Goal
To properly get FlateDecode image objects from pdf out at png.
Please let me know if you see anything wrong with the below code that might be causing issues.
The code below gives me the image but it is completely distorted. See: (left = good, right = mine with code)
static void ExportAsPngImage(PdfDictionary image, string filename, ref int count)
{
int width = image.Elements.GetInteger(PdfImage.Keys.Width);
int height = image.Elements.GetInteger(PdfImage.Keys.Height);
int bitsPerComponent = image.Elements.GetInteger(PdfImage.Keys.BitsPerComponent);
var canUnfilter = image.Stream.TryUnfilter();
byte[] decoded = image.Stream.Value;
System.Drawing.Imaging.PixelFormat pixelFormat;
switch (bitsPerComponent)
{
case 1:
pixelFormat = PixelFormat.Format1bppIndexed;
break;
case 8:
pixelFormat = PixelFormat.Format8bppIndexed;
break;
case 24:
pixelFormat = PixelFormat.Format24bppRgb;
break;
default:
throw new Exception("Unknown pixel format " + bitsPerComponent);
}
Bitmap bmp = new Bitmap(width, height, pixelFormat);
var bmd = bmp.LockBits(new System.Drawing.Rectangle(0, 0, width, height), ImageLockMode.WriteOnly, pixelFormat);
int length = (int)Math.Ceiling(Convert.ToInt32(width) * bitsPerComponent / 8.0);
for (int j = 0; j < height; j++)
{
int offset = j * length;
int scanOffset = j * bmd.Stride;
Marshal.Copy(decoded, offset, new IntPtr(bmd.Scan0.ToInt32() + scanOffset), length);
}
bmp.UnlockBits(bmd);
using(var fs = new FileStream(filename + "_" + count + ".png",FileMode.Create, FileAccess.Write))
bmp.Save(fs, ImageFormat.Png);
count++;
}
I assume this is an case 8 image. If you extract the image data without the associated color palette and display the image with the default color palette, then you will get images like the one you are showing.
Images in PDF files can consist of several PDF objects: the pixel data, the color palette, an alpha mask, a bilevel mask.
Maybe for that image it is sufficient to create a grayscale palette where color x has the RGB values (x, x, x). But for a general solution extract the palette from the PDF.
here's a snippet of code which will set the palette for a /DeviceRGB colorspace:
using PdfSharp.Pdf;
using PdfSharp.Pdf.Advanced;
...
// get palette if required (pf is the pixel format, previously extracted from the imageDictionary, imageDictionary is the PdfDictionary for the image, bmp is the System.Drawing.Bitmap we're going to be dumping our image data to)
if (pf == System.Drawing.Imaging.PixelFormat.Format8bppIndexed)
{
PdfArray colArr = imageDictionary.Elements.GetArray(PdfImage.Keys.ColorSpace);
if (colArr != null && colArr.Elements.GetName(0) == "/Indexed" && colArr.Elements.GetName(1) == "/DeviceRGB")
{
System.Drawing.Imaging.ColorPalette pal = bmp.Palette; // this returns a clone, so we'll manipulate it and then set it back at the end
int palCount = colArr.Elements.GetInteger(2);
char[] palVal = colArr.Elements.GetString(3).ToCharArray();
int basePointer = 0;
for (int i = 0; i < palCount; i++)
{
pal.Entries[i] = System.Drawing.Color.FromArgb(palVal[basePointer], palVal[basePointer + 1], palVal[basePointer + 2]);
basePointer += 3;
}
bmp.Palette = pal;
}
else
{
// some other colorspace mechanism needs to be implemented
}
}
Related
I am making a video recorder, The app works by taking a lot of screenshots and putting them together into one video. Also, I am trying to make something like screen motion detection. I need the app to take screenshots only when a difference in the screen is detected. I was thinking about how to do that, and I believe I need to make it still take screenshots while comparing them to the previous one. Is there a way to do that?
