How to capture an expression tree in C# - c#

I am writing some debug/test code in which I want to both display the original expression and evaluate it, for any arbitrary expression.
For (trivial) example:
IList<string> myString = /* Some string collection expression */
ShowMe(myString.Select(s => s.ToLower()));
Where I implement ShowMe something like:
public void ShowMe(/* Not sure what has to go here */)
{
/* Not sure what has to go here */
Console.WriteLine(expression.ToString();
IEnumerable result = expression.Evaluate(); // or something
foreach(item in result)
{
Console.WriteLine(/* etc. */)
}
}
And the result will be written to the console as:
myString.Select(s => s.ToLower())
(first item)
(next item
(etc...)
In other words, my ShowMe method operates on the expression tree rather than the value of the expression, so that it can both display the expression it was given as well as the computed result.
I can't simply declare ShowMe as:
public void ShowMe(Expression expr)
... but if I declare is as
public void ShowMe(Expression<Func<Enumerable>> expr)
... it sort-of works - I have to call my method with a lambda expression thus:
ShowMe(() => myString.Select(s => s.ToLower()))
... which I don't want to do.
I'm reasonably sure this can be done... FluentAssertions does it. For example: if I execute the following line of test code:
(1 + 1).Should.Be(3)
I get the following result:
Expected (1 + 1) to be 3, but found 2.
The FluentAssertion has both evaluated the expression (1+1) and captured the expression tree so that was able to display the original expression it evaluated.
I can't see how this was done, but I want to do similar. How do I do it?

This is per se not possible with any method.
All those libraries just parse the stack trace and extract the file name as well as the line number. Then the expression is extracted from the source code file at the given line (whilst this includes some parsing/validation).
It is also notably, that the expression can't be shown, if the source code does not exists/is not available.

Figured out an acceptable compromise:
public static class ObjectHelper
{
public static void ToConsole<T>(this IEnumerable<T> enumerable, Expression<Func<T,object>> expr)
where T:class
{
var fn = expr.Compile();
var result = enumerable.Select(s => fn(s));
Console.WriteLine($"My data selected as {PrettyPrintExpression(expr)}");
foreach(var element in result)
{
Console.WriteLine(/* etc. */);
}
}
private static string PrettyPrintExpression(Expression<Func<T,object>> expr)
{
// Walk the expression tree to print as desired
}
}
...which I can invoke as:
IList<MyObject> list = /* etc. */
list.ToConsole(s => new{/* any members I want out of MyObject */});

Related

How to concatenate a property expression and a lambda using Select?

