C# How to await async task until it indicates to proceed - c#

I have a C# method, which calls an external web service multiple times, in a loop. I need to call it asynchronously in a different thread.
But the caller process MUST wait until the async thread meets a certain condition, - this condition occurs much before the loop iterations complete.
Please suggest a C# code example which describes how to wait until the async block of code indicates that a certain condition has been met, so that the main process can proceed without waiting for loop to finish.
My code:
..
List<MyObject> objList = GetObjects();
int counter = 0;
await Task.Factory.StartNew(() =>
{
foreach (MyObject obj in objList)
{
counter++;
CallExtWebSvc(obj);
if (counter == 1)
{
// return an indication that main process can proceed.
}
}
});
// Do other stuff...

You could execute your method as fire and forget and then wait for a TaskCompletionSource. This TaskCompletionSource is given to the method that calls the webservice as parameter. The method then sets a result on the TaskCompletionSource at some point.
Here is an example code piece:
public async Task DoWebserviceStuffAsync(TaskCompletionSource<bool> taskCompletionSource)
{
for (int i = 0; i < 10; i++)
{
//your webservice call
await Task.Delay(5000);
//some condition
if (i == 1)
{
//after setting this your CallingMethod finishes
//waiting the await taskCompletionSource.Task;
taskCompletionSource.TrySetResult(true);
}
}
}
private async Task CallerMethod()
{
var taskCompletionSource = new TaskCompletionSource<bool>();
//call method without await
//care: You cannot catch exceptions without await
DoWebserviceStuffAsync(taskCompletionSource);
//wait for the DoWebserviceStuffAsync to set a result on the passed TaskCompletionSource
await taskCompletionSource.Task;
}

If you want to avoid the danger of "fire and forget" or you also need to wait for the full operation to complete, you could return two tasks (Task,Task) (C# v7 syntax). The caller would await both tasks in order.
public async Task Caller()
{
var (partOne,partTwo) = DoSomethingAsync();
await partOne;
//part one is done...
await partTwo;
//part two is done...
}
public (Task,Task) DoSomethingAsync()
{
var tcs = new TaskCompletionSource<bool>(TaskCreationOptions.RunContinuationsAsynchronously);
return (tcs.Task, DoWork(tcs));
}
public async Task DoWork(TaskCompletionSource<bool> tcs)
{
List<MyObject> objList = GetObjects();
int counter = 0;
await Task.Run(() =>
{
foreach (MyObject obj in objList)
{
counter++;
CallExtWebSvc(obj);
if (counter == 1)
{
// return an indication that main process can proceed.
tcs.SetResult(true);
}
}
});
// Do other stuff...
}

