I was working on a certain problem and found some interesting problem inside.
Let me explain with an example (C# code)
public class A: IA
{
protected abstract void Append(LoggingEvent loggingEvent)
{
//Some definition
}
}
public class B: A
{
protected override void Append(LoggingEvent loggingEvent)
{
//override definition
}
}
public class MyClass: B
{
//Here I want to change the definition of Append method.
}
Class A and B are of a certain library and I don't have any control to change those classes.
Since none of the methods in the hierarchy here are sealed, you can just continue overriding the method yourself:
public class MyClass: B
{
protected override void Append(LoggingEvent loggingEvent)
{
// New logic goes here...
}
}
I have shared the solution below based as per my research, but made few following changes to the code you shared based on my perception, since the code in the question is not valid at few occasions.
Added an empty Interface IA, as Class A is not implementing any public method.
Defined Class A as abstract, as any non-abstract class cannot define a abstract method.
Removed the body for Append method inside Class A, as a abstract method cannot have a body.
public interface IA
{
}
public abstract class A : IA
{
protected abstract void Append();
}
public class B : A
{
protected override void Append()
{
//override definition
}
}
public class MyClass : B
{
//Here I want to change the definition of Append method.
//You can do is hide the method by creating a new method with the same name
public new void Append() { }
}
Answer : You cannot override a non-virtual method. The closest thing you can do is hide the method by creating a new method with the same name but this is not advisable as it breaks good design principles.
But even hiding a method won't give you execution time polymorphic dispatch of method calls like a true virtual method call would.
Related
// Cannot change source code
class Base
{
public virtual void Say()
{
Console.WriteLine("Called from Base.");
}
}
// Cannot change source code
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
class Program
{
static void Main(string[] args)
{
SpecialDerived sd = new SpecialDerived();
sd.Say();
}
}
The result is:
Called from Special Derived.
Called from Derived. /* this is not expected */
Called from Base.
How can I rewrite SpecialDerived class so that middle class "Derived"'s method is not called?
UPDATE:
The reason why I want to inherit from Derived instead of Base is Derived class contains a lot of other implementations. Since I can't do base.base.method() here, I guess the best way is to do the following?
// Cannot change source code
class Derived : Base
{
public override void Say()
{
CustomSay();
base.Say();
}
protected virtual void CustomSay()
{
Console.WriteLine("Called from Derived.");
}
}
class SpecialDerived : Derived
{
/*
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
*/
protected override void CustomSay()
{
Console.WriteLine("Called from Special Derived.");
}
}
Just want to add this here, since people still return to this question even after many time. Of course it's bad practice, but it's still possible (in principle) to do what author wants with:
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
var ptr = typeof(Base).GetMethod("Say").MethodHandle.GetFunctionPointer();
var baseSay = (Action)Activator.CreateInstance(typeof(Action), this, ptr);
baseSay();
}
}
This is a bad programming practice, and not allowed in C#. It's a bad programming practice because
The details of the grandbase are implementation details of the base; you shouldn't be relying on them. The base class is providing an abstraction overtop of the grandbase; you should be using that abstraction, not building a bypass to avoid it.
To illustrate a specific example of the previous point: if allowed, this pattern would be yet another way of making code susceptible to brittle-base-class failures. Suppose C derives from B which derives from A. Code in C uses base.base to call a method of A. Then the author of B realizes that they have put too much gear in class B, and a better approach is to make intermediate class B2 that derives from A, and B derives from B2. After that change, code in C is calling a method in B2, not in A, because C's author made an assumption that the implementation details of B, namely, that its direct base class is A, would never change. Many design decisions in C# are to mitigate the likelihood of various kinds of brittle base failures; the decision to make base.base illegal entirely prevents this particular flavour of that failure pattern.
You derived from your base because you like what it does and want to reuse and extend it. If you don't like what it does and want to work around it rather than work with it, then why did you derive from it in the first place? Derive from the grandbase yourself if that's the functionality you want to use and extend.
The base might require certain invariants for security or semantic consistency purposes that are maintained by the details of how the base uses the methods of the grandbase. Allowing a derived class of the base to skip the code that maintains those invariants could put the base into an inconsistent, corrupted state.