I would like to create the following expression dynamically:
e.Collection.Select(inner => inner.Property)
I created this code to do it, however I have an issue when I execute the expression call, someone knows what I'm doing wrong?
private static Expression InnerSelect<TInnerModel>(IQueryable source, ParameterExpression externalParameter, string complexProperty)
{
// Creates the expression to the external property. // this generates: "e.Collection".
var externalPropertyExpression = Expression.Property(externalParameter, complexProperty);
// Creates the expression to the internal property. // this generates: "inner => inner.Property"
var innerParameter = Expression.Parameter(typeof(TInnerModel), "inner");
var innerPropertyExpression = Expression.Property(innerParameter, "Property");
var innerLambda = Expression.Lambda(innerPropertyExpression, innerParameter);
return Expression.Call(typeof(Queryable), "Select", new [] { typeof(TInnerModel) }, externalPropertyExpression, innerLambda);
}
Error:
No generic method 'Select' on type 'System.Linq.Queryable' is
compatible with the supplied type arguments and arguments. No type
arguments should be provided if the method is non-generic.
So, first off, the primary problem is very simple. As the error message says, you haven't passed enough type arguments to Select. But when you fix that, you'll still have a problem, and that problem will be much harder for you to see and understand.
Let's dig into that.
You wish to represent this as an expression tree:
e.Collection.Select(inner => inner.Property)
Let's begin by rewriting it in its non-extension-method form.
Queryable.Select<A, B>(e.Collection, inner => inner.Property)
Where A is the collection member type and B is the type of Property.
Now, suppose you had this expression in your program. What would it actually do at runtime? It would construct an expression tree for the lambda and pass it to Queryable.Select. That is, it would do something like:
var innerParameter = parameterFactory(whatever);
var lambdaBody = bodyFactory(whatever);
var lambda = makeALambda(lambdaBody, innerParameter);
Queryable.Select<TInnerModel>(e.Collection, lambda);
Right? You with me so far?
Now, suppose we wish to translate this program fragment to an expression tree that could itself be the body of a lambda. That would be:
var theMethodInfoForSelect = whatever;
var receiverE = valueFactory(whatever);
var thePropertyInfoForCollection = whatever;
var theFirstArgument = propertyFactory(receiverE, thePropertyInfoForCollection);
...
Again, with me so far? Now, the crucial question: what is the second argument? It is NOT the value of lambda, which is what you are passing. Remember, what we are doing here is constructing an expression tree which represents the code that the compiler is generating for that thing, and the expression tree that is in lambda is not that. You're mixing levels!
Let me put it this way: the compiler is expecting "add one and three". You are passing 4. Those are very different things! One of them is a description of how to obtain a number and the other one is a number. You are passing an expression tree. What the compiler is expecting is a description of how to obtain an expression tree.
So: do you have to now write code that generates expression trees for all of lambda's construction code? Thank goodness no. We provided you a handy way to turn an expression tree into a description of how to produce an expression tree, which is the Quote operation. You need to use it.
So, what is the right sequence of events that you need to do to build your expression tree? Let's walk through it:
First, you'll need a ParameterExpression of the type of e, which you already have in hand. Let's suppose that is:
ParameterExpression eParam = Expression.Parameter(typeof(E), "e");
Next, you will need a method info for the Select method. Let's suppose you can correctly get that.
MethodInfo selectMethod = whatever;
That method takes two arguments, so let's make an array of argument expressions:
Expression[] arguments = new Expression[2];
You'll need a property info for your Collection property. I assume you can get that:
MethodInfo collectionGetter = whatever;
Now we can build the property expression:
arguments[0] = Expression.Property(eParam, collectionGetter);
Super. Next we need to start building that lambda. We need a parameter info for inner:
ParameterExpression innerParam = Expression.Parameter(typeof(Whatever), "inner");
We'll need a property info for Property, which I assume you can get:
MethodInfo propertyGetter = whatever;
Now we can build the body of the lambda:
MemberExpression body = Expression.Property(innerParam, propertyGetter);
The lambda takes an array of parameters:
ParameterExpression[] innerParams = { innerParam };
Build the lambda from the body and the parameters:
var lambda = Expression.Lambda<Func<X, int>>(body, innerParams);
Now the step you missed. The second argument is the quoted lambda, not the lambda:
arguments[1] = Expression.Quote(lambda);
Now we can build the call to Select:
MethodCallExpression callSelect = Expression.Call(null, selectMethod, arguments);
And we're done.
Give someone an expression tree and you give them an expression tree for a day; teach them how to find expression trees themselves and they can do it for a lifetime. How did I do that so fast?
Since I wrote the expression tree code generator, I had some immediate familiarity with the problem that you were likely to have. But that was ten years ago, and I did not do the above entirely from memory. What I did was I wrote this program:
using System;
using System.Linq.Expressions;
public interface IQ<T> {}
public class E
{
public IQ<X> C { get; set; }
}
public class X
{
public int P { get; set; }
}
public class Program
{
public static IQ<R> S<T, R>(IQ<T> q, Expression<Func<T, R>> f) { return null; }
public static void Main()
{
Expression<Func<E, IQ<int>>> f = e => S<X, int>(e.C, c => c.P);
}
}
Now I wished to know what code was generated by the compiler for the body of the outer lambda, so I went to https://sharplab.io/, pasted in the code, and then clicked on Results --> Decompile C#, which will compile the code to IL and then decompile it back to human-readable C#.
This is the best way I know of to quickly understand what the C# compiler is doing when it builds an expression tree, regardless of whether you know the compiler source code backwards and forwards. It's a very handy tool.

