C# Background Worker Append TextBox - c#

first off I'd like to say I'm brand new to C# so I am not too aware with how the background worker is supposed to be implemented. I have a GUI program that basically pings a domain a returns the response to a textbox. I am able to get it to work normally, however, it freezes the code because it is running on the same thread which is why I am trying to implement a background worker.
Here is the basic setup
private void button1_Click(object sender, EventArgs e)
{
url = textBox1.Text;
button1.Enabled = false;
button2.Enabled = true;
bgWorker.DoWork += new DoWorkEventHandler(bgWorker_DoWork);
bgWorker.RunWorkerAsync();
}
private void bgWorker_DoWork(object sender, DoWorkEventArgs e)
{
do
{
if (bgWorker.CancellationPending)
break;
Invoke((MethodInvoker)delegate { monitor(); });
} while (true);
}
public void monitor()
{
textBox2.AppendText("Status of: " + url + "\n");
Status(url);
System.Threading.Thread.Sleep(30000);
}
private void Status(string url)
{
// This method does all the ping work and also appends the status to the Text box as it goes through , as OK or down
}
I have not worked with bgworkers before and as you can imagine it's confusing. I've looked at tons of other articles and I can't seem to get it. Sorry if the code looks crazy, I'm trying to learn.

Use Microsoft's Reactive Framework (NuGet "System.Reactive.Windows.Forms" and add using System.Reactive.Linq;) and then you can do this:
private void button1_Click(object sender, EventArgs e)
{
var url = textBox1.Text;
Observable
.Interval(TimeSpan.FromMinutes(0.5))
.SelectMany(_ => Observable.Start(() => Status(url)))
.ObserveOn(this)
.Subscribe(status => textBox2.AppendText("Status of: " + status + "\n"));
}
You then just need to change Status to have this signature: string Status(string url).
That's it. No background worker. No invoking. And Status is nicely run on a background thread.

You've got several mistakes. First,
Invoke((MethodInvoker)delegate
{
monitor();
});
will call monitor() on your UI thread. In almost all cases you should not call methods on other threads. You especially should not call methods that block or do anything that takes more than a few milliseconds on your UI thread, and that is what this does:
System.Threading.Thread.Sleep(30000);
Instead of calling a method on another thread; submit immutable data to the other thread and let the thread decide when to handle it. There is an event already built in to BackgroundWorker which does that. Before you call bgWorker.RunWorkerAsync() do this:
url = new Uri(something);
bgWorker.WorkerReportsProgress = true;
bgWorker.WorkerSupportsCancellation = true;
bgWorker.ProgressChanged += Bgw_ProgressChanged;
private void Bgw_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
textBox2.AppendText("Status of: " + url + ": " + e.UserState.ToString()
+ Environment.NewLine);
}
Your bgWorker_DoWork should look more like this:
void bgWorker_DoWork(object sender, DoWorkEventArgs e)
{
while (!bgw.CancellationPending)
{
System.Threading.Thread.Sleep(new TimeSpan(0, 0, 30));
var status = ResultOfPing(e.Argument as Uri);
bgw.ReportProgress(0, status);
}
e.Cancel = true;
}
and you should call it like this:
bgWorker.RunWorkerAsync(url);
You've got a second problem. BackgroundWorker creates a thread, and your thread is going to spend most of its time blocked on a timer or waiting for network responses. That is a poor use of a thread. You would be better off using completion callbacks or async/await.

The background worker is running on a thread pool thread, but your call to Status and Sleep is running on the UI thread. You need to move that stuff back into bgWorker_DoWork.

Try this code:
public partial class Form1 : Form
{
bool cancel;
public Form1()
{
InitializeComponent();
}
public void StartPinging()
{
this.cancel = false;
startButton.Enabled = false;
stopButton.Enabled = true;
responseBox.Clear();
responseBox.AppendText("Starting to ping server.");
responseBox.AppendText(Environment.NewLine);
var bw = new BackgroundWorker
{
WorkerReportsProgress = false,
WorkerSupportsCancellation = true
};
bw.DoWork += (obj, ev) =>
{
while (!cancel)
{
// Ping Server Here
string response = Server.PingServer();
this.Invoke(new UiMethod(() =>
{
responseBox.AppendText(response);
responseBox.AppendText(Environment.NewLine);
}));
}
};
bw.RunWorkerCompleted += (obj, ev) =>
{
this.Invoke(new UiMethod(() =>
{
responseBox.AppendText("Stopped pinging the server.");
responseBox.AppendText(Environment.NewLine);
startButton.Enabled = true;
stopButton.Enabled = false;
}));
};
bw.RunWorkerAsync();
}
delegate void UiMethod();
private void startButton_Click(object sender, EventArgs e)
{
StartPinging();
}
private void stopButton_Click(object sender, EventArgs e)
{
responseBox.AppendText("Cancelation Pressed.");
responseBox.AppendText(Environment.NewLine);
cancel = true;
}
}
public class Server
{
static Random rng = new Random();
public static string PingServer()
{
int time = 1200 + rng.Next(2400);
Thread.Sleep(time);
return $"{time} ms";
}
}

