow(eccentricity, 2)) * Math.Sin(eccentricAnomaly);
var y = Math.Cos(eccentricAnomaly) - eccentricity;
return Math.Atan2(x, y);
}
public static double TrueAnomalyFromEccentricAnomaly2(double eccentricity, double eccentricAnomaly)
{
var x = Math.Cos(eccentricAnomaly) - eccentricity;
var y = 1 - eccentricity * Math.Cos(eccentricAnomaly);
return Math.Acos(x / y);
}
Edit: another way of doing it which Spectre pointed out:
public static double TrueAnomaly(Vector4 position, double loP)
{
return Math.Atan2(position.Y, position.X) - loP;
}
Positions are all relative to the parent body.
These functions all agree if position.x, position.y and velocity.y are all positive.
How do I fix these so that I get a consistent results when position and velocity are negitive?
Just to clarify: My angles appear to be sort of correct, just pointing in the wrong quadrant depending on the position and or velocity vectors.
Yeah so I was wrong, the above all do return the correct values after all.
So I found an edge case where most of the above calculations fail.
Given position and velocity:
pos = new Vector4() { X = -0.208994076275941, Y = 0.955838328099748 };
vel = new Vector4() { X = -2.1678187689294E-07, Y = -7.93096769486992E-08 };
I get some odd results, ie ~ -31.1 degrees, when I think it should return ` 31.1 (non negative). one of them returns ~ 328.8.
However testing with this position and velocity the results apear to be ok:
pos = new Vector4() { X = -0.25, Y = 0.25 };
vel = new Vector4() { X = Distance.KmToAU(-25), Y = Distance.KmToAU(-25) };
See my answer for extra code on how I'm testing and the math I'm using for some of the other variables.
I'm going around in circles on this one. this is a result of a bug in my existing code that shows up under some conditions but not others.
I guess the real question now is WHY am I getting different results with position/velocity above that don't match to my expectations or each other?
Assuming 2D case... I am doing this differently:
compute radius of semi axises and rotation
so you need to remember whole orbit and find 2 most distant points on it that is major axis a. The minor axis b usually is 90 deg from major axis but to be sure just fins 2 perpendicularly most distant points on your orbit to major axis. So now you got both semi axises. The initial rotation is computed from the major axis by atan2.
compute true anomaly E
so if center is x0,y0 (intersection of a,b or center point of both) initial rotation is ang0 (angle of a) and your point on orbit is x,y then:
E = atan2(y-y0,x-x0) - ang0
However in order to match Newton/D'Alembert physics to Kepler orbital parameters you need to boost the integration precision like I did here:
Is it possible to make realistic n-body solar system simulation in matter of size and mass?
see the [Edit3] Improving Newton D'ALembert integration precision even more in there.
For more info and equations see:
Solving Kepler's equation
[Edit1] so you want to compute V I see it like this:
As you got your coordinates relative to parent you can assume they are already in focal point centered so no need for x0,y0 anymore. Of coarse if you want high precision and have more than 2 bodies (focal mass + object + proximity object(s) like moons) then the parent mass will no longer be in focal point of orbit but close to it ... and to remedy you need to use real focal point position so x0,y0 again... So how to do it:
compute center point (cx,cy) and a,b semi axises
so its the same as in previous text.
compute focal point (x0,y0) in orbit axis aligned coordinates
simple:
x0 = cx + sqrt( a^2 + b^2 );
y0 = cy;
initial angle ang0 of a
let xa,ya be the intersection of orbit and major axis a on the side with bigger speeds (near parent object focus). Then:
ang0 = atan2( ya-cy , xa-cx );
and finally the V fore any of yours x,y
V = atan2( y-y0 , x-x0 ) - ang0;
Ok so on further testing it appears my original calcs do all return the correct values, however when I was looking at the outputs I was not taking the LoP into account and basically not recognizing that 180 is essentially the same angle as -180.
(I was also looking at the output in radians and just didn't see what should have been obvious)
Long story short, I have a bug I thought was in this area of the code and got lost in the weeds.
Seems I was wrong above. see OP for edge case.
