This question already has answers here:
C# difference between == and Equals()
(20 answers)
Closed 9 years ago.
What is the difference between a.Equals(b) and a == b for value types, reference types, and strings? It would seem as though a == b works just fine for strings, but I'm trying to be sure to use good coding practices.
From When should I use Equals and when should I use ==:
The Equals method is just a virtual
one defined in System.Object, and
overridden by whichever classes choose
to do so. The == operator is an
operator which can be overloaded by
classes, but which usually has
identity behaviour.
For reference types where == has not
been overloaded, it compares whether
two references refer to the same
object - which is exactly what the
implementation of Equals does in
System.Object.
Value types do not provide an overload
for == by default. However, most of
the value types provided by the
framework provide their own overload.
The default implementation of Equals
for a value type is provided by
ValueType, and uses reflection to make
the comparison, which makes it
significantly slower than a
type-specific implementation normally
would be. This implementation also
calls Equals on pairs of references
within the two values being compared.
using System;
public class Test
{
static void Main()
{
// Create two equal but distinct strings
string a = new string(new char[] {'h', 'e', 'l', 'l', 'o'});
string b = new string(new char[] {'h', 'e', 'l', 'l', 'o'});
Console.WriteLine (a==b);
Console.WriteLine (a.Equals(b));
// Now let's see what happens with the same tests but
// with variables of type object
object c = a;
object d = b;
Console.WriteLine (c==d);
Console.WriteLine (c.Equals(d));
}
}
The result of this short sample program is
True
True
False
True
Here is a great blog post about WHY the implementations are different.
Essentially == is going to be bound at compile time using the types of the variables and .Equals is going to be dynamically bound at runtime.
In the most shorthand answer:
== opertator is to check identity. (i.e: a==b are these two are the same object?)
.Equals() is to check value. (i.e: a.Equals(b) are both holding identical values?)
With one exception:
For string and predefined value types (such as int, float etc..),
the operator == will answer for value and not identity. (same as using .Equals())
One significant difference between them is that == is a static binary operator that works on two instances of a type whereas Equals is an instance method. The reason this matters is that you can do this:
Foo foo = new Foo()
Foo foo2 = null;
foo2 == foo;
But you cannot do this without throwing a NullReferenceException:
Foo foo = new Foo()
Foo foo2 = null;
foo2.Equals(foo);
At a simple level, the difference is which method is called. The == method will attempt ot bind to operator== if defined for the types in question. If no == is found for value types it will do a value comparison and for reference types it will do a reference comparison. A .Equals call will do a virtual dispatch on the .Equals method.
As to what the particular methods do, it's all in the code. Users can define / override these methods and do anything they please. Ideally this methods should be equivalent (sorry for the pun) and have the same output but it is not always the case.
One simple way to help remember the difference is that a.Equals(b) is more analogous to
a == (object)b.
The .Equals() method is not generic and accepts an argument of type "object", and so when comparing to the == operator you have to think about it as if the right-hand operand were cast to object first.
One implication is that a.Equals(b) will nearly always return some value for a and b, regardless of type (the normal way to overload is to just return false if b is an unkown type). a == b will just throw an exception if there's no comparison available for those types.
"==" is an operator that can be overloaded to perform different things based on the types being compared.
The default operation performed by "==" is a.Equals(b);
Here's how you could overload this operator for string types:
public static bool operator == (string str1, string str2)
{
return (str1.Length == str2.Length;)
}
Note that this is different than str1.Equals(str2);
Derived classes can also override and redefine Equals().
As far as "best practices" go, it depends on your intent.
For strings you want to be careful of culture specific comparisons. The classic example is the german double S, that looks a bit like a b. This should match with "ss" but doesn't in a simple == comparison.
For string comparisons that are culture sensitive use: String.Compare(expected, value, StringComparison....) == 0 ? with the StringComparison overload you need.
By default, both == and .Equals() are equivalent apart from the possibility of calling .Equals() on a null instance (which would give you a NullReferenceException). You can, however, override the functionality of either of them independently (though I'm not sure that would ever be a good idea unless you're trying to work around the shortcomings of another system), which would mean you could MAKE them different.
You'll find people on both sides of the aisle as to the one to use. I prefer the operator rather than the function.
If you're talking about strings, though, it's likely a better idea to use string.Compare() instead of either one of those options.
Related
According to the Constraints on Type Parameters (C# Programming Guide) documentation it says, and I quote:
When applying the where T : class constraint, avoid the == and !=
operators on the type parameter because these operators will test for
reference identity only, not for value equality. This is the case even
if these operators are overloaded in a type that is used as an
argument. The following code illustrates this point; the output is
false even though the String class overloads the == operator.