You can't from C#. From IL, this is actually supported. You can do a non-virt call to any of your parent classes... but please don't. :)
The answer (which I know is not what you're looking for) is:
class SpecialDerived : Base
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
The truth is, you only have direct interaction with the class you inherit from. Think of that class as a layer - providing as much or as little of it or its parent's functionality as it desires to its derived classes.
EDIT:
Your edit works, but I think I would use something like this:
class Derived : Base
{
protected bool _useBaseSay = false;
public override void Say()
{
if(this._useBaseSay)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Of course, in a real implementation, you might do something more like this for extensibility and maintainability:
class Derived : Base
{
protected enum Mode
{
Standard,
BaseFunctionality,
Verbose
//etc
}
protected Mode Mode
{
get; set;
}
public override void Say()
{
if(this.Mode == Mode.BaseFunctionality)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Then, derived classes can control their parents' state appropriately.
Why not simply cast the child class to a specific parent class and invoke the specific implementation then? This is a special case situation and a special case solution should be used. You will have to use the new keyword in the children methods though.
public class SuperBase
{
public string Speak() { return "Blah in SuperBase"; }
}
public class Base : SuperBase
{
public new string Speak() { return "Blah in Base"; }
}
public class Child : Base
{
public new string Speak() { return "Blah in Child"; }
}
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();
Child childObj = new Child();
Console.WriteLine(childObj.Speak());
// casting the child to parent first and then calling Speak()
Console.WriteLine((childObj as Base).Speak());
Console.WriteLine((childObj as SuperBase).Speak());
}
}
public class A
{
public int i = 0;
internal virtual void test()
{
Console.WriteLine("A test");
}
}
public class B : A
{
public new int i = 1;
public new void test()
{
Console.WriteLine("B test");
}
}
public class C : B
{
public new int i = 2;
public new void test()
{
Console.WriteLine("C test - ");
(this as A).test();
}
}
You can also make a simple function in first level derived class, to call grand base function
My 2c for this is to implement the functionality you require to be called in a toolkit class and call that from wherever you need:
// Util.cs
static class Util
{
static void DoSomething( FooBase foo ) {}
}
// FooBase.cs
class FooBase
{
virtual void Do() { Util.DoSomething( this ); }
}
// FooDerived.cs
class FooDerived : FooBase
{
override void Do() { ... }
}
// FooDerived2.cs
class FooDerived2 : FooDerived
{
override void Do() { Util.DoSomething( this ); }
}
This does require some thought as to access privilege, you may need to add some internal accessor methods to facilitate the functionality.
In cases where you do not have access to the derived class source, but need all the source of the derived class besides the current method, then I would recommended you should also do a derived class and call the implementation of the derived class.
Here is an example:
//No access to the source of the following classes
public class Base
{
public virtual void method1(){ Console.WriteLine("In Base");}
}
public class Derived : Base
{
public override void method1(){ Console.WriteLine("In Derived");}
public void method2(){ Console.WriteLine("Some important method in Derived");}
}
//Here should go your classes
//First do your own derived class
public class MyDerived : Base
{
}
//Then derive from the derived class
//and call the bass class implementation via your derived class
public class specialDerived : Derived
{
public override void method1()
{
MyDerived md = new MyDerived();
//This is actually the base.base class implementation
MyDerived.method1();
}
}
As can be seen from previous posts, one can argue that if class functionality needs to be circumvented then something is wrong in the class architecture. That might be true, but one cannot always restructure or refactor the class structure on a large mature project. The various levels of change management might be one problem, but to keep existing functionality operating the same after refactoring is not always a trivial task, especially if time constraints apply. On a mature project it can be quite an undertaking to keep various regression tests from passing after a code restructure; there are often obscure "oddities" that show up.
We had a similar problem in some cases inherited functionality should not execute (or should perform something else). The approach we followed below, was to put the base code that need to be excluded in a separate virtual function. This function can then be overridden in the derived class and the functionality excluded or altered. In this example "Text 2" can be prevented from output in the derived class.
public class Base
{
public virtual void Foo()
{
Console.WriteLine("Hello from Base");
}
}
public class Derived : Base
{
public override void Foo()
{
base.Foo();
Console.WriteLine("Text 1");
WriteText2Func();
Console.WriteLine("Text 3");
}
protected virtual void WriteText2Func()
{
Console.WriteLine("Text 2");
}
}
public class Special : Derived
{
public override void WriteText2Func()
{
//WriteText2Func will write nothing when
//method Foo is called from class Special.