Here's some code I used to test these,
I used variations of the following inputs:
pos = new Vector4() { X = 0.25, Y = 0.25 };
vel = new Vector4() { X = Distance.KmToAU(-25), Y = Distance.KmToAU(25) };
And tested them with the following
double parentMass = 1.989e30;
double objMass = 2.2e+15;
double sgp = GameConstants.Science.GravitationalConstant * (parentMass + objMass) / 3.347928976e33;
Vector4 ev = OrbitMath.EccentricityVector(sgp, pos, vel);
double e = ev.Length();
double specificOrbitalEnergy = Math.Pow(vel.Length(), 2) * 0.5 - sgp / pos.Length();
double a = -sgp / (2 * specificOrbitalEnergy);
double ae = e * a;
double aop = Math.Atan2(ev.Y, ev.X);
double eccentricAnomaly = OrbitMath.GetEccentricAnomalyFromStateVectors(pos, a, ae, aop);
double aopD = Angle.ToDegrees(aop);
double directAngle = Math.Atan2(pos.Y, pos.X);
var θ1 = OrbitMath.TrueAnomaly(sgp, pos, vel);
var θ2 = OrbitMath.TrueAnomaly(ev, pos, vel);
var θ3 = OrbitMath.TrueAnomalyFromEccentricAnomaly(e, eccentricAnomaly);
var θ4 = OrbitMath.TrueAnomalyFromEccentricAnomaly2(e, eccentricAnomaly);
var θ5 = OrbitMath.TrueAnomaly(pos, aop);
double angleΔ = 0.0000001; //this is the "acceptable" amount of error, really only the TrueAnomalyFromEccentricAnomaly() calcs needed this.
Assert.AreEqual(0, Angle.DifferenceBetweenRadians(directAngle, aop - θ1), angleΔ);
Assert.AreEqual(0, Angle.DifferenceBetweenRadians(directAngle, aop - θ2), angleΔ);
Assert.AreEqual(0, Angle.DifferenceBetweenRadians(directAngle, aop - θ3), angleΔ);
Assert.AreEqual(0, Angle.DifferenceBetweenRadians(directAngle, aop - θ4), angleΔ);
Assert.AreEqual(0, Angle.DifferenceBetweenRadians(directAngle, aop - θ5), angleΔ);
and the following to compare the angles:
public static double DifferenceBetweenRadians(double a1, double a2)
{
return Math.PI - Math.Abs(Math.Abs(a1 - a2) - Math.PI);
}
And eccentricity Vector found thus:
public static Vector4 EccentricityVector(double sgp, Vector4 position, Vector4 velocity)
{
Vector4 angularMomentum = Vector4.Cross(position, velocity);
Vector4 foo1 = Vector4.Cross(velocity, angularMomentum) / sgp;
var foo2 = position / position.Length();
return foo1 - foo2;
}
And EccentricAnomaly:
public static double GetEccentricAnomalyFromStateVectors(Vector4 position, double a, double linierEccentricity, double aop)
{
var x = (position.X * Math.Cos(-aop)) - (position.Y * Math.Sin(-aop));
x = linierEccentricity + x;
double foo = GMath.Clamp(x / a, -1, 1); //because sometimes we were getting a floating point error that resulted in numbers infinatly smaller than -1
return Math.Acos(foo);
}
Thanks to Futurogogist and Spektre for their help.
I am assuming you are working in two dimensions?
Two dimensional vectors of position p and velocity v. The constant K is the the product of the gravitational constant and the mass of the gravity generating body. Calculate the eccentricity vector
eccVector = (dot(v, v)*p - dot(v, p)*v) / K - p / sqrt(dot(p, p));
eccentricity = sqrt(dot(eccVector, eccVector));
eccVector = eccVector / eccentricity;
b = { - eccVector.y, eccVector.x}; //unit vector perpendicular to eccVector
r = sqrt(dot(p, p));
cos_TA = dot(p, eccVector) / r; \\ cosine of true anomaly
sin_TA = dot(p, b) / r; \\ sine of true anomaly
if (sin_TA >= 0) {
trueAnomaly = arccos(cos_TA);
}
else if (sin_TA < 0){
trueAnomaly = 2*pi - arccos(cos_TA);
}

Find an index for a given Point coordinate from an array of Points

Given an Point array and an arbitrary x,y coordinate, find the index for _points that is closest to the given coordinate.