Pass expression parameter as argument to another expression

I have a query which filters results:
public IEnumerable<FilteredViewModel> GetFilteredQuotes()
{
return _context.Context.Quotes.Select(q => new FilteredViewModel
{
Quote = q,
QuoteProductImages = q.QuoteProducts.SelectMany(qp => qp.QuoteProductImages.Where(qpi => q.User.Id == qpi.ItemOrder))
});
}
In the where clause I'm using the parameter q to match a property against a property from the parameter qpi.
Because the filter will be used in several places I'm trying to rewrite the where clause to an expression tree which would look like something like this:
public IEnumerable<FilteredViewModel> GetFilteredQuotes()
{
return _context.Context.Quotes.Select(q => new FilteredViewModel
{
Quote = q,
QuoteProductImages = q.QuoteProducts.SelectMany(qp => qp.QuoteProductImages.AsQueryable().Where(ExpressionHelper.FilterQuoteProductImagesByQuote(q)))
});
}
In this query the parameter q is used as a parameter to the function:
public static Expression<Func<QuoteProductImage, bool>> FilterQuoteProductImagesByQuote(Quote quote)
{
// Match the QuoteProductImage's ItemOrder to the Quote's Id
}
How would I implement this function? Or should I use a different approach alltogether?
If I understand correctly, you want to reuse an expression tree inside another one, and still allow the compiler to do all the magic of building the expression tree for you.
This is actually possible, and I have done it in many occasions.
The trick is to wrap your reusable part in a method call, and then before applying the query, unwrap it.
First I would change the method that gets the reusable part to be a static method returning your expression (as mr100 suggested):
public static Expression<Func<Quote,QuoteProductImage, bool>> FilterQuoteProductImagesByQuote()
{
return (q,qpi) => q.User.Id == qpi.ItemOrder;
}
Wrapping would be done with:
public static TFunc AsQuote<TFunc>(this Expression<TFunc> exp)
{
throw new InvalidOperationException("This method is not intended to be invoked, just as a marker in Expression trees!");
}
Then unwrapping would happen in:
public static Expression<TFunc> ResolveQuotes<TFunc>(this Expression<TFunc> exp)
{
var visitor = new ResolveQuoteVisitor();
return (Expression<TFunc>)visitor.Visit(exp);
}
Obviously the most interesting part happens in the visitor.
What you need to do, is find nodes that are method calls to your AsQuote method, and then replace the whole node with the body of your lambdaexpression. The lambda will be the first parameter of the method.
Your resolveQuote visitor would look like:
private class ResolveQuoteVisitor : ExpressionVisitor
{
public ResolveQuoteVisitor()
{
m_asQuoteMethod = typeof(Extensions).GetMethod("AsQuote").GetGenericMethodDefinition();
}
MethodInfo m_asQuoteMethod;
protected override Expression VisitMethodCall(MethodCallExpression node)
{
if (IsAsquoteMethodCall(node))
{
// we cant handle here parameters, so just ignore them for now
return Visit(ExtractQuotedExpression(node).Body);
}
return base.VisitMethodCall(node);
}
private bool IsAsquoteMethodCall(MethodCallExpression node)
{
return node.Method.IsGenericMethod && node.Method.GetGenericMethodDefinition() == m_asQuoteMethod;
}
private LambdaExpression ExtractQuotedExpression(MethodCallExpression node)
{
var quoteExpr = node.Arguments[0];
// you know this is a method call to a static method without parameters
// you can do the easiest: compile it, and then call:
// alternatively you could call the method with reflection
// or even cache the value to the method in a static dictionary, and take the expression from there (the fastest)
// the choice is up to you. as an example, i show you here the most generic solution (the first)
return (LambdaExpression)Expression.Lambda(quoteExpr).Compile().DynamicInvoke();
}
}
Now we are already half way through. The above is enough, if you dont have any parameters on your lambda. In your case you do, so you want to actually replace the parameters of your lambda to the ones from the original expression. For this, I use the invoke expression, where I get the parameters I want to have in the lambda.
First lets create a visitor, that will replace all parameters with the expressions that you specify.
private class MultiParamReplaceVisitor : ExpressionVisitor
{
private readonly Dictionary<ParameterExpression, Expression> m_replacements;
private readonly LambdaExpression m_expressionToVisit;
public MultiParamReplaceVisitor(Expression[] parameterValues, LambdaExpression expressionToVisit)
{
// do null check
if (parameterValues.Length != expressionToVisit.Parameters.Count)