With the following example:
public static void OpTest<T>(T s, T t) where T : class
{
System.Console.WriteLine(s == t);
}
static void Main()
{
string s1 = "target";
System.Text.StringBuilder sb = new System.Text.StringBuilder("target");
string s2 = sb.ToString();
OpTest<string>(s1, s2);
}
However, ReSharper (I've just started using the demo/trial version to see if it is any worth to me) gives a hint/tip to do null-checking of parameters like so:
public Node(T type, Index2D index2D, int f, Node<T> parent)
{
if (type == null) throw new ArgumentNullException("type");
if (index2D == null) throw new ArgumentNullException("index2D");
if (parent == null) throw new ArgumentNullException("parent");
}
(T is constrained with where T : class, new())
Can I safely follow ReSharper without running into problems that the C# documentation is trying to tell me to avoid?
Yes, that is fine. The documentation says not to compare two parameters because you're doing a reference comparison. The code ReSharper suggests is just ensuring the reference you've been passed is not null so that is safe to do.
In my opinion the main reason the C# docs recommend you don't do that is because if for example you do == with two strings that were passed as T1 and T2 it will do a reference comparison. Any other time you do stringA == stringB it will do a value comparison with the overload in the string class. It's really just warning against doing these types of comparisons because the operator overload that would normally be used (if you used that operator on two types declared in local scope) is not.
Yes.
Only a very strange implementation of the == operator would make x == null mean something other than ReferenceEquals(x, null). If you are using classes that have such a strange implementation of equality, you have bigger problems than it being inconsistent when checking for null using a generic type argument.
The documentation is telling you that == will use a reference comparison regardless of what the actual type of T is, even if it has overloaded the == operator. In many cases this isn't what users would expect.
In the case of the resharper code it's comparing the variable to null, which you want to be a reference comparison, not a value comparison, so what the documentation is warning you of is the correct behavior here.
You could however make it a bit more explicit by writing something like this, just to be clearer:
if(object.ReferenceEquals(type, null))//...
Yes, it's generally ok to assume that null is a special case, and that it's okay to do == or != on it. This is due, in part at least, to the fact that the recommendation for overriding Equals says that x.Equals(null) should be false.
If you didn't have the T : class constraint, it'd be a different story, since you'd see some possibly-unexpected behavior for structs and nullable structs (you might want to do default(T) instead of null there).
And if you want to be explicit that yes, you know you're comparing the reference to null, you can always use object.ReferenceEquals(x, null) (I'd just go with ==/!=, though).
I would say that this is OK.
null is kinda special, so you are not doing an actual comparison between two reference variables, you are just assuring that the reference variable is not a null reference.
Compare this with, for example, SQL. There you have a completely different syntax for comparing ( a = b) and for the null check (a is null). The guideline is that you should avoid the first, but the second is ok.
Basically the title. I see a lot of the former in the code I'm working on and I was wondering why they didn't use the latter. Are there any differences between the two?
Thanks.
Straight from the documentation
Unlike the Equals method and the equality operator, the ReferenceEquals method cannot be overridden. Because of this, if you want to test two object references for equality and are unsure about the implementation of the Equals method, you can call the ReferenceEquals method. However, note that if objA and objB are value types, they are boxed before they are passed to the ReferenceEquals method.
Not really. One can overload operator ==, so you basically can get it return e.g. false always. The recommended usage for this operator is to signify value equality, so (for correcftly implemented operator) basically check against null may return true if the object is semantically null.
See this article for more details and some historical overview.
Another difference is that for value types ReferenceEquals doesn't make much sense: for example, any two "instances" of int 0 have to be considered the same in any sane circumstances. (For purists: I put quotes because, strictly speaking, we cannot talk about instances of a value type.)
The main benefit of ReferenceEquals() is that the intention is much clearer, you are trying to determine if two references are equal, not if the contents of the objects referred to are equal.
It does this by checking for operator == equality between the two references cast to object (since the params are both object), which eliminates any subclass operator == overloads that might confuse the issue (like string's).
So essentially, this:
if (ReferenceEquals(x, y))
Is the same as this:
if (((object)x) == ((object)y))
Though the former is easier to read.
There are definitely times where it comes in handy, especially avoiding infinite recursion when you are overloading operator == yourself:
public class Foo
{
public static bool operator ==(Foo first, Foo second)
{
// can't say if (first == second) here or infinite recursion...
if (ReferenceEquals(first, second))
{
// if same object, obviously same...
return true;
}
// etc.