Related

Task.Status should be Running but shows RanToCompletion

I'm puzzled with this situation, where a class has a method that launches two periodic Tasks and then a property is used to check if both Tasks are still running or not, but the result is unexpected. Here is the code (simplified):
public partial class UdpClientConnector
{
Task localListener;
Task periodicSubscriber;
bool keepWorking = false;
public bool IsRunning
{
get
{
if ((localListener != null) && (periodicSubscriber != null))
{
return (localListener.Status == TaskStatus.Running) &&
(periodicSubscriber.Status == TaskStatus.Running);
}
else
return false;
}
}
public void Start()
{
keepWorking = true;
localListener = new Task(() => LocalListenerWorker());
localListener.Start();
periodicSubscriber = new Task(() => PeriodicSubscriberWorker());
periodicSubscriber.Start();
}
public void Stop()
{
keepWorking = false;
localListener.Wait();
periodicSubscriber.Wait();
}
async void LocalListenerWorker()
{
while (keepWorking)
{
// Do some work and then wait a bit
await Task.Delay(1000);
}
}
async void PeriodicSubscriberWorker()
{
while (keepWorking)
{
// Do some (other) work and then wait a bit
await Task.Delay(1000);
}
}
}
To test this boilerplate I used the following:
UdpClientConnector connector = new UdpClientConnector();
// This assert is successful because the two Tasks are not yet started
Assert.IsTrue(!connector.IsRunning);
// Starts the tasks and wait a bit
Connector.Start();
Task.Delay(2000).Wait();
// This fails
Assert.IsTrue(connector.IsRunning);
When I've tried to debug the test case, I've found that two Tasks are in the RanToCompletion state, which is unexpected due the fact that both tasks are just loops and should not terminate until keepWorking becomes false.
I've tried also to start the Tasks using Task.Factory.StartNew(..) with same results.
What I'm missing? Thank you!
The problem is with how you start the tasks, and indeed the task methods.
localListener = new Task(() => LocalListenerWorker());
That task will complete when LocalListenerWorker returns - which it will do pretty much immediately (when it hits the first await expression). It doesn't wait for the asynchronous operation to actually complete (i.e. the loop to finish).
async void methods should almost never be used - they're basically only there to support event handlers.
I suggest you rewrite your methods to return Task, and then use Task.Run to start them, passing in a method group:
Task.Run(LocalListenerWorker);
...
private async Task LocalListenerWorker()
{
// Body as before
}
The task by Task.Run will only complete when the task returned by LocalListenerWorker completes, which is when the loop body finishes.
Here's a complete demo:
using System;
using System.Threading.Tasks;
class Program
{
static void Main(string[] args)
{
Task task1 = Task.Run(Loop);
// Don't do this normally! It's just as a simple demo
// in a console app...
task1.Wait();
Console.WriteLine("First task done");
Task task2 = new Task(() => Broken());
task2.Start();
// Don't do this normally! It's just as a simple demo
// in a console app...
task2.Wait();
Console.WriteLine("Second task done");
}
static async Task Loop()
{
for (int i = 0; i < 5; i++)
{
await Task.Delay(1000);
Console.WriteLine(i);
}
}
static async void Broken()
{
for (int i = 0; i < 5; i++)
{
await Task.Delay(1000);
Console.WriteLine(i);
}
}
}
The output shows:
0
1
2
3
4
First task done
Second task done
The first task behaves as expected, and only completes when the first async method has really completed. The second task behaves like your current code: it completes as soon as the second async method has returned - which happens almost immediately due to the await.