throw new ArgumentException(string.Format("The paraneter values count ({0}) does not match the expression parameter count ({1})", parameterValues.Length, expressionToVisit.Parameters.Count));
m_replacements = expressionToVisit.Parameters
.Select((p, idx) => new { Idx = idx, Parameter = p })
.ToDictionary(x => x.Parameter, x => parameterValues[x.Idx]);
m_expressionToVisit = expressionToVisit;
}
protected override Expression VisitParameter(ParameterExpression node)
{
Expression replacement;
if (m_replacements.TryGetValue(node, out replacement))
return Visit(replacement);
return base.VisitParameter(node);
}
public Expression Replace()
{
return Visit(m_expressionToVisit.Body);
}
}
Now we can advance back to our ResolveQuoteVisitor, and hanlde invocations correctly:
protected override Expression VisitInvocation(InvocationExpression node)
{
if (node.Expression.NodeType == ExpressionType.Call && IsAsquoteMethodCall((MethodCallExpression)node.Expression))
{
var targetLambda = ExtractQuotedExpression((MethodCallExpression)node.Expression);
var replaceParamsVisitor = new MultiParamReplaceVisitor(node.Arguments.ToArray(), targetLambda);
return Visit(replaceParamsVisitor.Replace());
}
return base.VisitInvocation(node);
}
This should do all the trick.
You would use it as:
public IEnumerable<FilteredViewModel> GetFilteredQuotes()
{
Expression<Func<Quote, FilteredViewModel>> selector = q => new FilteredViewModel
{
Quote = q,
QuoteProductImages = q.QuoteProducts.SelectMany(qp => qp.QuoteProductImages.Where(qpi => ExpressionHelper.FilterQuoteProductImagesByQuote().AsQuote()(q, qpi)))
};
selector = selector.ResolveQuotes();
return _context.Context.Quotes.Select(selector);
}
Of course I think you can make here much more reusability, with defining expressions even on a higher levels.
You could even go one step further, and define a ResolveQuotes on the IQueryable, and just visit the IQueryable.Expression and creating a new IQUeryable using the original provider and the result expression, e.g:
public static IQueryable<T> ResolveQuotes<T>(this IQueryable<T> query)
{
var visitor = new ResolveQuoteVisitor();
return query.Provider.CreateQuery<T>(visitor.Visit(query.Expression));
}
This way you can inline the expression tree creation. You could even go as far, as override the default query provider for ef, and resolve quotes for every executed query, but that might go too far :P
You can also see how this would translate to actually any similar reusable expression trees.
I hope this helps :)
Disclaimer: Remember never copy paste code from anywhere to production without understanding what it does. I didn't include much error handling here, to keep the code to minimum. I also didn't check the parts that use your classes if they would compile. I also don't take any responsability for the correctness of this code, but i think the explanation should be enough, to understand what is happening, and fix it if there are any issues with it.
Also remember, that this only works for cases, when you have a method call that produces the expression. I will soon write a blog post based on this answer, that allows you to use more flexibility there too :P
Implementing this your way will cause an exception thrown by ef linq-to-sql parser. Within your linq query you invokes FilterQuoteProductImagesByQuote function - this is interpreted as Invoke expression and it simply cannot be parsed to sql. Why? Generally because from SQL there is no possibility to invoke MSIL method. The only way to pass expression to query is to store it as Expression> object outside of the query and then pass it to Where method. You can't do this as outside of the query you will not have there Quote object. This implies that generally you cannot achieve what you wanted. What you possibly can achieve is to hold somewhere whole expression from Select like this:
Expression<Func<Quote,FilteredViewModel>> selectExp =
q => new FilteredViewModel
{
Quote = q,
QuoteProductImages = q.QuoteProducts.SelectMany(qp => qp.QuoteProductImages.AsQueryable().Where(qpi => q.User.Id == qpi.ItemOrder)))
};
And then you may pass it to select as argument:
_context.Context.Quotes.Select(selectExp);
thus making it reusable. If you would like to have reusable query:
qpi => q.User.Id == qpi.ItemOrder
Then first you would have to create different method for holding it:
public static Expression<Func<Quote,QuoteProductImage, bool>> FilterQuoteProductImagesByQuote()
{
return (q,qpi) => q.User.Id == qpi.ItemOrder;
}
Application of it to your main query would be possible, however quite difficult and hard to read as it will require defining that query with use of Expression class.