//Also it can be modified to do something else.
}
}
There seems to be a lot of these questions surrounding inheriting a member method from a Grandparent Class, overriding it in a second Class, then calling its method again from a Grandchild Class. Why not just inherit the grandparent's members down to the grandchildren?
class A
{
private string mystring = "A";
public string Method1()
{
return mystring;
}
}
class B : A
{
// this inherits Method1() naturally
}
class C : B
{
// this inherits Method1() naturally
}
string newstring = "";
A a = new A();
B b = new B();
C c = new C();
newstring = a.Method1();// returns "A"
newstring = b.Method1();// returns "A"
newstring = c.Method1();// returns "A"
Seems simple....the grandchild inherits the grandparents method here. Think about it.....that's how "Object" and its members like ToString() are inherited down to all classes in C#. I'm thinking Microsoft has not done a good job of explaining basic inheritance. There is too much focus on polymorphism and implementation. When I dig through their documentation there are no examples of this very basic idea. :(
I had the same problem as the OP, where I only wanted to override a single method in the middle Class, leaving all other methods alone. My scenario was:
Class A - base class, DB access, uneditable.
Class B : A - "record type" specific functionality (editable, but only if backward compatible).
Class C : B - one particular field for one particular client.
I did very similar to the second part of the OP posting, except I put the base call into it's own method, which I called from from Say() method.
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
BaseSay();
}
protected virtual void BaseSay()
{
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.BaseSay();
}
}
You could repeat this ad infinitum, giving, for example SpecialDerived a BaseBaseSay() method if you needed an ExtraSpecialDerived override to the SpecialDerived.
The best part of this is that if the Derived changes its inheritance from Base to Base2, all other overrides follow suit without needing changes.
If you want to access to base class data you must use "this" keyword or you use this keyword as reference for class.
namespace thiskeyword
{
class Program
{
static void Main(string[] args)
{
I i = new I();
int res = i.m1();
Console.WriteLine(res);
Console.ReadLine();
}
}
public class E
{
new public int x = 3;
}
public class F:E
{
new public int x = 5;
}
public class G:F
{
new public int x = 50;
}
public class H:G
{
new public int x = 20;
}
public class I:H
{
new public int x = 30;
public int m1()
{
// (this as <classname >) will use for accessing data to base class
int z = (this as I).x + base.x + (this as G).x + (this as F).x + (this as E).x; // base.x refer to H
return z;
}
}
}
I have a C# application; There is a parent class with many child classes. I would like a method in the parent class with some logic in it, and have custom logic added to it by each child class, so that when any child class calls the method, it first runs some code defined in the parent class, and then runs the customized part of it as defined in the child class. Can this be done? If not, what is the best way to achieve this kind of code execution?
Yes, this can be done by defining a virtual method in the base class, and calling it from your "payload" method at the spot where the custom logic needs to be "plugged in". It is common to make this method abstract:
abstract class MyBase {
protected abstract void CustomLogic(); // Subclasses implement this
public void PayloadMethod() {
... // Do somethig
CustomLogic();
... // Do something else
}
}
class Derived1 : MyBase {
protected override void CustomLogic() {
... // Custom logic 1
}
}
class Derived2 : MyBase {
protected override void CustomLogic() {
... // Custom logic 2
}
}
class Derived3 : MyBase {
protected override void CustomLogic() {
... // Custom logic 3
}
}
Clients of your class hierarchy instantiate one of DerivedN classes, and call PayloadMethod(), which calls CustomLogic as part of its invocation.
This approach is called Template Method Pattern.