The code:
//Record video:
public void RecordVideo()
{
//Keep track of time:
watch.Start();
using (Bitmap bitmap = new Bitmap(bounds.Width, bounds.Height))
{
using (Graphics g = Graphics.FromImage(bitmap))
{
//Add screen to bitmap:
g.CopyFromScreen(new Point(bounds.Left, bounds.Top), Point.Empty, bounds.Size);
}
//Save screenshot:
string name = tempPath + "//screenshot-" + fileCount + ".png";
bitmap.Save(name, ImageFormat.Png);
inputImageSequence.Add(name);
fileCount++;
//Dispose of bitmap:
bitmap.Dispose();
}
}
I have something that may be useful for you. The idea is save only the differences between the images and, with that, recreate later all images from starting image and saved changes.
To do this, you only need make a XOR operation in the image bytes. This method allow you get the difference (the array parameter) between two images:
protected void ApplyXor(Bitmap img1, Bitmap img2, byte[] array)
{
const ImageLockMode rw = ImageLockMode.ReadWrite;
const PixelFormat argb = PixelFormat.Format32bppArgb;
var locked1 = img1.LockBits(new Rectangle(0, 0, img1.Width, img1.Height), rw, argb);
var locked2 = img2.LockBits(new Rectangle(0, 0, img2.Width, img2.Height), rw, argb);
try
{
ApplyXor(locked2, locked1, array);
}
finally
{
img1.UnlockBits(locked1);
img2.UnlockBits(locked2);
}
}
With the previous img1 bitmap and the array returned, you can get the img2 with this method:
protected void ApplyXor(Bitmap img1, byte[] array, Bitmap img2)
{
const ImageLockMode rw = ImageLockMode.ReadWrite;
const PixelFormat argb = PixelFormat.Format32bppArgb;
var locked1 = img1.LockBits(new Rectangle(0, 0, img1.Width, img1.Height), rw, argb);
var locked2 = img2.LockBits(new Rectangle(0, 0, img2.Width, img2.Height), rw, argb);
try
{
ApplyXor(locked1, array, locked2);
}
finally
{
img1.UnlockBits(locked1);
img2.UnlockBits(locked2);
}
}
And here the other required methods:
private unsafe void ApplyXor(BitmapData img1, BitmapData img2, byte[] array)
{
byte* prev0 = (byte*)img1.Scan0.ToPointer();
byte* cur0 = (byte*)img2.Scan0.ToPointer();
int height = img1.Height;
int width = img1.Width;
int halfwidth = width / 2;
fixed (byte* target = array)
{
ulong* dst = (ulong*)target;
for (int y = 0; y < height; ++y)
{
ulong* prevRow = (ulong*)(prev0 + img1.Stride * y);
ulong* curRow = (ulong*)(cur0 + img2.Stride * y);
for (int x = 0; x < halfwidth; ++x)
{
if (curRow[x] != prevRow[x])
{
int a = 0;
}
*(dst++) = curRow[x] ^ prevRow[x];
}
}
}
}
private unsafe void ApplyXor(BitmapData img1, byte[] array, BitmapData img2)
{
byte* prev0 = (byte*)img1.Scan0.ToPointer();
byte* cur0 = (byte*)img2.Scan0.ToPointer();
int height = img1.Height;
int width = img1.Width;
int halfwidth = width / 2;
fixed (byte* target = array)
{
ulong* dst = (ulong*)target;
for (int y = 0; y < height; ++y)
{
ulong* prevRow = (ulong*)(prev0 + img1.Stride * y);
ulong* curRow = (ulong*)(cur0 + img2.Stride * y);
for (int x = 0; x < halfwidth; ++x)
{
curRow[x] = *(dst++) ^ prevRow[x];
}
}
}
}
NOTE: You must configure your project to allow unsafe.
With previous methods, you can do:
Save a img1 bitmap
Get img2 bitmap, do XOR and get the array (array2, for example)
With img3, get the XOR with img2 (array3, for example). Now, img2 isn't needed
With img4, get the XOR with img3 (array4). Now, img3 isn't needed
...