Erwin, when dealing with C# - threads and UI elements usually you will come across cross-thread operations i.e. Background thread with UI threads. This interaction needs to be done in thread safe way with the help of Invoke to avoid invalid operations.
Please look into below resource: InvokeRequired section.
https://learn.microsoft.com/en-us/dotnet/framework/winforms/controls/how-to-make-thread-safe-calls-to-windows-forms-controls

Related

Run function after Thread has finished running

I'm trying to run a function after a thread has completed running. My thread starts when an UI button is pressed and the thread takes a while to complete.
Once it's done running I want to call a function. Here is the code I tried so far. When I try to run my code the thread never executes and the application freezes. Any suggestion on how to fix this would be helpful.
public bool StartProbe()
{
if (File.Exists(Path.Combine(ObsProbeFolder, "probePJM.exe")))
{
ThreadStart ProbeThreadStart = new ThreadStart(() =>
// right side of lambda
{
// does stuff
});
ProbeThread = new Thread(ProbeThreadStart);
ProbeThread.Priority = ThreadPriority.BelowNormal;
ProbeThread.SetApartmentState(ApartmentState.STA);
ProbeThread.Start();
}
else
{
return false;
}
// waiting for thread to finish
ProbeThread.Join();
// run a function
loadData();
return true;
}
I would use a BackgroundWorker:
Worker = new BackgroundWorker();
Worker.RunWorkerCompleted += Worker_RunWorkerCompleted;
Worker.DoWork += Worker_DoWork;
Worker.RunWorkerAsync(new BackgroundArguments()
{
// arguments
});
Work on alternate thread:
private void Worker_DoWork(object sender, DoWorkEventArgs e)
{
// do stuff
}
Return to UI thread:
private void Worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
// load data or whatever on UI thread
}

RunWorkerCompleted firing too fast

i got some really simple code, but cant get it to work. I'm using BackgroundWorker. Problem is that RunWorkerCompleted is fired way to fast. Instantly after running i get message "Work completed", but application remains frozen for couple of seconds as 'DataType data = new DataType(path);' is beign executed. After that i got all my DataGridViews etc filled correctly. If i swap this single line with Thread.Sleep everything seems to work well. Any ideas?
public frmWindow(string path)
{
InitializeComponent();
DataType d;
backgroundWorker1.RunWorkerAsync(path);
}
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
string path = e.Argument as string;
DataType data = new DataType(path);
e.Result = data;
}
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
d = e.Result as DataType;
MessageBox.Show("Work completed");
}
How about you use Debug.Write instead of MessageBox.Show with timers to show when the Methods are entered and exited.
While it is possible for this same background thread to act on your UI, its almost always NOT a good thing to do--UI is not threadsafe.
BackgroundWorker backGroundWorker1;
public frmWindow(string path)
{
InitializeComponent();
DataType d;
backGroundWorker1 = new BackgroundWorker();
backGroundWorker1.DoWork += (s, e) =>
{
System.Diagnostics.Debug.Write("Work started at: " + DateTime.Now + Environment.NewLine);
string path = e.Argument as string;
DataType data = new DataType(path);
e.Result = data;
};
backGroundWorker1.RunWorkerCompleted += (s, e) =>
{
d = e.Result as DataType;
System.Diagnostics.Debug.Write("Work completed at: " + DateTime.Now + Environment.NewLine);
};
backGroundWorker1.RunWorkerAsync();
}