Should I do a 'Task.Wait()' in a C# loop of sync and async methods

I have two methods I want to call within a loop. Step1() has to complete before Step2() is called. But in a loop, Step1() can start while Step2() is asynchronously executing. Should I simply wait for the Step2 task, before allowing any other 'Step2' tasks from being executed, as I do in the code below?
public MainViewModel()
{
StartCommand = new RelayCommand(Start);
}
public ICommand StartCommand { get; set; }
private async void Start()
{
await Task.Factory.StartNew(() =>
{
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Started processing.");
for (int i = 0; i < 10; i++)
{
_counter++;
string result = Step1(i);
_step2Task?.Wait(); //Is this OK to do???
Step2(result).ConfigureAwait(false);
}
_step2Task?.Wait();
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Finished processing.");
});
}
private string Step1(int i)
{
Thread.Sleep(5000); //simulates time-consuming task
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Step 1 completed - Iteration {i}.");
return $"Step1Result{i}";
}
private async Task Step2(string result)
{
_step2Task = Task.Run(() =>
{
Thread.Sleep(4000); //simulates time-consuming task
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Step 2 completed. - {result}");
});
await _step2Task;
}
Don't do any of this stuff; you will risk getting deadlocks all over the place. Also, don't move stuff onto threads unless it is CPU bound.
Start over:
Find every long-running synchronous method that is CPU intensive and write an async wrapper around it. The async wrapper should grab a worker thread, execute the CPU intensive task, and complete when the execution is done. Now you consistently have an abstraction in terms of tasks, not threads.
Move all of your control flow logic onto the UI thread.
Put an await everywhere that you mean "the code that comes after this must not execute until the awaited task is complete".
If we do that, your code gets a lot simpler:
// Return Task, not void
// Name async methods accordingly
private async Task StartAsync()
{
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Started processing.");
Task task2 = null;
for (int i = 0; i < 10; i++)
{
// We cannot do Step2Async until Step1Async's task
// completes, so await it.
string result = await Step1Async(i);
// We can't run a new Step2Async until the old one is done:
if (task2 != null) {
await task2;
task2 = null;
}
// Now run a new Step2Async:
task2 = Step2Async(result);
// But *do not await it*. We don't care if a new Step1Async
// starts up before Step2Async is done.
}
// Finally, don't complete StartAsync until any pending Step2 is done.
if (task2 != null) {
await task2;
task2 = null;
}
Console.WriteLine($"{DateTime.Now:hh:mm:ss.fff} - Finished processing.");
}
private string Step1(int i)
{
// TODO: CPU intensive work here
}
private async Task<string> Step1Async(int i) {
// TODO: Run CPU-intensive Step1(i) on a worker thread
// return a Task<string> representing that work, that is
// completed when the work is done.
}
private void Step2(string result)
{
// TODO: CPU-intensive work here
}
private async Task Step2Async(string result)
{
// TODO: Again, make a worker thread that runs Step2
// and signals the task when it is complete.
}
Remember, await is the sequencing operation on workflows. It means don't proceed with this workflow until this task is complete; go find some other workflow.
Exercise: How would you write the code to represent the workflow:
Step1 must complete before Step2
Any number of Step2 may be running at the same time
All the Step2 must complete before Start completes
?

