Why am I getting an out of memory exception?
So this dies in C# on the first time through:
splitBitmaps.Add(neededImage.Clone(rectDimensions, neededImage.PixelFormat));
Where splitBitmaps is a List<BitMap> BUT this works in VB for at least 4 iterations:
arlSplitBitmaps.Add(Image.Clone(rectDimensions, Image.PixelFormat))
Where arlSplitBitmaps is a simple array list. (And yes I've tried arraylist in c#)
This is the fullsection:
for (Int32 splitIndex = 0; splitIndex <= numberOfResultingImages - 1; splitIndex++)
{
Rectangle rectDimensions;
if (splitIndex < numberOfResultingImages - 1)
{
rectDimensions = new Rectangle(splitImageWidth * splitIndex, 0,
splitImageWidth, splitImageHeight);
}
else
{
rectDimensions = new Rectangle(splitImageWidth * splitIndex, 0,
sourceImageWidth - (splitImageWidth * splitIndex), splitImageHeight);
}
splitBitmaps.Add(neededImage.Clone(rectDimensions, neededImage.PixelFormat));
}
neededImage is a Bitmap by the way.
I can't find any useful answers on the intarweb, especially not why it works just fine in VB.
Update:
I actually found a reason (sort of) for this working but forgot to post it. It has to do with converting the image to a bitmap instead of just trying to clone the raw image if I remember.
Clone() may also throw an Out of memory exception when the coordinates specified in the Rectangle are outside the bounds of the bitmap. It will not clip them automatically for you.
I found that I was using Image.Clone to crop a bitmap and the width took the crop outside the bounds of the original image. This causes an Out of Memory error. Seems a bit strange but can beworth knowing.
I got this too when I tried to use the Clone() method to change the pixel format of a bitmap. If memory serves, I was trying to convert a 24 bpp bitmap to an 8 bit indexed format, naively hoping that the Bitmap class would magically handle the palette creation and so on. Obviously not :-/
This is a reach, but I've often found that if pulling images directly from disk that it's better to copy them to a new bitmap and dispose of the disk-bound image. I've seen great improvement in memory consumption when doing so.
Dave M. is on the money too... make sure to dispose when finished.
I struggled to figure this out recently - the answers above are correct. Key to solving this issue is to ensure the rectangle is actually within the boundaries of the image. See example of how I solved this.
In a nutshell, checked to if the area that was being cloned was outside the area of the image.
int totalWidth = rect.Left + rect.Width; //think -the same as Right property
int allowableWidth = localImage.Width - rect.Left;
int finalWidth = 0;
if (totalWidth > allowableWidth){
finalWidth = allowableWidth;
} else {
finalWidth = totalWidth;
}
rect.Width = finalWidth;
int totalHeight = rect.Top + rect.Height; //think same as Bottom property
int allowableHeight = localImage.Height - rect.Top;
int finalHeight = 0;
if (totalHeight > allowableHeight){
finalHeight = allowableHeight;
} else {
finalHeight = totalHeight;
}
rect.Height = finalHeight;
cropped = ((Bitmap)localImage).Clone(rect, System.Drawing.Imaging.PixelFormat.DontCare);
Make sure that you're calling .Dispose() properly on your images, otherwise unmanaged resources won't be freed up. I wonder how many images are you actually creating here -- hundreds? Thousands?
Related
this may be an amateur question but I'm still stuck...
I have a background bitmap image, and then need to super-impose a few smaller bitmaps (mostly qr codes). Things work for the 1st insert, and then it breaks. It compiles OK, but it fails on the new Bitmap line with a Exception Unhandled message System.ArgumentException: 'Parameter is not valid.'