One way to achieve it is define a non virtual method as entry point that execute the code defined in the base class and then call a virtual (or abstract) protected method that child class can (or must) override, like this:
abstract class Foo
{
public void Bar()
{
// some code defined in the parent class
BarCore(); // the customized part of it as defined in the child class
}
protected virtual void BarCore() { }
}
The easiest way to achieve this is to have two methods:
class BaseClass
{
public void DoSomething()
{
// base class code
// derived class code, modifiable by the derived class
this.DoItSpecificallyForThatDerivedClass();
}
protected abstract void DoItSpecificallyForThatDerivedClass();
}
public class ADerivedClass : BaseClass
{
protected override void DoItSpecificallyForThatDerivedClass()
{
// code specific to this instance and/or class
}
}
I have a merly simple question, but seems cant find an answer for it, I want to know if its possible to override a method from a instance class structore would look like this:
public class A : baseA
{
public virtual void methodA()
{
}
}
public class B : baseB
{
public void method B()
{
var ClassA = new A();
}
/* Now Is there some sort of overide like */
public override methodA()
{
//Do stuff
}
}
And those classes do not inherit from each other, to make it more difficult.
Now if this sort of construction is possible in c#?
No. You cannot override a class's behavior if you don't inherit from it.
The override modifier is required to extend or modify the abstract or virtual implementation of an inherited method, property, indexer, or event.
Class B must inherit from class A in order to do so.
public class A
{
public virtual void methodA()
{
}
}
public class B : A
{
public void methodB()
{
var ClassA = new A();
}
public override void methodA()
{
//Do stuff
}
}
Check MSDN for more details:
An override method provides a new implementation of a member that is inherited from a base class. The method that is overridden by an override declaration is known as the overridden base method. The overridden base method must have the same signature as the override method
I am working on a small project and I came across that problem.
The project output is a library containing an interface. I would like to implement that interface and seal the functions in it like this if possible:
public interface ITest
{
void SomeMethod();
}
class A : ITest
{
public sealed override SomeMethod()
{
}
}
The idea is to have the interface available to everyone and have some specialized class that implements it. The exception is that I want to make sure that if someone create a specialized class of type A, he/she won't be able to change the method's behavior.
The problem is you can't put the "override" keyword in there since the method isn't declared as "virtual" in the interface. And you can't declare it as "virtual" in the interface since it's not allowed. And you can't remove the "override" keyword since it's needed by "sealed".
Any workaround or brainstorming idea would be welcome, but if someone can come up with a solution that includes an interface, I'd be really happy to learn it!
Thanks!
EDIT: Forget this question! Like Ani said, I forgot that by default method in C# are sealed. Seems like it's always good to go back to the basics once in a while...
I may have completely misunderstood the question, but if your intention is to seal the method in A, you can just do:
class A : ITest
{
public void SomeMethod() { ... }
}
Unlike Java, methods in C# are sealed by default. Subclasses of A won't be able to override the method since it hasn't been marked virtual.
On the other hand, if your intention is to mark the method 'almost sealed' in the interface, so that it forces upon an implementing class to immediately seal it, that isn't possible. It isn't (and shouldn't be) the business of the interface to dictate such details of implementation - an interface is meant to represent a specification.
Use an abstract base class with internal visibility. This base class is not visible outside of the library but allows you to seal the method and the class still implements the interface.
public interface ITest
{
void SomeMethod();
}
internal abstract class SuperA : ITest
{
public abstract void SomeMethod();
}
class A : SuperA
{
public sealed override void SomeMethod()
{
}
}
Your understanding of sealed keyword is incorrect. As a method modifier, sealed is used to prevent a virtual method(defined in the base class) to be override in the next generation of derived classes. For example:
class Base
{
public virtual void M() { }
}
class Derived : Base
{
public sealed override void M() { }
}
class A : Derived
{
public override void M() { } //compile error, M is sealed in Derived
}
Developers can always use new modifier to define a method with the same name in the derived class, that hides the one defined in the base class.
if someone create a specialized class
of type A, he/she won't be able to
change the method's behavior.
If "specialized class" means a class derived from A, the answer is: he can always hide the method in A, but he can't change the method's behavior.
Why not use an abstract class like below.