PointD[] _points
//create a list of x,y coordinates:
for (int i = 0; i < _numberOfArcSegments + 1; i++)
{
double x1 = _orbitEllipseSemiMaj * Math.Sin(angle) - _focalDistance; //we add the focal distance so the focal point is "center"
double y1 = _orbitEllipseSemiMinor * Math.Cos(angle);
//rotates the points to allow for the LongditudeOfPeriapsis.
double x2 = (x1 * Math.Cos(_orbitAngleRadians)) - (y1 * Math.Sin(_orbitAngleRadians));
double y2 = (x1 * Math.Sin(_orbitAngleRadians)) + (y1 * Math.Cos(_orbitAngleRadians));
angle += _segmentArcSweepRadians;
_points[i] = new PointD() { x = x2, y = y2 };
}
I'm drawing an ellipse which represents an orbit. I'm first creating the point array above, then when I draw it, I (attempt) to find the point closest to where the orbiting body is.
To do this I've been attempting to calculate the angle from the center of the ellipse to the body:
public void Update()
{
//adjust so moons get the right positions (body position - focal point position)
Vector4 pos = _bodyPositionDB.AbsolutePosition - _positionDB.AbsolutePosition;
//adjust for focal point
pos.X += _focalDistance;
//rotate to the LonditudeOfPeriapsis.
double x2 = (pos.X * Math.Cos(-_orbitAngleRadians)) - (pos.Y * Math.Sin(-_orbitAngleRadians));
double y2 = (pos.X * Math.Sin(-_orbitAngleRadians)) + (pos.Y * Math.Cos(-_orbitAngleRadians));
_ellipseStartArcAngleRadians = (float)(Math.Atan2(y2, x2)); //Atan2 returns a value between -180 and 180;
}
then:
double unAdjustedIndex = (_ellipseStartArcAngleRadians / _segmentArcSweepRadians);
while (unAdjustedIndex < 0)
{
unAdjustedIndex += (2 * Math.PI);
}
int index = (int)unAdjustedIndex;
The ellipse draws fine, (the point array is correct and all is good once adjusted for viewscreen and camera offsets and zoom)
But does not start at the correct point (I'm decreasing the alpha in the color so the resulting ellipse fades away the further it gets from the body)
I've spend days trying to figure out what I'm doing wrong here and tried a dozen different things trying to figure out where my math is wrong, but I'm not seeing it.
I assume that _points should be an array of PointD;
This is the shortest way to get the closest point to your array (calcdistance should be a simple function that calculate the euclidean distance):
PointD p = _points.OrderBy(p => CalcDistance(p, gievnPoint)).First();

Diagonal sweep and orthogonal distance of a point to diagonal

I have a problem where I'm required to find the maximum number of points that are less than or equal to a given distance D to a line drawn in a two-dimensional Euclidean plane. To solve this I wrote the algorithms that would compute a possible maximum if the line was orthogonal to either the x-axis or the y-axis. My problem is when only a diagonal line would yield the maximum number of points.
Given the constraints that both x and y have a minimum value of -1000000 and maximum of 1000000. I wrote the following algorithm to try and find out the maximum. I don't seem to be getting the right answer. Could someone please guide me on where I am going wrong. I've tried drawing a regression line as well but that used vertical distance which did not work for my purposes. Maybe I'm going all wrong and this problem can be solved as an optimization problem. Anyways' any help with a descent explanation is much appreciated.
// diagonal sweep
for (int degree = 1; degree < 180; degree++) if (degree % 90 != 0)
{
int k = 1, degrees = degree;
double x1 = -1000000, x2 = 1000000;
if (degree > 90 && degree < 180)
{
degrees = 180 - degrees;
k = -1;
}
//slope
double m1 = Math.Tan(Math.PI * degrees * k / 180.0);
//Point A
Point A = new Point(x1, m1 * x1);
//Point B
Point B = new Point(x2, m1 * x2);
for (int i = 0; i < x.Length; i++)
{
//Point P = household that needs power
Point P = new Point(x[i], y[i]);
double normalLength = Math.Sqrt((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y));
double segmentLength = 1d * Math.Abs((P.X - A.X) * (B.Y - A.Y) - (P.Y - A.Y) * (B.X - A.X)) / normalLength;
if (segmentLength <= D)
tempCnt++;
}
maxConnections = Math.Max(maxConnections, tempCnt);
tempCnt = 0;
}
return maxConnections;
If you want to define this problem as an optimization problem, you should do it as follows, but it doesn't seem to me this optimization problem is solveable efficiently as is.