The code is something like
Bitmap Background_bmp= new Bitmap(File_name);
Graphics Background_gfx = Graphics.FromImage(Background_bmp);
for (i=1;i<=4;i++)
{
Bitmap Insert_image = new Bitmap(File_name[i]);
Print_doc_gfx.DrawImage(Insert_image, blablabla (scaling and positioning);
Insert_image.Dispose();
}
Background_bmp.Save("C:\\Total image.bmp");
Background_gfx.Dispose();
Background_bmp.Dispose();
Simple enough, and yet it doesn't work. I'm pretty sure the breakage is over the repeated "new" in the "new Bitmap" piece, but I don't know how to declare once and use many times when it comes to bitmaps... Like I said, amateur question...
The parts you posted from your code do not appear to be causing the problem. It's most likely caused by other parts of the code, such as the coordinates of the image insertion or something totally different.
I tested using the following code with one large image and 4 small images and it worked without problems:
string File_name = "background.png";
string[] File_names = new string[] { "img1.png", "img2.png", "img3.png", "img4.png" };
Bitmap Background_bmp = new Bitmap(File_name);
// can also use empty all-black image like the following line:
// Bitmap Background_bmp = new Bitmap(800, 600, System.Drawing.Imaging.PixelFormat.Format24bppRgb);
Graphics Background_gfx = Graphics.FromImage(Background_bmp);
for (int i = 1; i <= File_names.Length; i++)
{
Bitmap Insert_image = new Bitmap(File_names[i - 1]);
Background_gfx.DrawImage(Insert_image, i * 150, i * 100);
Insert_image.Dispose();
}
Background_gfx.Dispose();
Background_bmp.Save("Total_image.png", System.Drawing.Imaging.ImageFormat.Png);
Background_bmp.Dispose();
I am porting an application from C# (WinForms) to C++ and noticed that drawing an image using GDI+ is much slower in C++, even though it uses the same API.
The image is loaded at application startup into a System.Drawing.Image or Gdiplus::Image, respectively.
The C# drawing code is (directly in the main form):
public Form1()
{
this.SetStyle(ControlStyles.UserPaint | ControlStyles.AllPaintingInWmPaint | ControlStyles.OptimizedDoubleBuffer, true);
this.image = Image.FromFile(...);
}
private readonly Image image;
protected override void OnPaint(PaintEventArgs e)
{
base.OnPaint(e);
var sw = Stopwatch.StartNew();
e.Graphics.TranslateTransform(this.translation.X, this.translation.Y); /* NOTE0 */
e.Graphics.DrawImage(this.image, 0, 0, this.image.Width, this.image.Height);
Debug.WriteLine(sw.Elapsed.TotalMilliseconds.ToString()); // ~3ms
}
Regarding SetStyle: AFAIK, these flags (1) make WndProc ignore WM_ERASEBKGND, and (2) allocate a temporary HDC and Graphics for double buffered drawing.
The C++ drawing code is more bloated.
I have browsed the reference source of System.Windows.Forms.Control to see how it handles HDC and how it implements double buffering.
As far as I can tell, my implementation matches that closely (see NOTE1) (note that I implemented it in C++ first and then looked at how it's in the .NET source -- I may have overlooked things).
The rest of the program is more or less what you get when you create a fresh Win32 project in VS2019. All error handling omitted for readability.
// In wWinMain:
Gdiplus::GdiplusStartupInput gdiplusStartupInput;
Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);
gdip_bitmap = Gdiplus::Image::FromFile(...);
// In the WndProc callback:
case WM_PAINT:
// Need this for the back buffer bitmap
RECT client_rect;
GetClientRect(hWnd, &client_rect);
int client_width = client_rect.right - client_rect.left;
int client_height = client_rect.bottom - client_rect.top;
// Double buffering
HDC hdc0 = BeginPaint(hWnd, &ps);
HDC hdc = CreateCompatibleDC(hdc0);
HBITMAP back_buffer = CreateCompatibleBitmap(hdc0, client_width, client_height); /* NOTE1 */
HBITMAP dummy_buffer = (HBITMAP)SelectObject(hdc, back_buffer);
// Create GDI+ stuff on top of HDC
Gdiplus::Graphics *graphics = Gdiplus::Graphics::FromHDC(hdc);
QueryPerformanceCounter(...);
graphics->DrawImage(gdip_bitmap, 0, 0, bitmap_width, bitmap_height);
/* print performance counter diff */ // -> ~27 ms typically
delete graphics;
// Double buffering
BitBlt(hdc0, 0, 0, client_width, client_height, hdc, 0, 0, SRCCOPY);
SelectObject(hdc, dummy_buffer);
DeleteObject(back_buffer);
DeleteDC(hdc); // This is the temporary double buffer HDC
EndPaint(hWnd, &ps);
/* NOTE1 */: In the .NET source code they don't use CreateCompatibleBitmap, but CreateDIBSection instead.