You have img1 and array2, array3, array4... and you can recreate all images:
Make XOR between img1 and array2 to get img2
Make XOR between img2 and array3 to get img3
...
If you need send video over TCP, you can send the images sending one image and the XOR arrays (the differences). Or better yet, compress the XOR arrays using K4os.Compression.LZ4.
I have a performance problem.
For a insole model configurator, we have a piece to upload and many material images to fusion with the piece image.
I should replace every white pixel on the piece image by the corresponding pixel on the material image.
As the material image is not a mono color, I cant replace simply all white by another mono color.
Image sizes are the same. So I simply take a pixel if the color is not transparent from the piece image and with the same X and Z coordinates on the material images, I take a pixel and I set the pixel of the piece image.
But as there are many materials, it takes 5 minutes today.
Is there a mor optimised way to do this ?
Here is my method :
//For every material image, calls the fusion method below.
foreach (string material in System.IO.Directory.GetFiles(materialsPath))
{
var result = FillWhiteImages(whiteImagesFolder, whiteImagesFolder + "\\" + System.IO.Path.GetFileName(whiteFilePath), material);
}
private static void FusionWhiteImagesWithMaterials(string whiteImageFolder, string file, string materialImageFile)
{
if (file.ToLower().EndsWith(".db") || materialImageFile.ToLower().EndsWith(".db"))
return;
List<CustomPixel> lstColoredPixels = new List<CustomPixel>();
try
{
Bitmap image = new Bitmap(file);
for (int y = 0; y < image.Height; ++y)
{
for (int x = 0; x < image.Width; ++x)
{
if (image.GetPixel(x, y).A > 0)
{
lstColoredPixels.Add(new CustomPixel(x, y));
}
}
}
Bitmap bmpTemp = new Bitmap(materialImageFile);
Bitmap target = new Bitmap(bmpTemp, new Size(image.Size.Width, image.Size.Height));
for (int y = 0; y < target.Height; y++)
{
for (int x = 0; x < target.Width; x++)
{
Color clr = image.GetPixel(x, y);
if (clr.A > 0)
{
if (clr.R > 200 && clr.G > 200 && clr.B > 200)
image.SetPixel(x, y, target.GetPixel(x, y));
else
image.SetPixel(x, y, Color.Gray);
}
}
}
...
image.Save(...);
}
catch (Exception ex)
{
}
}
//I reduced image sizes to keep on the screen. Real image sizes are 500x1240 px.
Replacing the white is one possibility, but it's not a very pretty one. Based on the images you have there, the ideal solution for this is to get the pattern with the correct alpha applied, and then paint the visible black lines over it. This is actually a process with some more steps:
Extract the alpha from the foot shape image
Extract the black lines from the foot shape image
Apply the alpha to the pattern image
Paint the black lines over the alpha-adjusted pattern image
The way I'd approach this is to extract the data of both images as ARGB byte arrays, meaning, each pixel is four bytes, in the order B, G, R, A. Then, for each pixel, we simply copy the alpha byte from the foot shape image into the alpha byte of the pattern image, so you end up with the pattern image, with the transparency of the foot shape applied to it.
Now, in a new byte array of the same size, which starts with pure 00 bytes (meaning, since A,R,G and B are all zero, transparent black), we construct the black line. Pixels can be considered "black" if they're both not white, and visible. So the ideal result, including smooth fades, is to adjust the alpha of this new image to the minimum value of the alpha and the inverse of the brightness. Since it's grayscale, any of the R, G, B will do for brightness. To get the inverse as byte value, we just take (255 - brightness).