Expression parsing - Possible to get array of property names as string?

Is it possible to complete this method? Is it possible in the latest version of C#? Thinking about this as a DSL to configure a system for watching for certain property changes on certain objects.
List<string> list = GetProps<AccountOwner>(x => new object[] {x.AccountOwnerName, x.AccountOwnerNumber});
// would return "AccountOwnerName" and "AccountOwnerNumber"
public List<string> GetProps<T>(Expression<Func<T, object[]>> exp)
{
// code here
}
In C# 6, you'd use:
List<string> list = new List<string>
{
nameof(AccountOwner.AccountOwnerName),
nameof(AccountOwner.AccountOwnerNumber)
};
Before that, you could certainly break the expression tree apart - the easiest way of working out how is probably to either use an expression tree visualizer, or use the code you've got and put a break point in the method (just make it return null for now) and examine the expression tree in the debugger. I'm sure it won't be very complicated - just a bit more than normal due to the array.
You could possibly simplify it using an anonymous type, if you use:
List<string> list = Properties<AccountOwner>.GetNames(x => new {x.AccountOwnerName, x.AccountOwnerNumber});
Then you could have:
public static class Properties<TSource>
{
public static List<string> GetNames<TResult>(Func<TSource, TResult> ignored)
{
// Use normal reflection to get the properties
}
}
If you don't care about the ordering, you could just use
return typeof(TResult).GetProperties().Select(p => p.Name).ToList();
If you do care about the ordering, you'd need to look at the names the C# compiler gives to the constructor parameters instead - it's a bit ugly. Note that we don't need an expression tree though - we only need the property names from the anonymous type. (An expression tree would work just as well, admittedly.)
Without c# 6 and nameof, you could get a property name from a expression tree like:
using System.Linq.Expressions;
//...
static string GetNameOf<T>(Expression<Func<T>> property)
{
return (property.Body as MemberExpression).Member.Name;
}
Using it like:
GetNameOf(() => myObject.Property);
Not directly usable for an array of objects, but you could make an overload to take an array of expressions... something like:
static string[] GetNameOf(IEnumerable<Expression<Func<object>>> properties)
{
return properties.Select(GetNameOf).ToArray();
}
And use it like
GetNameOf(
new Expression<Func<object>>[]
{
() => x.AccountOwnerName,
() => x.AccountOwnerNumber
}
);
Demonstrating fiddle: https://dotnetfiddle.net/GsV96t
Update
If you go this route, the original GetNameOf for a single property won't work for value types (since they get boxed to object in the Expression and now the expression uses Convert internally). This is easily solvable by changing the code to something like:
static string GetNameOf<T>(Expression<Func<T>> property)
{
var unary = property.Body as UnaryExpression;
if (unary != null)
return (unary.Operand as MemberExpression).Member.Name;
return (property.Body as MemberExpression).Member.Name;
}
Updated fiddle: https://dotnetfiddle.net/ToXRuu
Note: in this updated fiddle I've also updated the overloaded method to return a List instead of an array, since that's what was on your original code