That improves performance from 27 ms to 21 ms and is very cumbersome (see below).
In both cases I am calling Control.Invalidate or InvalidateRect, respectively, when the mouse moves (OnMouseMove, WM_MOUSEMOVE). The goal is to implement panning with the mouse using SetTransform - that's irrelevant for now as long as draw performance is bad.
NOTE2: https://stackoverflow.com/a/1617930/653473
This answer suggests that using Gdiplus::CachedBitmap is the trick. However, I can find no evidence in the C# WinForms source code that it makes use of cached bitmaps in any way - the C# code uses GdipDrawImageRectI which maps to GdipDrawImageRectI, which maps to Graphics::DrawImage(IN Image* image, IN INT x, IN INT y, IN INT width, IN INT height).
Regarding /* NOTE1 */, here is the replacement for CreateCompatibleBitmap (just substitute CreateVeryCompatibleBitmap):
bool bFillBitmapInfo(HDC hdc, BITMAPINFO *pbmi)
{
HBITMAP hbm = NULL;
bool bRet = false;
// Create a dummy bitmap from which we can query color format info about the device surface.
hbm = CreateCompatibleBitmap(hdc, 1, 1);
pbmi->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
// Call first time to fill in BITMAPINFO header.
GetDIBits(hdc, hbm, 0, 0, NULL, pbmi, DIB_RGB_COLORS);
if ( pbmi->bmiHeader.biBitCount <= 8 ) {
// UNSUPPORTED
} else {
if ( pbmi->bmiHeader.biCompression == BI_BITFIELDS ) {
// Call a second time to get the color masks.
// It's a GetDIBits Win32 "feature".
GetDIBits(hdc, hbm, 0, pbmi->bmiHeader.biHeight, NULL, pbmi, DIB_RGB_COLORS);
}
bRet = true;
}
if (hbm != NULL) {
DeleteObject(hbm);
hbm = NULL;
}
return bRet;
}
HBITMAP CreateVeryCompatibleBitmap(HDC hdc, int width, int height)
{
BITMAPINFO *pbmi = (BITMAPINFO *)LocalAlloc(LMEM_ZEROINIT, 4096); // Because otherwise I would have to figure out the actual size of the color table at the end; whatever...
bFillBitmapInfo(hdc, pbmi);
pbmi->bmiHeader.biWidth = width;
pbmi->bmiHeader.biHeight = height;
if (pbmi->bmiHeader.biCompression == BI_RGB) {
pbmi->bmiHeader.biSizeImage = 0;
} else {
if ( pbmi->bmiHeader.biBitCount == 16 )
pbmi->bmiHeader.biSizeImage = width * height * 2;
else if ( pbmi->bmiHeader.biBitCount == 32 )
pbmi->bmiHeader.biSizeImage = width * height * 4;
else
pbmi->bmiHeader.biSizeImage = 0;
}
pbmi->bmiHeader.biClrUsed = 0;
pbmi->bmiHeader.biClrImportant = 0;
void *dummy;
HBITMAP back_buffer = CreateDIBSection(hdc, pbmi, DIB_RGB_COLORS, &dummy, NULL, 0);
LocalFree(pbmi);
return back_buffer;
}
Using a very compatible bitmap as the back buffer improves performance from 27 ms to 21 ms.