How to make a task more independent?

Originally I wrote my C# program using Threads and ThreadPooling, but most of the users on here were telling me Async was a better approach for more efficiency. My program sends JSON objects to a server until status code of 200 is returned and then moves on to the next task.
The problem is once one of my Tasks retrieves a status code of 200, it waits for the other Tasks to get 200 code and then move onto the next Task. I want each task to continue it's next task without waiting for other Tasks to finish (or catch up) by receiving a 200 response.
Below is my main class to run my tasks in parallel.
public static void Main (string[] args)
{
var tasks = new List<Task> ();
for (int i = 0; i < 10; i++) {
tasks.Add (getItemAsync (i));
}
Task.WhenAny (tasks);
}
Here is the getItemAsync() method that does the actual sending of information to another server. Before this method works, it needs a key. The problem also lies here, let's say I run 100 tasks, all 100 tasks will wait until every single one has a key.
public static async Task getItemAsync (int i)
{
if (key == "") {
await getProductKey (i).ConfigureAwait(false);
}
Uri url = new Uri ("http://www.website.com/");
var content = new FormUrlEncodedContent (new[] {
...
});
while (!success) {
using (HttpResponseMessage result = await client.PostAsync (url, content)) {
if (result.IsSuccessStatusCode) {
string resultContent = await result.Content.ReadAsStringAsync ().ConfigureAwait(false);
Console.WriteLine(resultContent);
success=true;
}
}
}
await doMoreAsync (i);
}
Here's the function that retrieves the keys, it uses HttpClient and gets parsed.
public static async Task getProductKey (int i)
{
string url = "http://www.website.com/key";
var stream = await client.GetStringAsync (url).ConfigureAwait(false);
var doc = new HtmlDocument ();
doc.LoadHtml (stream);
HtmlNode node = doc.DocumentNode.SelectNodes ("//input[#name='key']") [0];
try {
key = node.Attributes ["value"].Value;
} catch (Exception e) {
Console.WriteLine ("Exception: " + e);
}
}
After every task receives a key and has a 200 status code, it runs doMoreAsync(). I want any individual Task that retrieved the 200 code to run doMoreAsync() without waiting for other tasks to catch up. How do I go about this?
Your Main method is not waiting for a Task to complete, it justs fires off a bunch of async tasks and returns.
If you want to await an async task you can only do that from an async method. Workaround is to kick off an async task from the Main method and wait for its completion using the blocking Task.Wait():
public static void Main(string[] args) {
Task.Run(async () =>
{
var tasks = new List<Task> ();
for (int i = 0; i < 10; i++) {
tasks.Add (getItemAsync (i));
}
var finishedTask = await Task.WhenAny(tasks); // This awaits one task
}).Wait();
}
When you are invoking getItemAsync() from an async method, you can remove the ConfigureAwait(false) as well. ConfigureAwait(false) just makes sure some code does not execute on the UI thread.
If you want to append another task to a task, you can also append it to the previous Task directly by using ContinueWith():
getItemAsync(i).ContinueWith(anotherTask);
Your main problem seems to be that you're sharing the key field across all your concurrently-running asynchronous operations. This will inevitably lead to race hazards. Instead, you should alter your getProductKey method to return each retrieved key as the result of its asynchronous operation:
// ↓ result type of asynchronous operation
public static async Task<string> getProductKey(int i)
{
// retrieval logic here
// return key as result of asynchronous operation
return node.Attributes["value"].Value;
}
Then, you consume it like so:
public static async Task getItemAsync(int i)
{
string key;
try
{
key = await getProductKey(i).ConfigureAwait(false);
}
catch
{
// handle exceptions
}
// use local variable 'key' in further asynchronous operations
}
Finally, in your main logic, use a WaitAll to prevent the console application from terminating before all your tasks complete. Although WaitAll is a blocking call, it is acceptable in this case since you want the main thread to block.
public static void Main (string[] args)
{
var tasks = new List<Task> ();
for (int i = 0; i < 10; i++) {
tasks.Add(getItemAsync(i));
}
Task.WaitAll(tasks.ToArray());
}