How to use WPF Background Worker

In my application I need to perform a series of initialization steps, these take 7-8 seconds to complete during which my UI becomes unresponsive. To resolve this I perform the initialization in a separate thread:
public void Initialization()
{
Thread initThread = new Thread(new ThreadStart(InitializationThread));
initThread.Start();
}
public void InitializationThread()
{
outputMessage("Initializing...");
//DO INITIALIZATION
outputMessage("Initialization Complete");
}
I have read a few articles about the BackgroundWorker and how it should allow me to keep my application responsive without ever having to write a thread to perform lengthy tasks but I haven't had any success trying to implement it, could anyone tell how I would do this using the BackgroundWorker?
Add using
using System.ComponentModel;
Declare Background Worker:
private readonly BackgroundWorker worker = new BackgroundWorker();
Subscribe to events:
worker.DoWork += worker_DoWork;
worker.RunWorkerCompleted += worker_RunWorkerCompleted;
Implement two methods:
private void worker_DoWork(object sender, DoWorkEventArgs e)
{
// run all background tasks here
}
private void worker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)
{
//update ui once worker complete his work
}
Run worker async whenever your need.
worker.RunWorkerAsync();
Track progress (optional, but often useful)
a) subscribe to ProgressChanged event and use ReportProgress(Int32) in DoWork
b) set worker.WorkerReportsProgress = true; (credits to #zagy)
You may want to also look into using Task instead of background workers.
The easiest way to do this is in your example is Task.Run(InitializationThread);.
There are several benefits to using tasks instead of background workers. For example, the new async/await features in .net 4.5 use Task for threading. Here is some documentation about Task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
using System;
using System.ComponentModel;
using System.Threading;
namespace BackGroundWorkerExample
{
class Program
{
private static BackgroundWorker backgroundWorker;
static void Main(string[] args)
{
backgroundWorker = new BackgroundWorker
{
WorkerReportsProgress = true,
WorkerSupportsCancellation = true
};
backgroundWorker.DoWork += backgroundWorker_DoWork;
//For the display of operation progress to UI.
backgroundWorker.ProgressChanged += backgroundWorker_ProgressChanged;
//After the completation of operation.
backgroundWorker.RunWorkerCompleted += backgroundWorker_RunWorkerCompleted;
backgroundWorker.RunWorkerAsync("Press Enter in the next 5 seconds to Cancel operation:");
Console.ReadLine();
if (backgroundWorker.IsBusy)
{
backgroundWorker.CancelAsync();
Console.ReadLine();
}
}
static void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
for (int i = 0; i < 200; i++)
{
if (backgroundWorker.CancellationPending)
{
e.Cancel = true;
return;
}
backgroundWorker.ReportProgress(i);
Thread.Sleep(1000);
e.Result = 1000;
}
}
static void backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
Console.WriteLine("Completed" + e.ProgressPercentage + "%");
}
static void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (e.Cancelled)
{
Console.WriteLine("Operation Cancelled");
}
else if (e.Error != null)
{
Console.WriteLine("Error in Process :" + e.Error);
}
else
{
Console.WriteLine("Operation Completed :" + e.Result);
}
}
}
}
Also, referr the below link you will understand the concepts of Background:
http://www.c-sharpcorner.com/UploadFile/1c8574/threads-in-wpf/
I found this (WPF Multithreading: Using the BackgroundWorker and Reporting the Progress to the UI. link) to contain the rest of the details which are missing from #Andrew's answer.
The one thing I found very useful was that the worker thread couldn't access the MainWindow's controls (in it's own method), however when using a delegate inside the main windows event handler it was possible.
worker.RunWorkerCompleted += delegate(object s, RunWorkerCompletedEventArgs args)
{
pd.Close();
// Get a result from the asynchronous worker
T t = (t)args.Result
this.ExampleControl.Text = t.BlaBla;
};