Regarding /* NOTE0 */ in the C# code -- the code is only fast if the transformation matrix doesn't scale. C# performance drops slightly when upscaling (~9ms), and drops significantly (~22ms) when downsampling.
This hints to: DrawImage probably wants to BitBlt if possible. But it can't in my C++ case because the Bitmap format (that was loaded from disk) is different from the back buffer format or something.
If I create a new more compatible bitmap (this time no clear difference between CreateCompatibleBitmap and CreateVeryCompatibleBitmap), and then draw the original bitmap onto that, and then only use the more compatible bitmap in the DrawImage call, then performance increases to about 4.5 ms. It also has the same performance characteristics when scaling now as the C# code.
if (better_bitmap == NULL)
{
HBITMAP tmp_bitmap = CreateVeryCompatibleBitmap(hdc0, gdip_bitmap->GetWidth(), gdip_bitmap->GetHeight());
HDC copy_hdc = CreateCompatibleDC(hdc0);
HGDIOBJ old = SelectObject(copy_hdc, tmp_bitmap);
Gdiplus::Graphics *copy_graphics = Gdiplus::Graphics::FromHDC(copy_hdc);
copy_graphics->DrawImage(gdip_bitmap, 0, 0, gdip_bitmap->GetWidth(), gdip_bitmap->GetHeight());
// Now tmp_bitmap contains the image, hopefully in the device's preferred format
delete copy_graphics;
SelectObject(copy_hdc, old);
DeleteDC(copy_hdc);
better_bitmap = Gdiplus::Bitmap::FromHBITMAP(tmp_bitmap, NULL);
}
BUT it's still consistently slower, there must be something missing still. And it raises a new question: Why is this not necessary in C# (same image and same machine)? Image.FromFile does not convert the bitmap format on loading as far as I can tell.
Why is the DrawImage call in the C++ code still slower, and what do I need to do to make it as fast as in C#?
I ended up replicating more of the .NET code insanity.
The magic call that makes it go fast is GdipImageForceValidation in System.Drawing.Image.FromFile. This function is basically not documented at all, and it is not even [officially] callable from C++. It is merely mentioned here: https://learn.microsoft.com/en-us/windows/win32/gdiplus/-gdiplus-image-flat
Gdiplus::Image::FromFile and GdipLoadImageFromFile don't actually load the full image into memory. It effectively gets copied from the disk every time it is being drawn. GdipImageForceValidation forces the image to be loaded into memory, or so it seems...
My initial idea of copying the image into a more compatible bitmap was on the right track, but the way I did it does not yield the best performance for GDI+ (because I used a GDI bitmap from the original HDC). Loading the image directly into a new GDI+ bitmap, regardless of pixel format, yields the same performance characteristics as seen in the C# implementation:
better_bitmap = new Gdiplus::Bitmap(gdip_bitmap->GetWidth(), gdip_bitmap->GetHeight(), PixelFormat24bppRGB);
Gdiplus::Graphics *graphics = Gdiplus::Graphics::FromImage(better_bitmap);
graphics->DrawImage(gdip_bitmap, 0, 0, gdip_bitmap->GetWidth(), gdip_bitmap->GetHeight());
delete graphics;
Even better yet, using PixelFormat32bppPARGB further improves performance substantially - the premultiplied alpha pays off when the image is repeatedly drawn (regardless of whether the source image has an alpha channel).
It seems calling GdipImageForceValidation effectively does something similar internally, although I don't know what it really does. Because Microsoft made it as impossible as they could to call the GDI+ flat API from C++ user code, I just modified Gdiplus::Image in my Windows SDK headers to include an appropriate method. Copying the bitmap explicitly to PARGB seems cleaner to me (and yields better performance).