A pattern for self-cancelling and restarting task

Is there a recommended established pattern for self-cancelling and restarting tasks?
E.g., I'm working on the API for background spellchecker. The spellcheck session is wrapped as Task. Every new session should cancel the previous one and wait for its termination (to properly re-use the resources like spellcheck service provider, etc).
I've come up with something like this:
class Spellchecker
{
Task pendingTask = null; // pending session
CancellationTokenSource cts = null; // CTS for pending session
// SpellcheckAsync is called by the client app
public async Task<bool> SpellcheckAsync(CancellationToken token)
{
// SpellcheckAsync can be re-entered
var previousCts = this.cts;
var newCts = CancellationTokenSource.CreateLinkedTokenSource(token);
this.cts = newCts;
if (IsPendingSession())
{
// cancel the previous session and wait for its termination
if (!previousCts.IsCancellationRequested)
previousCts.Cancel();
// this is not expected to throw
// as the task is wrapped with ContinueWith
await this.pendingTask;
}
newCts.Token.ThrowIfCancellationRequested();
var newTask = SpellcheckAsyncHelper(newCts.Token);
this.pendingTask = newTask.ContinueWith((t) => {
this.pendingTask = null;
// we don't need to know the result here, just log the status
Debug.Print(((object)t.Exception ?? (object)t.Status).ToString());
}, TaskContinuationOptions.ExecuteSynchronously);
return await newTask;
}
// the actual task logic
async Task<bool> SpellcheckAsyncHelper(CancellationToken token)
{
// do not start a new session if the the previous one still pending
if (IsPendingSession())
throw new ApplicationException("Cancel the previous session first.");
// do the work (pretty much IO-bound)
try
{
bool doMore = true;
while (doMore)
{
token.ThrowIfCancellationRequested();
await Task.Delay(500); // placeholder to call the provider
}
return doMore;
}
finally
{
// clean-up the resources
}
}
public bool IsPendingSession()
{
return this.pendingTask != null &&
!this.pendingTask.IsCompleted &&
!this.pendingTask.IsCanceled &&
!this.pendingTask.IsFaulted;
}
}
The client app (the UI) should just be able to call SpellcheckAsync as many times as desired, without worrying about cancelling a pending session. The main doMore loop runs on the UI thread (as it involves the UI, while all spellcheck service provider calls are IO-bound).
I feel a bit uncomfortable about the fact that I had to split the API into two peices, SpellcheckAsync and SpellcheckAsyncHelper, but I can't think of a better way of doing this, and it's yet to be tested.
I think the general concept is pretty good, though I recommend you not use ContinueWith.
I'd just write it using regular await, and a lot of the "am I already running" logic is not necessary:
Task pendingTask = null; // pending session
CancellationTokenSource cts = null; // CTS for pending session
// SpellcheckAsync is called by the client app on the UI thread
public async Task<bool> SpellcheckAsync(CancellationToken token)
{
// SpellcheckAsync can be re-entered
var previousCts = this.cts;
var newCts = CancellationTokenSource.CreateLinkedTokenSource(token);
this.cts = newCts;
if (previousCts != null)
{
// cancel the previous session and wait for its termination
previousCts.Cancel();
try { await this.pendingTask; } catch { }
}
newCts.Token.ThrowIfCancellationRequested();
this.pendingTask = SpellcheckAsyncHelper(newCts.Token);
return await this.pendingTask;
}
// the actual task logic
async Task<bool> SpellcheckAsyncHelper(CancellationToken token)
{
// do the work (pretty much IO-bound)
using (...)
{
bool doMore = true;
while (doMore)
{
token.ThrowIfCancellationRequested();
await Task.Delay(500); // placeholder to call the provider
}
return doMore;
}
}
Here's the most recent version of the cancel-and-restart pattern that I use:
class AsyncWorker
{
Task _pendingTask;
CancellationTokenSource _pendingTaskCts;
// the actual worker task
async Task DoWorkAsync(CancellationToken token)
{
token.ThrowIfCancellationRequested();
Debug.WriteLine("Start.");
await Task.Delay(100, token);
Debug.WriteLine("Done.");
}
// start/restart
public void Start(CancellationToken token)
{
var previousTask = _pendingTask;
var previousTaskCts = _pendingTaskCts;
var thisTaskCts = CancellationTokenSource.CreateLinkedTokenSource(token);
_pendingTask = null;
_pendingTaskCts = thisTaskCts;
// cancel the previous task
if (previousTask != null && !previousTask.IsCompleted)
previousTaskCts.Cancel();
Func<Task> runAsync = async () =>
{
// await the previous task (cancellation requested)
if (previousTask != null)
await previousTask.WaitObservingCancellationAsync();
// if there's a newer task started with Start, this one should be cancelled
thisTaskCts.Token.ThrowIfCancellationRequested();
await DoWorkAsync(thisTaskCts.Token).WaitObservingCancellationAsync();
};