WPF C# - Update progressbar from another thread

I'm stuck trying to update a progressbar from other threads ran in a different class. To explain what I do I think a picture will be better. I want to update the progressbar in the //HERE point :
I've tried using a delegate, tried with ReportProgress and I think i've basically tried to use everything google reported in the first 100 results, without success. I'm still learning WPF and this might be silly way to proceed, i'm looking for a quick and dirty way to get the work done but feel free to tell me what I should redesign for a cleaner application.
EDIT : More code.
In ExecutorWindow.xaml.cs :
public void RunExecutor()
{
// CREATE BACKGROUNDWORKER FOR EXECUTOR
execBackground.DoWork += new DoWorkEventHandler(execBackground_DoWork);
execBackground.RunWorkerCompleted += new RunWorkerCompletedEventHandler(execBackground_RunWorkerCompleted);
execBackground.ProgressChanged += new ProgressChangedEventHandler(execBackground_ProgressChanged);
execBackground.WorkerReportsProgress = true;
execBackground.WorkerSupportsCancellation = true;
// RUN BACKGROUNDWORKER
execBackground.RunWorkerAsync();
}
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run();
}
private void execBackground_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
MessageBox.Show("RunWorkerCompleted execBackground");
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
// TESTING
private void updateProgressBar(int i)
{
ExecutorProgressBar.Value += i;
}
public delegate void callback_updateProgressBar(int i);
In Executor.cs :
public void Run()
{
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
// HERE ?
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
while (CurrentRunningThreads > 0) { }
logfile.Close();
MessageBox.Show("All Tasks finished");
}
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
string[] options = (string[])e.Argument;
string machine = options[0];
string script = options[1];
// UPDATE HERE PROGRESSBAR ?
RemoteProcess myRemoteProcess = new RemoteProcess(machine, script);
string output = myRemoteProcess.TrueExec();
// UPDATE HERE PROGRESSBAR ?
this.logfile.WriteLine(output);
}
private void backgroundWorkerRemoteProcess_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
CurrentRunningThreads--;
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//myExecWindow.ExecutorProgressBar.Value = e.ProgressPercentage; // TESTING
//ExecutorWindow.callback_updateProgressBar(1); // TESTING
}
EDIT 2 : I got it! Simple in fact, but i guess I've been looking too close to find out.
In my ExecutorWindow class :
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run(sender);
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
And in my Executor class :
private BackgroundWorker myExecutorWindow;
[...]
public void Run(object sender)
{
myExecutorWindow = sender as BackgroundWorker;
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
[...]
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
myBackgroundWorker.ReportProgress(1);
// PROCESSING MY STUFF HERE
myBackgroundWorker.ReportProgress(1);
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
myExecutorWindow.ReportProgress(1);
}
Thank you !
You can run any method on the UI thread with this very basic sample
this.Dispatcher.Invoke(DispatcherPriority.Normal, new Action(delegate()
{
this.progressBar.Value= 20; // Do all the ui thread updates here
}));
Running commands inside the Dispatcher.Invoke(...), you can actually interact with the UI from any worker thread, where otherwise you would get an exception.
If you really need to have the ultimate control on the background threads & main (UI) thread updates, here is a fantastic tutorial on that: http://blog.decarufel.net/2009/03/good-practice-to-use-dispatcher-in-wpf.html
You should be able to use the Dispatcher.Invoke method
e.g.
Dispatcher.Invoke(
new System.Action(() => myProgressBar.Value = newValue)
);
I got it! Simple in fact, but i guess I've been looking too close to find out.
In my ExecutorWindow class :
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run(sender);
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
And in my Executor class :
private BackgroundWorker myExecutorWindow;
[...]
public void Run(object sender)
{
myExecutorWindow = sender as BackgroundWorker;
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
[...]
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
myBackgroundWorker.ReportProgress(1);
// PROCESSING MY STUFF HERE
myBackgroundWorker.ReportProgress(1);
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
myExecutorWindow.ReportProgress(1);
}
I found a really simple solution to create a thread to run any block of code as well as handle Invocation back to the main thread to change the control's properties. It works out of the box with .NET 4.5 and the lambda call on the Dispatcher could be adapted to work with earlier versions of .NET. The main benefit is it's just so blissfully simple and perfect when you just need a quick thread for some really basic bit of code.
So presuming you have a progress bar somewhere on your dialog in scope do this:
progBar.Minimum = 0;
progBar.Maximum = theMaxValue;
progBar.Value = 0;
Dispatcher disp = Dispatcher.CurrentDispatcher;
new Thread(() => {
// Code executing in other thread
while (progBar.Value < theMaxValue)
{
// Your application logic here
// Invoke Main Thread UI updates
disp.Invoke(
() =>
{
progBar.Value++;
}
);
}
}).Start();
You also need to ensure you have a reference to WindowsBase.dll
If you want a more reusable snippet of code running as the thread start you could use a method as the delegate but I find the inline lambda so easy for simple tasks and you don't need to deal with events as with the Background Worker approaches.

How to wait for a BackgroundWorker to cancel?