Of course, after one finds out which undocumented function to use, google would also give some additional information: https://photosauce.net/blog/post/image-scaling-with-gdi-part-5-push-vs-pull-and-image-validation
GDI+ is not my favorite API.
thats how i wrote your beautiful code(some simple changes for me for easier understanding)
private void Form1_Load(object sender, EventArgs e)
{
prev = GetDesktopImage();//get a screenshot of the desktop;
cur = GetDesktopImage();//get a screenshot of the desktop;
var locked1 = cur.LockBits(new Rectangle(0, 0, cur.Width, cur.Height),
ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
var locked2 = prev.LockBits(new Rectangle(0, 0, prev.Width, prev.Height),
ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
ApplyXor(locked1, locked2);
compressionBuffer = new byte[1920* 1080 * 4];
// Compressed buffer -- where the data goes that we'll send.
int backbufSize = LZ4.LZ4Codec.MaximumOutputLength(this.compressionBuffer.Length) + 4;
backbuf = new CompressedCaptureScreen(backbufSize);
MessageBox.Show(compressionBuffer.Length.ToString());
int length = Compress();
MessageBox.Show(backbuf.Data.Length.ToString());//prints the new buffer size
}
the compression buffer length is for example 8294400
and the backbuff.Data.length is 8326947
I didn't like the compression suggestions, so here's what I would do.
You don't want to compress a video stream (so MPEG, AVI, etc are out of the question -- these don't have to be real-time) and you don't want to compress individual pictures (since that's just stupid).
Basically what you want to do is detect if things change and send the differences. You're on the right track with that; most video compressors do that. You also want a fast compression/decompression algorithm; especially if you go to more FPS that will become more relevant.
Differences. First off, eliminate all branches in your code, and make sure memory access is sequential (e.g. iterate x in the inner loop). The latter will give you cache locality. As for the differences, I'd probably use a 64-bit XOR; it's easy, branchless and fast.
If you want performance, it's probably better to do this in C++: The current C# implementation doesn't vectorize your code, and that will help you a great deal here.
Do something like this (I'm assuming 32bit pixel format):
for (int y=0; y<height; ++y) // change to PFor if you like
{
ulong* row1 = (ulong*)(image1BasePtr + image1Stride * y);
ulong* row2 = (ulong*)(image2BasePtr + image2Stride * y);
for (int x=0; x<width; x += 2)
row2[x] ^= row1[x];
}
Fast compression and decompression usually means simpler compression algorithms. https://code.google.com/p/lz4/ is such an algorithm, and there's a proper .NET port available for that as well. You might want to read on how it works too; there is a streaming feature in LZ4 and if you can make it handle 2 images instead of 1 that will probably give you a nice compression boost.
All in all, if you're trying to compress white noise, it simply won't work and your frame rate will drop. One way to solve this is to reduce the colors if you have too much 'randomness' in a frame. A measure for randomness is entropy, and there are several ways to get a measure of the entropy of a picture ( https://en.wikipedia.org/wiki/Entropy_(information_theory) ). I'd stick with a very simple one: check the size of the compressed picture -- if it's above a certain limit, reduce the number of bits; if below, increase the number of bits.
Note that increasing and decreasing bits is not done with shifting in this case; you don't need your bits to be removed, you simply need your compression to work better. It's probably just as good to use a simple 'AND' with a bitmask. For example, if you want to drop 2 bits, you can do it like this:
for (int y=0; y<height; ++y) // change to PFor if you like
{
ulong* row1 = (ulong*)(image1BasePtr + image1Stride * y);
ulong* row2 = (ulong*)(image2BasePtr + image2Stride * y);
ulong mask = 0xFFFCFCFCFFFCFCFC;
for (int x=0; x<width; x += 2)
row2[x] = (row2[x] ^ row1[x]) & mask;
}
PS: I'm not sure what I would do with the alpha component, I'll leave that up to your experimentation.
Good luck!
The long answer
I had some time to spare, so I just tested this approach. Here's some code to support it all.
This code normally run over 130 FPS with a nice constant memory pressure on my laptop, so the bottleneck shouldn't be here anymore. Note that you need LZ4 to get this working and that LZ4 is aimed at high speed, not high compression ratio's. A bit more on that later.