Note, if you need to apply this to a load of images, you probably want to extract the bytes, dimensions and stride of the foot pattern image only once in advance, and keep them in variables to give to the alpha-replacing process. In fact, since the black lines image won't change either, a preprocessing step to generate that should speed things up even more.
public static void BakeImages(String whiteFilePath, String materialsFolder, String resultFolder)
{
Int32 width;
Int32 height;
Int32 stride;
// extract bytes of shape & alpha image
Byte[] shapeImageBytes;
using (Bitmap shapeImage = new Bitmap(whiteFilePath))
{
width = shapeImage.Width;
height = shapeImage.Height;
// extract bytes of shape & alpha image
shapeImageBytes = GetImageData(shapeImage, out stride, PixelFormat.Format32bppArgb);
}
using (Bitmap blackImage = ExtractBlackImage(shapeImageBytes, width, height, stride))
{
//For every material image, calls the fusion method below.
foreach (String materialImagePath in Directory.GetFiles(materialsFolder))
{
using (Bitmap patternImage = new Bitmap(materialImagePath))
using (Bitmap result = ApplyAlphaToImage(shapeImageBytes, width, height, stride, patternImage))
{
if (result == null)
continue;
// paint black lines image onto alpha-adjusted pattern image.
using (Graphics g = Graphics.FromImage(result))
g.DrawImage(blackImage, 0, 0);
result.Save(Path.Combine(resultFolder, Path.GetFileNameWithoutExtension(materialImagePath) + ".png"), ImageFormat.Png);
}
}
}
}
The black lines image:
public static Bitmap ExtractBlackImage(Byte[] shapeImageBytes, Int32 width, Int32 height, Int32 stride)
{
// Create black lines image.
Byte[] imageBytesBlack = new Byte[shapeImageBytes.Length];
// Line start offset is set to 3 to immediately get the alpha component.
Int32 lineOffsImg = 3;
for (Int32 y = 0; y < height; y++)
{
Int32 curOffs = lineOffsImg;
for (Int32 x = 0; x < width; x++)
{
// copy either alpha or inverted brightness (whichever is lowest)
// from the shape image onto black lines image as alpha, effectively
// only retaining the visible black lines from the shape image.
// I use curOffs - 1 (red) because it's the simplest operation.
Byte alpha = shapeImageBytes[curOffs];
Byte invBri = (Byte) (255 - shapeImageBytes[curOffs - 1]);
imageBytesBlack[curOffs] = Math.Min(alpha, invBri);
// Adjust offset to next pixel.
curOffs += 4;
}
// Adjust line offset to next line.
lineOffsImg += stride;
}
// Make the black lines images out of the byte array.
return BuildImage(imageBytesBlack, width, height, stride, PixelFormat.Format32bppArgb);
}
The processing to apply the foot image's transparency to the pattern image:
public static Bitmap ApplyAlphaToImage(Byte[] alphaImageBytes, Int32 width, Int32 height, Int32 stride, Bitmap texture)
{
Byte[] imageBytesPattern;
if (texture.Width != width || texture.Height != height)
return null;
// extract bytes of pattern image. Stride should be the same.
Int32 patternStride;
imageBytesPattern = ImageUtils.GetImageData(texture, out patternStride, PixelFormat.Format32bppArgb);
if (patternStride != stride)
return null;
// Line start offset is set to 3 to immediately get the alpha component.
Int32 lineOffsImg = 3;
for (Int32 y = 0; y < height; y++)
{
Int32 curOffs = lineOffsImg;
for (Int32 x = 0; x < width; x++)
{
// copy alpha from shape image onto pattern image.
imageBytesPattern[curOffs] = alphaImageBytes[curOffs];
// Adjust offset to next pixel.
curOffs += 4;
}
// Adjust line offset to next line.
lineOffsImg += stride;
}
// Make a image out of the byte array, and return it.
return BuildImage(imageBytesPattern, width, height, stride, PixelFormat.Format32bppArgb);
}
The helper function to extract the bytes from an image:
public static Byte[] GetImageData(Bitmap sourceImage, out Int32 stride, PixelFormat desiredPixelFormat)
{
Int32 width = sourceImage.Width;
Int32 height = sourceImage.Height;
BitmapData sourceData = sourceImage.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadOnly, desiredPixelFormat);
stride = sourceData.Stride;
Byte[] data = new Byte[stride * height];
Marshal.Copy(sourceData.Scan0, data, 0, data.Length);
sourceImage.UnlockBits(sourceData);
return data;
}
The helper function to make a new image from a byte array:
public static Bitmap BuildImage(Byte[] sourceData, Int32 width, Int32 height, Int32 stride, PixelFormat pixelFormat)
{
Bitmap newImage = new Bitmap(width, height, pixelFormat);
BitmapData targetData = newImage.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.WriteOnly, newImage.PixelFormat);
// Get actual data width.