Get parameters from lambda Expression

I am not very familiar with lambda expressions. So I have the following expression:
EnabledPropertySelector = l => l.FranchiseInfo.ExternalSystemType == ExternalSystemTypes.Master
And two properties:
public string VisibilityPropertyName { get; set; }
public object VisibilityPropertyValue { get; set; }
I want to extract some data from the expression so in the end I can get the values of the two properties:
VisibilityPropertyName == 'FranchiseInfo.ExternalSystemType';
VisibilityPropertyValue == ExternalSystemTypes.Master;
VisibilityPropertyName is always a string. This is the name of the property.
VisibilityPropertyValue can be of any type.
EDIT:
I have a lot of properties. Some of them are dependent on other properties. For every single property I have to manually write the name and the value of the parent property:
{ VisibilityPropertyName = 'FranchiseInfo.ExternalSystemType', VisibilityPropertyValue = ExternalSystemTypes.Master, EnabledPropertySelector = l => l.FranchiseInfo.ExternalSystemType == ExternalSystemTypes.Master}
Instead of writing all this I want to write only the expression and populate the properties from it.
This is the declaration of the expresion:
Expression<Func<TEntity, bool?>> EnabledPropertySelector
First off all, you need an Expression. What's the type of EnabledPropertySelector? It'll need to be something like Expression<Func<T, bool>> where T is whatever the type of "l" in your example is.
If you already have an Expression then you can use the Expression API to extract whatever you need:-
var body = EnabledPropertySelector.Body as BinaryExpression;
var left = body.Left as PropertyExpression;
var outerMemberName = left.Member.Name;
var innerMemberName = (left.Expression as PropertyExpression).Member.Name
VisibilityPropertyName = innerMemberName + "." + outerMemberName;
var right = body.Right as PropertyExpression;
var rightValueDelegate = Expression.Lambda<Func<object>>(right).Compile();
VisibilityPropertyValue = rightValueDelegate();
etc.
I really recommend doing some reading to properly grok the expression API before diving in though; there are a lot of corner cases depending on how flexible you need to be. E.g. is the expression always of the form parameter.Property.Property == constant? It gets really complicated really quickly, so you'll want a solid understanding of the fundamentals before trying to handle any real-world cases.
There's a reasonable introduction to expression trees on MSDN, but some focused googling might get you a better understanding quicker.
You can use Funciton and Action class, I'm not very sure of what you want be able to do, but I can give an tip.
Functions returns a value:
Function<InputType1,InputType2,ResultType> functionVariableName;
Usage:
functionVariableName = (param1, param2) => {
//...process both params
return result;
};
Actions, do not return values:
Action<InputType1,InputType2> actionVariableName;
Usage:
actionVariableName= (param1, param2) => {
//...process both params
};
If the lambda expression is simple (one line, with out if expression) you can make the lambda with out {}:
functionVariableName = (param1, param2) => //process values and result;
Hope this helps...
if you want to create an IEnumerable where the two properties are equal:
var results = EnabledPropertySelector.Where(l => l.FranchiseInfo.ExternalSystemType ==
ExternalSystemTypes.Master.ToString());

How to evaluate and process a simple string syntax-tree in C#?