maximize: x_1 + x_2 + ... + x_n + 0*a + 0*b + 0*c
s.t.
x_i * d(p_i, line(a,b,c))/ MAX_DISTANCE <= 1
x_i is in {0,1}
Explanation:
x_i are inclusion variables - can get a value of 0 / 1 , and it indicates if the point p_i is in the required distance from the line.
a,b,c are the parameters for the line: ax + by + c = 0
The idea is to maximize the sum of included points, such that each included point is in the desired range. This is represented by the constraint, if x_i=0 - there is no restriction on the point p_i, as the constraint is always satisfied. Otherwise, x_i=1, and you need the distance from the line (let it be d) satisfy 1* d/MAX_DISTANCE <= 1 - which is exactly what you want.
Though I don't think there is an optimal efficient solution to this optimization problem, you might want to try some heuristical solutions for this optiization - such as Genetic Algorithms or Hill Climbing
As a side note, my gut says this problem is NP-Complete, though I have no proof for it yet - and will update this part of the answer if I (or someone else) can come up with a reduction/polynomial solution.

Calculate coordinates of a regular polygon's vertices

I am writing a program in which I need to draw polygons of an arbitrary number of sides, each one being translated by a given formula which changes dynamically. There is some rather interesting mathematics involved but I am stuck on this probelm.
How can I calculate the coordinates of the vertices of a regular polygon (one in which all angles are equal), given only the number of sides, and ideally (but not neccessarily) having the origin at the centre?
For example: a hexagon might have the following points (all are floats):
( 1.5 , 0.5 *Math.Sqrt(3) )
( 0 , 1 *Math.Sqrt(3) )
(-1.5 , 0.5 *Math.Sqrt(3) )
(-1.5 , -0.5 *Math.Sqrt(3) )
( 0 , -1 *Math.Sqrt(3) )
( 1.5 , -0.5 *Math.Sqrt(3) )
My method looks like this:
void InitPolygonVertexCoords(RegularPolygon poly)
and the coordinates need to be added to this (or something similar, like a list):
Point[] _polygonVertexPoints;
I'm interested mainly in the algorithm here but examples in C# would be useful. I don't even know where to start. How should I implement it? Is it even possible?!
Thank you.
for (i = 0; i < n; i++) {
printf("%f %f\n",r * Math.cos(2 * Math.PI * i / n), r * Math.sin(2 * Math.PI * i / n));
}
where r is the radius of the circumsribing circle. Sorry for the wrong language No Habla C#.
Basically the angle between any two vertices is 2 pi / n and all the vertices are at distance r from the origin.
EDIT:
If you want to have the center somewher other than the origin, say at (x,y)
for (i = 0; i < n; i++) {
printf("%f %f\n",x + r * Math.cos(2 * Math.PI * i / n), y + r * Math.sin(2 * Math.PI * i / n));
}
The number of points equals the number of sides.
The angle you need is angle = 2 * pi / numPoints.
Then starting vertically above the origin with the size of the polygon being given by radius:
for (int i = 0; i < numPoints; i++)
{
x = centreX + radius * sin(i * angle);
y = centreY + radius * cos(i * angle);
}
If your centre is the origin then simply ignore the centreX and centreY terms as they'll be 0,0.
Swapping the cos and sin over will point the first point horizontally to the right of the origin.
Sorry, I dont have a full solution at hand right now, but you should try looking for 2D-Rendering of Circles. All classic implementations of circle(x,y,r) use a polygon like you described for drawing (but with 50+ sides).
Say the distance of the vertices to the origin is 1. And say (1, 0) is always a coordinate of the polygon.
Given the number of vertices (say n), the rotation angle required to position the (1, 0) to the next coordinate would be (360/n).
The computation required here is to rotate the coordinates. Here is what it is; Rotation Matrix.
Say theta = 360/n;
[cos(theta) -sin(theta)]
[sin(theta) cos(theta)]
would be your rotation matrix.