}
}
Whats the difference between these two comparison statments?
var result = EqualityComparer<T>.Default.Equals(#this, null);
var result = #this == null;
Obviously the aim is to test whether the object '#this' isnull.
Well it depends on the type of #this. If it doesn't have an overload of ==, the second line will just perform a direct reference comparison, whereas the first line will call an overridden Equals method or an implementation of IEquatable.Equals.
Any sensible implementation will give the same result for both comparisons.
The first statement calls the Equals() method between objects to see if their values are equal, assuming it has been overriden and implemented in the class T. The second statement compares the references instead, unless the == operator has been overridden like in the String class.
operator == calls ReferenceEquals on comparing objects, so compare that objects are pointing to the same memory location.
Equals, instead, is a just virtual method, so can behave differently for different types, as it can be overriden.
For example, for CLR string Equals compares content of a string and not a reference, even if string is a reference type.
Here is my simple code:
T a;
T b;
if (a == b)
// sth.
else
// sth. else
When I try to compile, I get an error saying the == operator is invalid for generic types. So I have to use the object.Equals() method.
Doesn't the == operator actually call the Equals method of object? Why can I use the Equals method of two generic types but not the == operator?
operator == must be overloaded in structs in order to be used, hence a completely unconstrained type parameters cannot use it. You can constrain the function to class to allow default reference comparison:
public void Foo<T>() where T : class {
T a = default(T);
T b = a;
if(a == b)
System.Diagnostics.Debug.WriteLine("");
else
System.Diagnostics.Debug.WriteLine("");
}
The above code works because by default, reference types can be used with operator ==:
For reference types other than string,
== returns true if its two operands refer to the same object.
This is why if (new object() == new object()) {} compiles, even though System.Object doesn't overload operator ==.
The == operator is not defined all possible values of T [thanks Daniel] (or on any constraints you may have placed on T, I assume), so you can't use it. You can only call operators, methods, properties on T that can be called on ALL possible types represented by T.
operator == calls 'Equals' in many cases, but that doesn't mean they are the same thing.
The == token is used to represent two different operators in C#. The first of them is applicable only if the types of the operands fit a particular defined overload of the "equality-check" operator. The second test reference equality and is applicable only if one operand is null, one operand is a class type and the other an interface that instances of that type could implement, both are interfaces, both are the same class types, or both are class types and one is a supertype of the other. The first form will not be usable on a generic unless the generic is constrained to a type for which an equality-check overload is defined; the second form is limited to reference types which are known to satisfy a particular one of the indicated conditions. Note that in some cases, the second operator may be used where the first would be intended, e.g. bool IsSame<T>(T p1, T p2) where T:class { return p1==p2; } will compare two variables of type String by using a reference comparison, even though an overload of == is defined for String. This occurs because T isn't well-enough known to apply a String overload of ==, but both operands of == are known to be the same reference type.
It may be worth noting that some other languages use different tokens for the two operations C# performs using ==. VB.NET, for example, uses = for equality comparison and Is for reference equality.
Why use one over the other?
== is the identity test. It will return true if the two objects being tested are in fact the same object. Equals() performs an equality test, and will return true if the two objects consider themselves equal.
Identity testing is faster, so you can use it when there's no need for more expensive equality tests. For example, comparing against null or the empty string.
It's possible to overload either of these to provide different behavior -- like identity testing for Equals() --, but for the sake of anybody reading your code, please don't.
Pointed out below: some types like String or DateTime provide overloads for the == operator that give it equality semantics. So the exact behavior will depend on the types of the objects you are comparing.
See also:
http://blogs.msdn.com/csharpfaq/archive/2004/03/29/102224.aspx
#John Millikin:
Pointed out below: some value types like DateTime provide overloads for the == operator >that give it equality semantics. So the exact behavior will depend on the types of the >objects you are comparing.
To elaborate:
DateTime is implemented as a struct. All structs are children of System.ValueType.
Since System.ValueType's children live on the stack, there is no reference pointer to the heap, and thus no way to do a reference check, you must compare objects by value only.
System.ValueType overrides .Equals() and == to use a reflection based equality check, it uses reflection to compare each fields value.
Because reflection is somewhat slow, if you implement your own struct, it is important to override .Equals() and add your own value checking code, as this will be much faster. Don't just call base.Equals();
Everyone else pretty much has you covered, but I have one more word of advice. Every now and again, you will get someone who swears on his life (and those of his loved ones) that .Equals is more efficient/better/best-practice or some other dogmatic line. I can't speak to efficiency (well, OK, in certain circumstances I can), but I can speak to a big issue which will crop up: .Equals requires an object to exist. (Sounds stupid, but it throws people off.)