I have a corpus of token-index based documents which offers a query method. The user manually(!) enters a query string which needs to be parsed and evaluated. The corpus should then return a list of all documents matching the given query string. The query language features the simple boolean operators AND, NOT and OR which can also be prioritized by parenthesis.
After some research I already used ANTLR to parse a given query string into a syntax tree.
For example: The query
"Bill OR (John AND Jim) OR (NOT Simon AND Mike)"
is translated in the following syntax tree:
EDIT: Please see the correct graph in Bart Kiers post (copied here):
All nodes in the tree are simple strings and each node knows its parent and children but not its siblings.
As you can see, the ANTLR grammar already dictated the order in which the operations need to be executed: the ones at the bottom of the tree come first.
So what I probably need to do is recusively(?) evaluate all operands in the tree.
In general, I can do a simple search on my corpus using a method Get(string term) for each leaf in the tree (like "Bill" or "John"). Get() returns a list of documents containing the term in the leaf. I can also evaluate the parent of each leaf to recognize a possible NOT operator which would then lead to a result list of documents NOT containing the term in the leaf (using the method Not() instead of Get()).
The AND and OR operator should be transformed into method calls which need two parameters:
AND should call a method Intersect(list1, list2) which returns a list of documents that are in list1 AND in list2.
OR should call a method Union(list1, list2) which returns a list of documents that are either in list1 OR in list2.
The parameters list1 and list2 contain the documents I received before using Get() or Not().
My question is: How can I - semantically and syntactically in C# - evaluate all necessary search terms and use them to call the right operator methods in the correct order? Intuitively it sounds like recursion but somehow I can't picture it - especially since not all methods that need to be called have the same amount of parameters. Or are there maybe entirely other ways to accomplish this?
In Pseudo Code
Set Eval (Tree t) {
switch (t.Operator) {
case OR:
Set result = emptySet;
foreach(child in T.Children) {
result = Union(result, Eval(child));
}
return result;
case AND:
Set result = UniversalSet;
foreach(child in T.Children) {
result = Intersection(result, Eval(child));
}
return result;
case blah: // Whatever.
}
// Unreachable.
}
Does that help?
Or were you looking to optimize the order of evaluations, which probably has books written on it...
I would have expected the following tree to be generated:
(note that in your AST, the OR node has 3 children)
Either way, if you have created an ANTLR grammar that is able to create an AST (whether in the form of your original image, or mine posted above), it means that you have defined the proper operator precedence in your grammar. In that case, you shouldn't be confused to execute the order of your operators since your tree already mandates that (John <- AND -> Jim) and (NOT -> Simon) are to be evaluated first.
Could you perhaps post the ANTLR grammar you've been working on?
Also, you're talking about sets, but in your example, only single values are shown, so I get the impression your language is a bit more complex than you've shown so far. Perhaps you could explain your actual language, instead of a dumbed-down version of it?
PS. The source that created the image can be found here: http://graph.gafol.net/elDKbwzbA (ANTLR grammar also incuded)
I'm not familiar with the object model which ANTLR generates but assuming its something like this:
class BinaryNode : Node
{
public Node LeftChild;
public Node RightChild;
public readonly string Operator;
}
class UnaryNode : Node
{
public Node Child;
public readonly string Operator;
}
class TerminalNode : Node
{
public readonly string LeafItem;
}
class Node { }
public class Executor
{
public IEnumerable<object> Get(string value)
{
return null;
}
public IEnumerable<object> GetAll()
{
return null;
}
public IEnumerable<object> GetItems(Node node)
{
if (node is TerminalNode)
{
var x = node as TerminalNode;
return Get(x.LeafItem);
}
else if (node is BinaryNode)
{
var x = node as BinaryNode;
if (x.Operator == "AND")
{
return GetItems(x.LeftChild).Intersect(GetItems(x.RightChild));
}
else if (x.Operator == "OR")
{
return GetItems(x.LeftChild).Concat(GetItems(x.RightChild));
}
}
else if (node is UnaryNode)
{
var x = node as UnaryNode;
if (x.Operator == "NOT")
{
return GetAll().Except(GetItems(x.Child));
}
}
throw new NotSupportedException();
}
}
Note however this evaluates the query eagerly, which is not optimal. But it should give you an idea of how recursion would work.
I'm not exactly sure what you're trying to do, but I think I would turn the AST into a Func<Person, bool>. Each leaf node can be evaulated to a Func<Person, bool> for example p => p.Name == "Bill" AND, OR, and NOT can be implemented as higher order functions for example:
public static Func<T, bool> And<T>(Func<T, bool> a, Func<T, bool> b)
{
return t => a(t) && b(T);
}
Once you've done all this and collapsed your AST into a single Func<Person, bool>, you can pass that as the parameter to the Where() extension method on any type that implements IEnumerable<Person>.
In other words, I would first "compile" the AST into a Func<Person, boo>, and then use LINQ to Objects to actually filter my collection. Compiling should be easy because your AST is an implementation of the Composite design pattern. Each node should be able to expose the method Func<Person, bool> Compile().

Categories

Resources