First we need something that we can use to hold all the data we're going to send. I'm not implementing the sockets stuff itself here (although that should be pretty simple using this as a start), I mainly focused on getting the data you need to send something over.
// The thing you send over a socket
public class CompressedCaptureScreen
{
public CompressedCaptureScreen(int size)
{
this.Data = new byte[size];
this.Size = 4;
}
public int Size;
public byte[] Data;
}
We also need a class that will hold all the magic:
public class CompressScreenCapture
{
Next, if I'm running high performance code, I make it a habit to preallocate all the buffers first. That'll save you time during the actual algorithmic stuff. 4 buffers of 1080p is about 33 MB, which is fine - so let's allocate that.
public CompressScreenCapture()
{
// Initialize with black screen; get bounds from screen.
this.screenBounds = Screen.PrimaryScreen.Bounds;
// Initialize 2 buffers - 1 for the current and 1 for the previous image
prev = new Bitmap(screenBounds.Width, screenBounds.Height, PixelFormat.Format32bppArgb);
cur = new Bitmap(screenBounds.Width, screenBounds.Height, PixelFormat.Format32bppArgb);
// Clear the 'prev' buffer - this is the initial state
using (Graphics g = Graphics.FromImage(prev))
{
g.Clear(Color.Black);
}
// Compression buffer -- we don't really need this but I'm lazy today.
compressionBuffer = new byte[screenBounds.Width * screenBounds.Height * 4];
// Compressed buffer -- where the data goes that we'll send.
int backbufSize = LZ4.LZ4Codec.MaximumOutputLength(this.compressionBuffer.Length) + 4;
backbuf = new CompressedCaptureScreen(backbufSize);
}
private Rectangle screenBounds;
private Bitmap prev;
private Bitmap cur;
private byte[] compressionBuffer;
private int backbufSize;
private CompressedCaptureScreen backbuf;
private int n = 0;
First thing to do is capture the screen. This is the easy part: simply fill the bitmap of the current screen:
private void Capture()
{
// Fill 'cur' with a screenshot
using (var gfxScreenshot = Graphics.FromImage(cur))
{
gfxScreenshot.CopyFromScreen(screenBounds.X, screenBounds.Y, 0, 0, screenBounds.Size, CopyPixelOperation.SourceCopy);
}
}
As I said, I don't want to compress 'raw' pixels. Instead, I'd much rather compress XOR masks of previous and the current image. Most of the times this will give you a whole lot of 0's, which is easy to compress:
private unsafe void ApplyXor(BitmapData previous, BitmapData current)
{
byte* prev0 = (byte*)previous.Scan0.ToPointer();
byte* cur0 = (byte*)current.Scan0.ToPointer();
int height = previous.Height;
int width = previous.Width;
int halfwidth = width / 2;
fixed (byte* target = this.compressionBuffer)
{
ulong* dst = (ulong*)target;
for (int y = 0; y < height; ++y)
{
ulong* prevRow = (ulong*)(prev0 + previous.Stride * y);
ulong* curRow = (ulong*)(cur0 + current.Stride * y);
for (int x = 0; x < halfwidth; ++x)
{
*(dst++) = curRow[x] ^ prevRow[x];
}
}
}
}
For the compression algorithm I simply pass the buffer to LZ4 and let it do its magic.
private int Compress()
{
// Grab the backbuf in an attempt to update it with new data
var backbuf = this.backbuf;
backbuf.Size = LZ4.LZ4Codec.Encode(
this.compressionBuffer, 0, this.compressionBuffer.Length,
backbuf.Data, 4, backbuf.Data.Length-4);
Buffer.BlockCopy(BitConverter.GetBytes(backbuf.Size), 0, backbuf.Data, 0, 4);
return backbuf.Size;
}
One thing to note here is that I make it a habit to put everything in my buffer that I need to send over the TCP/IP socket. I don't want to move data around if I can easily avoid it, so I'm simply putting everything that I need on the other side there.
As for the sockets itself, you can use a-sync TCP sockets here (I would), but if you do, you will need to add an extra buffer.