Consider a hypothetical method of an object that does stuff for you:
public class DoesStuff
{
BackgroundWorker _worker = new BackgroundWorker();
...
public void CancelDoingStuff()
{
_worker.CancelAsync();
//todo: Figure out a way to wait for BackgroundWorker to be cancelled.
}
}
How can one wait for a BackgroundWorker to be done?
In the past people have tried:
while (_worker.IsBusy)
{
Sleep(100);
}
But this deadlocks, because IsBusy is not cleared until after the RunWorkerCompleted event is handled, and that event can't get handled until the application goes idle. The application won't go idle until the worker is done. (Plus, it's a busy loop - disgusting.)
Others have add suggested kludging it into:
while (_worker.IsBusy)
{
Application.DoEvents();
}
The problem with that is that is Application.DoEvents() causes messages currently in the queue to be processed, which cause re-entrancy problems (.NET isn't re-entrant).
I would hope to use some solution involving Event synchronization objects, where the code waits for an event - that the worker's RunWorkerCompleted event handlers sets. Something like:
Event _workerDoneEvent = new WaitHandle();
public void CancelDoingStuff()
{
_worker.CancelAsync();
_workerDoneEvent.WaitOne();
}
private void RunWorkerCompletedEventHandler(sender object, RunWorkerCompletedEventArgs e)
{
_workerDoneEvent.SetEvent();
}
But I'm back to the deadlock: the event handler can't run until the application goes idle, and the application won't go idle because it's waiting for an Event.
So how can you wait for an BackgroundWorker to finish?
Update
People seem to be confused by this question. They seem to think that I will be using the BackgroundWorker as:
BackgroundWorker worker = new BackgroundWorker();
worker.DoWork += MyWork;
worker.RunWorkerAsync();
WaitForWorkerToFinish(worker);
That is not it, that is not what I'm doing, and that is not what is being asked here. If that were the case, there would be no point in using a background worker.
If I understand your requirement right, you could do something like this (code not tested, but shows the general idea):
private BackgroundWorker worker = new BackgroundWorker();
private AutoResetEvent _resetEvent = new AutoResetEvent(false);
public Form1()
{
InitializeComponent();
worker.DoWork += worker_DoWork;
}
public void Cancel()
{
worker.CancelAsync();
_resetEvent.WaitOne(); // will block until _resetEvent.Set() call made
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
while(!e.Cancel)
{
// do something
}
_resetEvent.Set(); // signal that worker is done
}
There is a problem with this response. The UI needs to continue to process messages while you are waiting, otherwise it will not repaint, which will be a problem if your background worker takes a long time to respond to the cancel request.
A second flaw is that _resetEvent.Set() will never be called if the worker thread throws an exception - leaving the main thread waiting indefinitely - however this flaw could easily be fixed with a try/finally block.
One way to do this is to display a modal dialog which has a timer that repeatedly checks if the background worker has finished work (or finished cancelling in your case). Once the background worker has finished, the modal dialog returns control to your application. The user can't interact with the UI until this happens.
Another method (assuming you have a maximum of one modeless window open) is to set ActiveForm.Enabled = false, then loop on Application,DoEvents until the background worker has finished cancelling, after which you can set ActiveForm.Enabled = true again.
Almost all of you are confused by the question, and are not understanding how a worker is used.
Consider a RunWorkerComplete event handler:
private void OnRunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (!e.Cancelled)
{
rocketOnPad = false;
label1.Text = "Rocket launch complete.";
}
else
{
rocketOnPad = true;
label1.Text = "Rocket launch aborted.";
}
worker = null;
}
And all is good.
Now comes a situation where the caller needs to abort the countdown because they need to execute an emergency self-destruct of the rocket.
private void BlowUpRocket()
{
if (worker != null)
{
worker.CancelAsync();
WaitForWorkerToFinish(worker);
worker = null;
}
StartClaxon();
SelfDestruct();
}
And there is also a situation where we need to open the access gates to the rocket, but not while doing a countdown:
private void OpenAccessGates()
{
if (worker != null)
{
worker.CancelAsync();
WaitForWorkerToFinish(worker);
worker = null;
}
if (!rocketOnPad)
DisengageAllGateLatches();
}
And finally, we need to de-fuel the rocket, but that's not allowed during a countdown:
private void DrainRocket()
{
if (worker != null)
{
worker.CancelAsync();
WaitForWorkerToFinish(worker);
worker = null;
}
if (rocketOnPad)
OpenFuelValves();
}
Without the ability to wait for a worker to cancel, we must move all three methods to the RunWorkerCompletedEvent:
private void OnRunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (!e.Cancelled)
{
rocketOnPad = false;
label1.Text = "Rocket launch complete.";
}
else
{
rocketOnPad = true;