_pendingTask = Task.Factory.StartNew(
runAsync,
CancellationToken.None,
TaskCreationOptions.None,
TaskScheduler.FromCurrentSynchronizationContext()).Unwrap();
}
// stop
public void Stop()
{
if (_pendingTask == null)
return;
if (_pendingTask.IsCanceled)
return;
if (_pendingTask.IsFaulted)
_pendingTask.Wait(); // instantly throw an exception
if (!_pendingTask.IsCompleted)
{
// still running, request cancellation
if (!_pendingTaskCts.IsCancellationRequested)
_pendingTaskCts.Cancel();
// wait for completion
if (System.Threading.Thread.CurrentThread.GetApartmentState() == ApartmentState.MTA)
{
// MTA, blocking wait
_pendingTask.WaitObservingCancellation();
}
else
{
// TODO: STA, async to sync wait bridge with DoEvents,
// similarly to Thread.Join
}
}
}
}
// useful extensions
public static class Extras
{
// check if exception is OperationCanceledException
public static bool IsOperationCanceledException(this Exception ex)
{
if (ex is OperationCanceledException)
return true;
var aggEx = ex as AggregateException;
return aggEx != null && aggEx.InnerException is OperationCanceledException;
}
// wait asynchrnously for the task to complete and observe exceptions
public static async Task WaitObservingCancellationAsync(this Task task)
{
try
{
await task;
}
catch (Exception ex)
{
// rethrow if anything but OperationCanceledException
if (!ex.IsOperationCanceledException())
throw;
}
}
// wait for the task to complete and observe exceptions
public static void WaitObservingCancellation(this Task task)
{
try
{
task.Wait();
}
catch (Exception ex)
{
// rethrow if anything but OperationCanceledException
if (!ex.IsOperationCanceledException())
throw;
}
}
}
Test use (producing only a single "Start/Done" output for DoWorkAsync):
private void MainForm_Load(object sender, EventArgs e)
{
var worker = new AsyncWorker();
for (var i = 0; i < 10; i++)
worker.Start(CancellationToken.None);
}
Hope this will be useful - tried to create Helper class which can be re-used:
class SelfCancelRestartTask
{
private Task _task = null;
public CancellationTokenSource TokenSource { get; set; } = null;
public SelfCancelRestartTask()
{
}
public async Task Run(Action operation)
{
if (this._task != null &&
!this._task.IsCanceled &&
!this._task.IsCompleted &&
!this._task.IsFaulted)
{
TokenSource?.Cancel();
await this._task;
TokenSource = new CancellationTokenSource();
}
else
{
TokenSource = new CancellationTokenSource();
}
this._task = Task.Run(operation, TokenSource.Token);
}
The examples above seem to have problems when the asynchronous method is called multiple times quickly after each other, for example four times. Then all subsequent calls of this method cancel the first task and in the end three new tasks are generated which run at the same time. So I came up with this:
private List<Tuple<Task, CancellationTokenSource>> _parameterExtractionTasks = new List<Tuple<Task, CancellationTokenSource>>();
/// <remarks>This method is asynchronous, i.e. it runs partly in the background. As this method might be called multiple times
/// quickly after each other, a mechanism has been implemented that <b>all</b> tasks from previous method calls are first canceled before the task is started anew.</remarks>
public async void ParameterExtraction() {
CancellationTokenSource newCancellationTokenSource = new CancellationTokenSource();
// Define the task which shall run in the background.
Task newTask = new Task(() => {
// do some work here
}
}
}, newCancellationTokenSource.Token);
_parameterExtractionTasks.Add(new Tuple<Task, CancellationTokenSource>(newTask, newCancellationTokenSource));
/* Convert the list to arrays as an exception is thrown if the number of entries in a list changes while
* we are in a for loop. This can happen if this method is called again while we are waiting for a task. */
Task[] taskArray = _parameterExtractionTasks.ConvertAll(item => item.Item1).ToArray();
CancellationTokenSource[] tokenSourceArray = _parameterExtractionTasks.ConvertAll(item => item.Item2).ToArray();
for (int i = 0; i < taskArray.Length - 1; i++) { // -1: the last task, i.e. the most recent task, shall be run and not canceled.
// Cancel all running tasks which were started by previous calls of this method
if (taskArray[i].Status == TaskStatus.Running) {
tokenSourceArray[i].Cancel();
await taskArray[i]; // wait till the canceling completed
}
}
// Get the most recent task
Task currentThreadToRun = taskArray[taskArray.Length - 1];
// Start this task if, but only if it has not been started before (i.e. if it is still in Created state).
if (currentThreadToRun.Status == TaskStatus.Created) {
currentThreadToRun.Start();
await currentThreadToRun; // wait till this task is completed.
}
// Now the task has been completed once. Thus we can recent the list of tasks to cancel or maybe run.
_parameterExtractionTasks = new List<Tuple<Task, CancellationTokenSource>>();
}