The only thing that remains is to glue everything together and put some statistics on the screen:
public void Iterate()
{
Stopwatch sw = Stopwatch.StartNew();
// Capture a screen:
Capture();
TimeSpan timeToCapture = sw.Elapsed;
// Lock both images:
var locked1 = cur.LockBits(new Rectangle(0, 0, cur.Width, cur.Height),
ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
var locked2 = prev.LockBits(new Rectangle(0, 0, prev.Width, prev.Height),
ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
try
{
// Xor screen:
ApplyXor(locked2, locked1);
TimeSpan timeToXor = sw.Elapsed;
// Compress screen:
int length = Compress();
TimeSpan timeToCompress = sw.Elapsed;
if ((++n) % 50 == 0)
{
Console.Write("Iteration: {0:0.00}s, {1:0.00}s, {2:0.00}s " +
"{3} Kb => {4:0.0} FPS \r",
timeToCapture.TotalSeconds, timeToXor.TotalSeconds,
timeToCompress.TotalSeconds, length / 1024,
1.0 / sw.Elapsed.TotalSeconds);
}
// Swap buffers:
var tmp = cur;
cur = prev;
prev = tmp;
}
finally
{
cur.UnlockBits(locked1);
prev.UnlockBits(locked2);
}
}
Note that I reduce Console output to ensure that's not the bottleneck. :-)
Simple improvements
It's a bit wasteful to compress all those 0's, right? It's pretty easy to track the min and max y position that has data using a simple boolean.
ulong tmp = curRow[x] ^ prevRow[x];
*(dst++) = tmp;
hasdata |= tmp != 0;
You also probably don't want to call Compress if you don't have to.
After adding this feature you'll get something like this on your screen:
Iteration: 0.00s, 0.01s, 0.01s 1 Kb => 152.0 FPS
Using another compression algorithm might also help. I stuck to LZ4 because it's simple to use, it's blazing fast and compresses pretty well -- still, there are other options that might work better. See http://fastcompression.blogspot.nl/ for a comparison.
If you have a bad connection or if you're streaming video over a remote connection, all this won't work. Best to reduce the pixel values here. That's quite simple: apply a simple 64-bit mask during the xor to both the previous and current picture... You can also try using indexed colors - anyhow, there's a ton of different things you can try here; I just kept it simple because that's probably good enough.
You can also use Parallel.For for the xor loop; personally I didn't really care about that.
A bit more challenging
If you have 1 server that is serving multiple clients, things will get a bit more challenging, as they will refresh at different rates. We want the fastest refreshing client to determine the server speed - not slowest. :-)
To implement this, the relation between the prev and cur has to change. If we simply 'xor' away like here, we'll end up with a completely garbled picture at the slower clients.
To solve that, we don't want to swap prev anymore, as it should hold key frames (that you'll refresh when the compressed data becomes too big) and cur will hold incremental data from the 'xor' results. This means you can basically grab an arbitrary 'xor'red frame and send it over the line - as long as the prev bitmap is recent.
H264 or Equaivalent Codec Streaming
There are various compressed streaming available which does almost everything that you can do to optimize screen sharing over network. There are many open source and commercial libraries to stream.
Screen transfer in Blocks
H264 already does this, but if you want to do it yourself, you have to divide your screens into smaller blocks of 100x100 pixels, and compare these blocks with previous version and send these blocks over network.
Window Render Information
Microsoft RDP does lot better, it does not send screen as a raster image, instead it analyzes screen and creates screen blocks based on the windows on the screen. It then analyzes contents of screen and sends image only if needed, if it is a text box with some text in it, RDP sends information to render text box with a text with font information and other information. So instead of sending image, it sends information on what to render.
You can combine all techniques and make a mixed protocol to send screen blocks with image and other rendering information.