label1.Text = "Rocket launch aborted.";
}
worker = null;
if (delayedBlowUpRocket)
BlowUpRocket();
else if (delayedOpenAccessGates)
OpenAccessGates();
else if (delayedDrainRocket)
DrainRocket();
}
private void BlowUpRocket()
{
if (worker != null)
{
delayedBlowUpRocket = true;
worker.CancelAsync();
return;
}
StartClaxon();
SelfDestruct();
}
private void OpenAccessGates()
{
if (worker != null)
{
delayedOpenAccessGates = true;
worker.CancelAsync();
return;
}
if (!rocketOnPad)
DisengageAllGateLatches();
}
private void DrainRocket()
{
if (worker != null)
{
delayedDrainRocket = true;
worker.CancelAsync();
return;
}
if (rocketOnPad)
OpenFuelValves();
}
Now I could write my code like that, but I'm just not gonna. I don't care, I'm just not.
You can check into the RunWorkerCompletedEventArgs in the RunWorkerCompletedEventHandler to see what the status was. Success, canceled or an error.
private void RunWorkerCompletedEventHandler(sender object, RunWorkerCompletedEventArgs e)
{
if(e.Cancelled)
{
Console.WriteLine("The worker was cancelled.");
}
}
Update: To see if your worker has called .CancelAsync() by using this:
if (_worker.CancellationPending)
{
Console.WriteLine("Cancellation is pending, no need to call CancelAsync again");
}
You don't wait for the background worker to complete. That pretty much defeats the purpose of launching a separate thread. Instead, you should let your method finish, and move any code that depends on completion to a different place. You let the worker tell you when it's done and call any remaining code then.
If you want to wait for something to complete use a different threading construct that provides a WaitHandle.
Why can't you just tie into the BackgroundWorker.RunWorkerCompleted Event. It's a callback that will "Occur when the background operation has completed, has been canceled, or has raised an exception."
I don't understand why you'd want to wait for a BackgroundWorker to complete; it really seems like the exact opposite of the motivation for the class.
However, you could start every method with a call to worker.IsBusy and have them exit if it is running.
Hm maybe I am not getting your question right.
The backgroundworker calls the WorkerCompleted event once his 'workermethod' (the method/function/sub that handles the backgroundworker.doWork-event) is finished so there is no need for checking if the BW is still running.
If you want to stop your worker check the cancellation pending property inside your 'worker method'.
The workflow of a BackgroundWorker object basically requires you to handle the RunWorkerCompleted event for both normal execution and user cancellation use cases. This is why the property RunWorkerCompletedEventArgs.Cancelled exists. Basically, doing this properly requires that you consider your Cancel method to be an asynchronous method in itself.
Here's an example:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.ComponentModel;
namespace WindowsFormsApplication1
{
public class AsyncForm : Form
{
private Button _startButton;
private Label _statusLabel;
private Button _stopButton;
private MyWorker _worker;
public AsyncForm()
{
var layoutPanel = new TableLayoutPanel();
layoutPanel.Dock = DockStyle.Fill;
layoutPanel.ColumnStyles.Add(new ColumnStyle());
layoutPanel.ColumnStyles.Add(new ColumnStyle());
layoutPanel.RowStyles.Add(new RowStyle(SizeType.AutoSize));
layoutPanel.RowStyles.Add(new RowStyle(SizeType.Percent, 100));
_statusLabel = new Label();
_statusLabel.Text = "Idle.";
layoutPanel.Controls.Add(_statusLabel, 0, 0);
_startButton = new Button();
_startButton.Text = "Start";
_startButton.Click += HandleStartButton;
layoutPanel.Controls.Add(_startButton, 0, 1);
_stopButton = new Button();
_stopButton.Enabled = false;
_stopButton.Text = "Stop";
_stopButton.Click += HandleStopButton;
layoutPanel.Controls.Add(_stopButton, 1, 1);
this.Controls.Add(layoutPanel);
}
private void HandleStartButton(object sender, EventArgs e)
{
_stopButton.Enabled = true;
_startButton.Enabled = false;
_worker = new MyWorker() { WorkerSupportsCancellation = true };
_worker.RunWorkerCompleted += HandleWorkerCompleted;
_worker.RunWorkerAsync();
_statusLabel.Text = "Running...";
}
private void HandleStopButton(object sender, EventArgs e)
{
_worker.CancelAsync();
_statusLabel.Text = "Cancelling...";
}
private void HandleWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (e.Cancelled)
{
_statusLabel.Text = "Cancelled!";
}
else
{
_statusLabel.Text = "Completed.";
}
_stopButton.Enabled = false;
_startButton.Enabled = true;
}
}
public class MyWorker : BackgroundWorker
{
protected override void OnDoWork(DoWorkEventArgs e)
{
base.OnDoWork(e);
for (int i = 0; i < 10; i++)
{
System.Threading.Thread.Sleep(500);
if (this.CancellationPending)
{
e.Cancel = true;
e.Result = false;
return;
}
}
e.Result = true;
}
}
}
If you really really don't want your method to exit, I'd suggest putting a flag like an AutoResetEvent on a derived BackgroundWorker, then override OnRunWorkerCompleted to set the flag. It's still kind of kludgy though; I'd recommend treating the cancel event like an asynchronous method and do whatever it's currently doing in the RunWorkerCompleted handler.