If you know linear algebra you already know what i mean. If dont just have a look at Matrix Multiplication
One possible implementation to generate a set of coordinates for regular polygon is to:
Define polygon center, radius and first vertex1. Rotate the vertex n-times2 at an angle of: 360/n.
In this implementation I use a vector to store the generated coordinates and a recursive function to generate them:
void generateRegularPolygon(vector<Point>& v, Point& center, int sidesNumber, int radius){
// converted to radians
double angRads = 2 * PI / double(sidesNumber);
// first vertex
Point initial(center.x, center.y - radius);
rotateCoordinate(v, center, initial, angRads, sidesNumber);
}
where:
void rotateCoordinate(vector<Point>& v, Point& axisOfRotation, Point& initial, double angRads, int numberOfRotations){
// base case: number of transformations < 0
if(numberOfRotations <= 0) return;
else{
// apply rotation to: initial, around pivot point: axisOfRotation
double x = cos(angRads) * (initial.x - axisOfRotation.x) - sin(angRads) * (initial.y - axisOfRotation.y) + axisOfRotation.x;
double y = sin(angRads) * (initial.x - axisOfRotation.x) + cos(angRads) * (initial.y - axisOfRotation.y) + axisOfRotation.y;
// store the result
v.push_back(Point(x, y));
rotateCoordinate(v, axisOfRotation, Point(x,y), angRads, --numberOfRotations);
}
}
Note:
Point is a simple class to wrap the coordinate into single data structure:
class Point{
public:
Point(): x(0), y(0){ }
Point(int xx, int yy): x(xx), y(yy) { }
private:
int x;
int y;
};
1 in terms of (relative to) the center, radius. In my case the first vertex is translated from the centre up horizontally by the radius lenght.
2 n-regular polygon has n vertices.
The simple method is:
Let's take N-gone(number of sides) and length of side L. The angle will be T = 360/N.
Let's say one vertices is located on origin.
* First vertex = (0,0)
* Second vertex = (LcosT,LsinT)
* Third vertex = (LcosT+Lcos2T, LsinT+Lsin2T)
* Fourth vertex = (LcosT+Lcos2T+Lcos3T, LsinT+Lsin2T+Lsin3T)
You can do in for loop
hmm if you test all the versions that are listed here you'll see that the implementation is not good. you can check the distance from the center to each generated point of the polygon with : http://www.movable-type.co.uk/scripts/latlong.html
Now i have searched a lot and i could not find any good implementation for calculating a polyogon using the center and the radius...so i went back to the math book and tried to implement it myself. In the end i came up with this...wich is 100% good:
List<double[]> coordinates = new List<double[]>();
#region create Polygon Coordinates
if (!string.IsNullOrWhiteSpace(bus.Latitude) && !string.IsNullOrWhiteSpace(bus.Longitude) && !string.IsNullOrWhiteSpace(bus.ListingRadius))
{
double lat = DegreeToRadian(Double.Parse(bus.Latitude));
double lon = DegreeToRadian(Double.Parse(bus.Longitude));
double dist = Double.Parse(bus.ListingRadius);
double angle = 36;
for (double i = 0; i <= 360; i += angle)
{
var bearing = DegreeToRadian(i);
var lat2 = Math.Asin(Math.Sin(lat) * Math.Cos(dist / earthRadius) + Math.Cos(lat) * Math.Sin(dist / earthRadius) * Math.Cos(bearing));
var lon2 = lon + Math.Atan2(Math.Sin(bearing) * Math.Sin(dist / earthRadius) * Math.Cos(lat),Math.Cos(dist / earthRadius) - Math.Sin(lat) * Math.Sin(lat2));
coordinates.Add(new double[] { RadianToDegree(lat2), RadianToDegree(lon2) });
}
poly.Coordinates = new[] { coordinates.ToArray() };
}
#endregion
If you test this you'll see that all the points are at the exact distance that you give ( radius ). Also don't forget to declare the earthRadius.
private const double earthRadius = 6371.01;
This calculates the coordinates of a decagon. You see the angle used is 36 degrees. You can split 360 degrees to any number of sides that you want and put the result in the angle variable.