Instead of handling data as an array of bytes, you can handle it as an array of integers.
int* p = (int*)((byte*)scan0.ToPointer() + y * stride);
int* p2 = (int*)((byte*)scan02.ToPointer() + y * stride2);
for (int x = 0; x < nWidth; x++)
{
//always get the complete pixel when differences are found
if (*p2 != 0)
*p = *p2
++p;
++p2;
}
Consider the following code running in a windows service.
Graphics g = Graphics.FromImage(printImage);
for (int rows = 1; rows <= thumbRows; rows++) {
for (int cols = 1; cols <= thumbColumns; cols++) {
using (Image thumbImage = new Bitmap(resourceQueue.Peek()))
{
g.DrawImage(thumbImage, targetRect, sourceRect, GraphicsUnit.Pixel);
resourceQueue.Dequeue();
if (resourceQueue.Count == 0) break;
}
}
}
The code draws a list of images after making them smaller onto another image.
It works fine most of the time but sometimes an exception is thrown in the middle of the loop on the Image thumbImage = new Bitmap. The exception is "A generic error occurred in GDI+". It always happens after the 13th image is created no matter what images are used.
After googling it seems that this a common problem when saving files but the difference here is that no file is saved. An image is drawn on a Graphics object.
Does anyone know how to fix this?
Most likely the stream used to create the Bitmap (if that is what it is) is closed. They have to stay open for the life of the Bitmap. You can copy the stream into a new MemoryStream, then close the original.
I'm creating an application (Windows Form) that allows the user to take a screenshot based on the locations they choose (drag to select area). I wanted to add a little "preview pane" thats zoomed in so the user can select the area they want more precisely (larger pixels). On a mousemove event i have a the following code...
private void falseDesktop_MouseMove(object sender, MouseEventArgs e)
{
zoomBox.Image = showZoomBox(e.Location);
zoomBox.Invalidate();
bmpCrop.Dispose();
}
private Image showZoomBox(Point curLocation)
{
Point start = new Point(curLocation.X - 50, curLocation.Y - 50);
Size size = new Size(100, 90);
Rectangle rect = new Rectangle(start, size);
Image selection = cropImage(falseDesktop.Image, rect);
return selection;
}
private static Bitmap bmpCrop;
private static Image cropImage(Image img, Rectangle cropArea)
{
if (cropArea.Width != 0 && cropArea.Height != 0)
{
Bitmap bmpImage = new Bitmap(img);
bmpCrop = bmpImage.Clone(cropArea, bmpImage.PixelFormat);
bmpImage.Dispose();
return (Image)(bmpCrop);
}
return null;
}
The line that fails and has the Out of Memory exception is:
bmpCrop = bmpImage.Clone(cropArea, bmpImage.PixelFormat);
Basically what this does is it takes a 100x90 rectangle around the mouse pointer and pulls that into the zoomBox, which is a picturebox control. However, in the process, i get an Out Of Memory error. What is it that i am doing incorrectly here?
Thanks for your assistance.
Out of memory in C# imaging, is usually sign of wrong rect or point - a bit of red herring. I bet start has negative X or Y when error happens or the Size.Hight + Y or Size.Width + X is bigger than Hight or width of the image.
MSDN explains that an OutOfMemoryException means
rect is outside of the source bitmap bounds
where rect is the first parameter to the Bitmap.Clone method.
So check that the cropArea parameter is not larger than your image.
In GDI+ an OutOfMemoryException does not really mean "out of memory"; the GDI+ error code OufOfMemory has been overloaded to mean different things. The reasons for this are historic and a well described by Hans Passant in another answer.
Use the Bitmap object like this:
using (Bitmap bmpImage = new Bitmap(img))
{
// Do something with the Bitmap object
}
you should check if curLocation.X is larger than 50, otherwise your rectangle will start in the negative area (and of course curLocation.Y)
If the zoom box goes off the edge of the desktop area, then when you try to crop, you are asking the system to make a new image that includes pixels outside of the video memory area. Make sure to limit your zoom box so that none of its extents is less than 0 or greater than the screen edges.
If you are creating new bitmaps over and over, you might need to call GC.Collect(); which will force C# to garbage collect