I'm a little late to the party here (about 4 years) but what about setting up an asynchronous thread that can handle a busy loop without locking the UI, then have the callback from that thread be the confirmation that the BackgroundWorker has finished cancelling?
Something like this:
class Test : Form
{
private BackgroundWorker MyWorker = new BackgroundWorker();
public Test() {
MyWorker.DoWork += new DoWorkEventHandler(MyWorker_DoWork);
}
void MyWorker_DoWork(object sender, DoWorkEventArgs e) {
for (int i = 0; i < 100; i++) {
//Do stuff here
System.Threading.Thread.Sleep((new Random()).Next(0, 1000)); //WARN: Artificial latency here
if (MyWorker.CancellationPending) { return; } //Bail out if MyWorker is cancelled
}
}
public void CancelWorker() {
if (MyWorker != null && MyWorker.IsBusy) {
MyWorker.CancelAsync();
System.Threading.ThreadStart WaitThread = new System.Threading.ThreadStart(delegate() {
while (MyWorker.IsBusy) {
System.Threading.Thread.Sleep(100);
}
});
WaitThread.BeginInvoke(a => {
Invoke((MethodInvoker)delegate() { //Invoke your StuffAfterCancellation call back onto the UI thread
StuffAfterCancellation();
});
}, null);
} else {
StuffAfterCancellation();
}
}
private void StuffAfterCancellation() {
//Things to do after MyWorker is cancelled
}
}
In essence what this does is fire off another thread to run in the background that just waits in it's busy loop to see if the MyWorker has completed. Once MyWorker has finished cancelling the thread will exit and we can use it's AsyncCallback to execute whatever method we need to follow the successful cancellation - it'll work like a psuedo-event. Since this is separate from the UI thread it will not lock the UI while we wait for MyWorker to finish cancelling. If your intention really is to lock and wait for the cancel then this is useless to you, but if you just want to wait so you can start another process then this works nicely.
I know this is really late (5 years) but what you are looking for is to use a Thread and a SynchronizationContext. You are going to have to marshal UI calls back to the UI thread "by hand" rather than let the Framework do it auto-magically.
This allows you to use a Thread that you can Wait for if needs be.
Imports System.Net
Imports System.IO
Imports System.Text
Public Class Form1
Dim f As New Windows.Forms.Form
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
BackgroundWorker1.WorkerReportsProgress = True
BackgroundWorker1.RunWorkerAsync()
Dim l As New Label
l.Text = "Please Wait"
f.Controls.Add(l)
l.Dock = DockStyle.Fill
f.StartPosition = FormStartPosition.CenterScreen
f.FormBorderStyle = Windows.Forms.FormBorderStyle.None
While BackgroundWorker1.IsBusy
f.ShowDialog()
End While
End Sub
Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, ByVal e As System.ComponentModel.DoWorkEventArgs) Handles BackgroundWorker1.DoWork
Dim i As Integer
For i = 1 To 5
Threading.Thread.Sleep(5000)
BackgroundWorker1.ReportProgress((i / 5) * 100)
Next
End Sub
Private Sub BackgroundWorker1_ProgressChanged(ByVal sender As Object, ByVal e As System.ComponentModel.ProgressChangedEventArgs) Handles BackgroundWorker1.ProgressChanged
Me.Text = e.ProgressPercentage
End Sub
Private Sub BackgroundWorker1_RunWorkerCompleted(ByVal sender As Object, ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) Handles BackgroundWorker1.RunWorkerCompleted
f.Close()
End Sub
End Class
Fredrik Kalseth's solution to this problem is the best I've found so far. Other solutions use Application.DoEvent() that can cause problems or simply don't work. Let me cast his solution into a reusable class. Since BackgroundWorker is not sealed, we can derive our class from it:
public class BackgroundWorkerEx : BackgroundWorker
{
private AutoResetEvent _resetEvent = new AutoResetEvent(false);
private bool _resetting, _started;
private object _lockObject = new object();
public void CancelSync()
{
bool doReset = false;
lock (_lockObject) {
if (_started && !_resetting) {
_resetting = true;
doReset = true;
}
}
if (doReset) {
CancelAsync();
_resetEvent.WaitOne();
lock (_lockObject) {
_started = false;
_resetting = false;
}
}
}
protected override void OnDoWork(DoWorkEventArgs e)
{
lock (_lockObject) {
_resetting = false;
_started = true;
_resetEvent.Reset();
}
try {
base.OnDoWork(e);
} finally {
_resetEvent.Set();
}
}
}
With flags and proper locking, we make sure that _resetEvent.WaitOne() really gets only called if some work has been started, otherwise _resetEvent.Set(); might never been called!
The try-finally ensures that _resetEvent.Set(); will be called, even if an exception should occur in our DoWork-handler. Otherwise the application could freeze forever when calling CancelSync!
We would use it like this:
BackgroundWorkerEx _worker;
void StartWork()
{
StopWork();
_worker = new BackgroundWorkerEx {
WorkerSupportsCancellation = true,
WorkerReportsProgress = true
};
_worker.DoWork += Worker_DoWork;
_worker.ProgressChanged += Worker_ProgressChanged;
}
void StopWork()
{
if (_worker != null) {
_worker.CancelSync(); // Use our new method.
}
}