You can't do the following:
StringBuilder sb = null;
if (sb.Equals(null))
{
// whatever
}
It seems obvious to me, and perhaps most people, that you will get a NullReferenceException. However, proponents of .Equals forget about that little factoid. Some are even "thrown" off (sorry, couldn't resist) when they see the NullRefs start to pop up.
(And years before the DailyWTF posting, I did actually work with someone who mandated that all equality checks be .Equals instead of ==. Even proving his inaccuracy didn't help. We just made damn sure to break all his other rules so that no reference returned from a method nor property was ever null, and it worked out in the end.)
== is generally the "identity" equals meaning "object a is in fact the exact same object in memory as object b".
equals() means that the objects logically equal (say, from a business point of view). So if you are comparing instances of a user-defined class, you would generally need to use and define equals() if you want things like a Hashtable to work properly.
If you had the proverbial Person class with properties "Name" and "Address" and you wanted to use this Person as a key into a Hashtable containing more information about them, you would need to implement equals() (and hash) so that you could create an instance of a Person and use it as a key into the Hashtable to get the information.
Using == alone, your new instance would not be the same.
According to MSDN:
In C#, there are two different kinds of equality: reference equality (also known as identity) and value equality. Value equality is the generally understood meaning of equality: it means that two objects contain the same values. For example, two integers with the value of 2 have value equality. Reference equality means that there are not two objects to compare. Instead, there are two object references and both of them refer to the same object.
...
By default, the operator == tests for reference equality by determining whether two references indicate the same object.
Both Equals and == can be overloaded, so the exact results of calling one or the other will vary. Note that == is determined at compile time, so while the actual implementation could change, which == is used is fixed at compile time, unlike Equals which could use a different implementation based on the run time type of the left side.
For instance string performs an equality test for ==.
Also note that the semantics of both can be complex.
Best practice is to implement equality like this example. Note that you can simplify or exclude all of this depending on how you plan on using you class, and that structs get most of this already.
class ClassName
{
public bool Equals(ClassName other)
{
if (other == null)
{
return false;
}
else
{
//Do your equality test here.
}
}
public override bool Equals(object obj)
{
ClassName other = obj as null; //Null and non-ClassName objects will both become null
if (obj == null)
{
return false;
}
else
{
return Equals(other);
}
}
public bool operator ==(ClassName left, ClassName right)
{
if (left == null)
{
return right == null;
}
else
{
return left.Equals(right);
}
}
public bool operator !=(ClassName left, ClassName right)
{
if (left == null)
{
return right != null;
}
else
{
return !left.Equals(right);
}
}
public override int GetHashCode()
{
//Return something useful here, typically all members shifted or XORed together works
}
}
Another thing to take into consideration: the == operator may not be callable or may have different meaning if you access the object from another language. Usually, it's better to have an alternative that can be called by name.
The example is because the class DateTime implements the IEquatable interface, which implements a "type-specific method for determining equality of instances." according to MSDN.
use equals if you want to express the contents of the objects compared should be equal. use == for primitive values or if you want to check that the objects being compared is one and the same object. For objects == checks whether the address pointer of the objects is the same.
I have seen Object.ReferenceEquals() used in cases where one wants to know if two references refer to the same object
In most cases, they are the same, so you should use == for clarity. According to the Microsoft Framework Design Guidelines:
"DO ensure that Object.Equals and the equality operators have exactly the same semantics and similar performance characteristics."
https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/equality-operators
But sometimes, someone will override Object.Equals without providing equality operators. In that case, you should use Equals to test for value equality, and Object.ReferenceEquals to test for reference equality.
If you do disassemble (by dotPeek for example) of Object, so
public virtual bool Equals(Object obj)
described as:
// Returns a boolean indicating if the passed in object obj is
// Equal to this. Equality is defined as object equality for reference
// types and bitwise equality for value types using a loader trick to
// replace Equals with EqualsValue for value types).
//
So, is depend on type.
For example:
Object o1 = "vvv";
Object o2 = "vvv";
bool b = o1.Equals(o2);
o1 = 555;
o2 = 555;
b = o1.Equals(o2);
o1 = new List<int> { 1, 2, 3 };
o2 = new List<int> { 1, 2, 3 };
b = o1.Equals(o2);
First time b is true (equal performed on value types), second time b is true (equal performed on value types), third time b is false (equal performed on reference types).