Why does task wait for Task.Run before executing next code but not for Task.Factory.StartNew?

At least as I've implemented it in my code, I had to modify the StartNew Task to get the same behavior. In my View there's a start button. It's IsEnabled property is bound to a Boolean in the View Model. Without adding await task.ContinueWith(_ => true); and moving return true; out of the try block, the PopulateListStartNew Task doesn't wait so the button stays enabled. I prefer to use Task.Factory.StartNew because passing a TaskScheduler makes for more readable code (no Dispatcher clutter). Records is an ObservableCollection.
I thought that Task.Run was basically a shortcut (per Task.Run vs Task.Factory.StartNew. At any rate, I'd like to better understand the difference in behavior and would certainly appreciate any suggestions related to making my example code better.
public async Task<bool> PopulateListTaskRun(CancellationToken cancellationToken)
{
try
{
await Task.Run(async () =>
{
// Clear the records out first, if any
Application.Current.Dispatcher.InvokeAsync(() => Records.Clear());
for (var i = 0; i < 10; i++)
{
if (cancellationToken.IsCancellationRequested)
{
return;
}
// Resharper says do this to avoid "Access to modified closure"
var i1 = i;
Application.Current.Dispatcher.InvokeAsync(() =>
{
Records.Add(new Model
{
Name = NamesList[i1],
Number = i1
});
Status = "cur: " +
i1.ToString(
CultureInfo.InvariantCulture);
});
// Artificial delay so we can see what's going on
await Task.Delay(200);
}
Records[0].Name = "Yes!";
}, cancellationToken);
return true;
}
catch (Exception)
{
return false;
}
}
public async Task<bool> PopulateListStartNew(CancellationToken cancellationToken, TaskScheduler taskScheduler)
{
try
{
var task = await Task.Factory.StartNew(async () =>
{
// Clear the records out first, if any
Records.Clear();
for (var i = 0; i < 10; i++)
{
if (cancellationToken.IsCancellationRequested)
{
return;
}
Records.Add(new Model
{
Name = NamesList[i],
Number = i
});
Status = "cur: " +
i.ToString(
CultureInfo.InvariantCulture);
// Artificial delay so we can see what's going on
await Task.Delay(200);
}
Records[0].Name = "Yes!";
}, cancellationToken, TaskCreationOptions.None, taskScheduler);
// Had to add this
await task.ContinueWith(_ => true);
}
catch (Exception)
{
return false;
}
// Had to move this out of try block
return true;
}
The link you posted in your question has the answer: Task.Run understands and unwraps async Task delegates, while StartNew returns a Task<Task> instead, which you have to unwrap yourself by calling Unwrap or doing a double-await.
However, I recommend you completely rewrite the code as follows. Notes:
Don't use Dispatcher. There shouldn't be a need for it with properly-written async code.
Treat all your background worker methods and asynchronous operations as "services" for your UI thread. So your method will return to the UI context periodically as necessary.
Like this:
public async Task<bool> PopulateListTaskRunAsync(CancellationToken cancellationToken)
{
try
{
// Clear the records out first, if any
Records.Clear();
for (var i = 0; i < 10; i++)
{
cancellationToken.ThrowIfCancellationRequested();
Records.Add(new Model
{
Name = NamesList[i],
Number = i
});
Status = "cur: " + i.ToString(CultureInfo.InvariantCulture);
// Artificial delay so we can see what's going on
await Task.Delay(200);
}
Records[0].Name = "Yes!";
return true;
}
catch (Exception)
{
return false;
}
}
I'm too not comfortable with all this plumbing but I'll try to answer.
First why your second code does not work:
you give StartNew an async delegate which is something like Func<Task> so StartNew will return a Task<Task> and you wait on the outer task which ends immediately as it consists in returning the inner Task (not really sure about that)
then you await the continuation of the inner task, the inner thread of execution, what you intended to do; but I guess it should be the same if you awaited directly the inner task itself this way:
await await Task.Factory.StartNew(async ...
Why your first code works:
according to the MSDN documentation Task.Run directly returns a Task object, the inner task I guess
so you directly await for the inner task, not an intermediate one, so it just works as expected
At least this is my understanding and keep in mind I've not yet played with all this stuff (no VS 2012). :)

Categories

Resources