private void Worker_DoWork(object sender, DoWorkEventArgs e)
{
for (int i = 1; i <= 20; i++) {
if (worker.CancellationPending) {
e.Cancel = true;
break;
} else {
// Simulate a time consuming operation.
System.Threading.Thread.Sleep(500);
worker.ReportProgress(5 * i);
}
}
}
private void Worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
progressLabel.Text = e.ProgressPercentage.ToString() + "%";
}
You can also add a handler to the RunWorkerCompleted event as shown here:
BackgroundWorker Class (Microsoft documentation).
Just wanna say I came here because I need a background worker to wait while I was running an async process while in a loop, my fix was way easier than all this other stuff^^
foreach(DataRow rw in dt.Rows)
{
//loop code
while(!backgroundWorker1.IsBusy)
{
backgroundWorker1.RunWorkerAsync();
}
}
Just figured I'd share because this is where I ended up while searching for a solution. Also, this is my first post on stack overflow so if its bad or anything I'd love critics! :)
Closing the form closes my open logfile. My background worker writes that logfile, so I can't let MainWin_FormClosing() finish until my background worker terminates. If I don't wait for my background worker to terminate, exceptions happen.
Why is this so hard?
A simple Thread.Sleep(1500) works, but it delays shutdown (if too long), or causes exceptions (if too short).
To shut down right after the background worker terminates, just use a variable. This is working for me:
private volatile bool bwRunning = false;
...
private void MainWin_FormClosing(Object sender, FormClosingEventArgs e)
{
... // Clean house as-needed.
bwInstance.CancelAsync(); // Flag background worker to stop.
while (bwRunning)
Thread.Sleep(100); // Wait for background worker to stop.
} // (The form really gets closed now.)
...
private void bwBody(object sender, DoWorkEventArgs e)
{
bwRunning = true;
BackgroundWorker bw = sender as BackgroundWorker;
... // Set up (open logfile, etc.)
for (; ; ) // infinite loop
{
...
if (bw.CancellationPending) break;
...
}
... // Tear down (close logfile, etc.)
bwRunning = false;
} // (bwInstance dies now.)
You can piggy back off of the RunWorkerCompleted event. Even if you've already added an event handler for _worker, you can add another an they will execute in the order in which they were added.
public class DoesStuff
{
BackgroundWorker _worker = new BackgroundWorker();
...
public void CancelDoingStuff()
{
_worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler((sender, e) =>
{
// do whatever you want to do when the cancel completes in here!
});
_worker.CancelAsync();
}
}
this could be useful if you have multiple reasons why a cancel may occur, making the logic of a single RunWorkerCompleted handler more complicated than you want. For instance, cancelling when a user tries to close the form:
void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
if (_worker != null)
{
_worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler((sender, e) => this.Close());
_worker.CancelAsync();
e.Cancel = true;
}
}
I use async method and await to wait for the worker finishing its job:
public async Task StopAsync()
{
_worker.CancelAsync();
while (_isBusy)
await Task.Delay(1);
}
and in DoWork method:
public async Task DoWork()
{
_isBusy = true;
while (!_worker.CancellationPending)
{
// Do something.
}
_isBusy = false;
}
You may also encapsulate the while loop in DoWork with try ... catch to set _isBusy is false on exception. Or, simply check _worker.IsBusy in the StopAsync while loop.
Here is an example of full implementation:
class MyBackgroundWorker
{
private BackgroundWorker _worker;
private bool _isBusy;
public void Start()
{
if (_isBusy)
throw new InvalidOperationException("Cannot start as a background worker is already running.");
InitialiseWorker();
_worker.RunWorkerAsync();
}
public async Task StopAsync()
{
if (!_isBusy)
throw new InvalidOperationException("Cannot stop as there is no running background worker.");
_worker.CancelAsync();
while (_isBusy)
await Task.Delay(1);
_worker.Dispose();
}
private void InitialiseWorker()
{
_worker = new BackgroundWorker
{
WorkerSupportsCancellation = true
};
_worker.DoWork += WorkerDoWork;
}
private void WorkerDoWork(object sender, DoWorkEventArgs e)
{
_isBusy = true;
try
{
while (!_worker.CancellationPending)
{
// Do something.
}
}
catch
{
_isBusy = false;
throw;
}
_isBusy = false;
}
}
To stop the worker and wait for it runs to the end:
await myBackgroundWorker.StopAsync();
The problems with this method are:
You have to use async methods all the way.
await Task.Delay is inaccurate. On my PC, Task.Delay(1) actually waits ~20ms.
oh man, some of these have gotten ridiculously complex. all you need to do is check the BackgroundWorker.CancellationPending property inside the DoWork handler. you can check it at any time. once it's pending, set e.Cancel = True and bail from the method.
// method here
private void Worker_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker bw = (sender as BackgroundWorker);
// do stuff
if(bw.CancellationPending)
{
e.Cancel = True;
return;
}
// do other stuff
}

Categories

Resources