Haven't tested it but this should work?
public abstract class Test
{
public virtual void SomeMethod() {}
//OR
public abstract void SomeMethod();//MSDN says:
//an abstract method is implicitly virtual
}
class A : Test
{
public sealed override SomeMethod()
{
}
}
Methods in C# are sealed by default.. Here is a sample
class Program
{
static void Main(string[] args)
{
A obj = new A();
obj.SomeMethod();
b ss = new b();
ss.SomeMethod();
Console.ReadLine();
}
}
public interface ITest { void SomeMethod(); }
class A : ITest { public void SomeMethod() {
Console.WriteLine("SomeMethod Called from Class A object");
} }
class b : A
{
//public override void SomeMethod()
//{
// Console.WriteLine("Called from Class B Object");
//}
}
I have a base class and a class inheriting base. The base class has several virtual functions that the inherited class may override. However, the virtual functions in the base class has code that MUST to run before the inherited class overrides get called. Is there some way that I can call the base classes virtual functions first then the inherited class overrides. Without making a call to base.function().
I know I can simply make two functions, one that gets called, the other virtual. But is there a way I can keep the same names as well? I know I may need to change some things around.
class myBase
{
public virtual myFunction()
{ /* must-run code, Called first */ }
}
class myInherited : myBase
{
public override myFunction()
{ /* don't use base.myFunction();,
called from base.myFunction(); */ }
}
Similar question here.
C# doesn't have support for automatically enforcing this, but
you can enforce it by using the template method pattern. For example, imagine you had this code:
abstract class Animal
{
public virtual void Speak()
{
Console.WriteLine("I'm an animal.");
}
}
class Dog : Animal
{
public override void Speak()
{
base.Speak();
Console.WriteLine("I'm a dog.");
}
}
The trouble here is that any class inheriting from Animal needs to call base.Speak(); to ensure the base behavior is executed. You can automatically enforce this by taking the following (slightly different) approach:
abstract class Animal
{
public void Speak()
{
Console.WriteLine("I'm an animal.");
DoSpeak();
}
protected abstract void DoSpeak();
}
class Dog : Animal
{
protected override void DoSpeak()
{
Console.WriteLine("I'm a dog.");
}
}
In this case, clients still only see the polymorphic Speak method, but the Animal.Speak behavior is guaranteed to execute. The problem is that if you have further inheritance (e.g. class Dachshund : Dog), you have to create yet another abstract method if you want Dog.Speak to be guaranteed to execute.
A common solution that can be found in the .NET Framework is to split a method in a public method XXX and a protected, virtual method OnXXX that is called by the public method. For your example, it would look like this:
class MyBase
{
public void MyMethod()
{
// do something
OnMyMethod();
// do something
}
protected virtual void OnMyMethod()
{
}
}
and
class MyInherited : MyBase
{
protected override void OnMyMethod()
{
// do something
}
}
public abstract class BaseTemp
{
public void printBase() {
Console.WriteLine("base");
print();
}
public abstract void print();
}
public class TempA: BaseTemp
{
public override void print()
{
Console.WriteLine("TempA");
}
}
public class TempB: BaseTemp
{
public override void print()
{
Console.WriteLine("TempB");
}
}
There is no way to do what you're seeking other than the 2 ways you already named.
Either you make 2 functions in the base class, one that gets called and the other virtual.
Or you call base.functionName in the sub-class.
Not exactly. But I've done something similar using abstract methods.
Abstract methods must be overriden by derived classes. Abstract procs are virtual so you can be sure that when the base class calls them the derived class's version is called. Then have your base class's "Must Run Code" call the abstract proc after running. voila, your base class's code always runs first (make sure the base class proc is no longer virtual) followed by your derived class's code.
class myBase
{
public /* virtual */ myFunction() // remove virtual as we always want base class's function called here
{ /* must-run code, Called first */
// call derived object's code
myDerivedMustcallFunction();
}
public abstract myDerivedMustCallFunction() { /* abstract functions are blank */ }
}
class myInherited : myBase
{
public override myDerivedMustCallFunction()
{ /* code to be run in derived class here */ }
}
What do you think of this?
class myBase
{
public void myFunctionWrapper()
{
// do stuff that must happen first
// then call overridden function
this.myFunction();
}
public virtual void myFunction(){
// default implementation that can be overriden
}
}
class myInherited : myBase
{
public override void myFunction()
{
}
}