Anyway .. i hope this helps you #rmx!

Shorten a line by a number of pixels

I'm drawing a custom diagram of business objects using .NET GDI+. Among other things, the diagram consists of several lines that are connecting the objects.
In a particular scenario, I need to shorten a line by a specific number of pixels, let's say 10 pixels, i.e. find the point on the line that lies 10 pixels before the end point of the line.
Imagine a circle with radius r = 10 pixels, and a line with start point (x1, y1) and end point (x2, y2). The circle is centered at the end point of the line, as in the following illustration.
How do I calculate the point marked with a red circle, i.e. the intersection between circle and line? This would give me the new end point of the line, shortening it by 10 pixels.
Solution
Thank you for your answers from which I was able to put together the following procedure. I named it LengthenLine, since I find it more natural to pass a negative number of pixels if I want the line shortened.
Specifically, I was trying to put together a function that could draw a line with rounded corners, which can be found here.
public void LengthenLine(PointF startPoint, ref PointF endPoint, float pixelCount)
{
if (startPoint.Equals(endPoint))
return; // not a line
double dx = endPoint.X - startPoint.X;
double dy = endPoint.Y - startPoint.Y;
if (dx == 0)
{
// vertical line:
if (endPoint.Y < startPoint.Y)
endPoint.Y -= pixelCount;
else
endPoint.Y += pixelCount;
}
else if (dy == 0)
{
// horizontal line:
if (endPoint.X < startPoint.X)
endPoint.X -= pixelCount;
else
endPoint.X += pixelCount;
}
else
{
// non-horizontal, non-vertical line:
double length = Math.Sqrt(dx * dx + dy * dy);
double scale = (length + pixelCount) / length;
dx *= scale;
dy *= scale;
endPoint.X = startPoint.X + Convert.ToSingle(dx);
endPoint.Y = startPoint.Y + Convert.ToSingle(dy);
}
}
Find the direction vector, i.e. let the position vectors be (using floats) B = (x2, y2) and A = (x1, y1), then AB = B - A. Normalize that vector by dividing by its length ( Math.Sqrt(xx + yy) ). Then multiply the direction vector AB by the original length minus the circle's radius, and add back to the lines starting position:
double dx = x2 - x1;
double dy = y2 - y1;
double length = Math.Sqrt(dx * dx + dy * dy);
if (length > 0)
{
dx /= length;
dy /= length;
}
dx *= length - radius;
dy *= length - radius;
int x3 = (int)(x1 + dx);
int y3 = (int)(y1 + dy);
Edit: Fixed the code, aaand fixed the initial explanation (thought you wanted the line to go out from the circle's center to its perimeter :P)
I'm not sure why you even had to introduce the circle. For a line stretching from (x2,y2) to (x1,y1), you can calculate any point on that line as:
(x2+p*(x1-x2),y2+p*(y1-y2))
where p is the percentage along the line you wish to go.
To calculate the percentage, you just need:
p = r/L
So in your case, (x3,y3) can be calculated as:
(x2+(10/L)*(x1-x2),y2+(10/L)*(y1-y2))
For example, if you have the two points (x2=1,y2=5) and (x1=-6,y1=22), they have a length of sqrt(72 + 172 or 18.38477631 and 10 divided by that is 0.543928293. Putting all those figures into the equation above:
(x2 + (10/l) * (x1-x2) , y2 + (10/l) * (y1-y2))
= (1 + 0.543928293 * (-6- 1) , 5 + 0.543928293 * (22- 5))
= (1 + 0.543928293 * -7 , 5 + 0.543928293 * 17 )
= (x3=-2.807498053,y3=14.24678098)
The distance between (x3,y3) and (x1,y1) is sqrt(3.1925019472 + 7.7532190152) or 8.384776311, a difference of 10 to within one part in a thousand million, and that's only because of rounding errors on my calculator.
You can use similar triangles. For the main triangle, d is the hypotenuses and the extension of r is the vertical line that meets the right angle. Inside the circle you will have a smaller triangle with a hypotenuses of length r.
r/d = (x2-a0)/(x2-x1) = (y2-b0)/(y2-y1)
a0 = x2 + (x2-x1)r/d
b0 = y2 + (y2-y1)r/d

Categories

Resources