Int32 newDataWidth = ((Image.GetPixelFormatSize(pixelFormat) * width) + 7) / 8;
Int32 targetStride = targetData.Stride;
Int64 scan0 = targetData.Scan0.ToInt64();
// Copy per line, copying only data and ignoring any possible padding.
for (Int32 y = 0; y < height; ++y)
Marshal.Copy(sourceData, y * stride, new IntPtr(scan0 + y * targetStride), newDataWidth);
newImage.UnlockBits(targetData);
return newImage;
}
The result in my test tool:
As you see, the black lines are preserved on top of the pattern.
GetPixel/SetPixel are notoriously slow due to locking and other overhead accessing the pixels. To improve performance you will need to use some unmanaged coding to access the data directly.
This answer should shows an example on how to improve speed when working with bitmaps.
Here is some (untested!) code adapted from that anwer:
public static unsafe Image MergeBitmaps(Bitmap mask, Bitmap background)
{
Debug.Assert(mask.PixelFormat == PixelFormat.Format32bppArgb);
BitmapData maskData = mask.LockBits(new Rectangle(0, 0, mask.Width, mask.Height),
ImageLockMode.ReadWrite, mask.PixelFormat);
BitmapData backgroundData = background.LockBits(new Rectangle(0, 0, background.Width, background.Height),
ImageLockMode.ReadWrite, background.PixelFormat);
try
{
byte bytesPerPixel = 4;
/*This time we convert the IntPtr to a ptr*/
byte* maskScan0 = (byte*)maskData.Scan0.ToPointer();
byte* backgroundScan0 = (byte*)backgroundData.Scan0.ToPointer();
for (int i = 0; i < maskData.Height; ++i)
{
for (int j = 0; j < maskData.Width; ++j)
{
byte* maskPtr = maskScan0 + i * maskData.Stride + j * bytesPerPixel;
byte* backPtr = backgroundScan0 + i * backgroundData.Stride + j * bytesPerPixel;
//maskPtr is a pointer to the first byte of the 4-byte color data
//maskPtr[0] = blueComponent;
//maskPtr[1] = greenComponent;
//maskPtr[2] = redComponent;
//maskPtr[3] = alphaComponent;
if (maskPtr[3] > 0 )
{
if (maskPtr[2] > 200 &&
maskPtr[1] > 200 &&
maskPtr[0] > 200)
{
maskPtr[3] = 255;
maskPtr[2] = backPtr[2];
maskPtr[1] = backPtr[1];
maskPtr[0] = backPtr[0];
}
else
{
maskPtr[3] = 255;
maskPtr[2] = 128;
maskPtr[1] = 128;
maskPtr[0] = 128;
}
}
}
}
return mask;
}
finally
{
mask.UnlockBits(maskData);
background.UnlockBits(backgroundData);
}
}
}
I found this solution, it is much more faster.
But it uses too much resources.
Parallel programing in C# came to my help :
//I called my method in a parallel foreach
Parallel.ForEach(System.IO.Directory.GetFiles(materialsPath), filling =>
{
var result = FillWhiteImages(whiteImagesFolder, whiteImagesFolder + "\\" + System.IO.Path.GetFileName(whiteFilePath), filling);
});
//Instead of a classic foreach loop like this.
foreach (string material in System.IO.Directory.GetFiles(materialsPath))
{
var result = FillWhiteImages(whiteImagesFolder, whiteImagesFolder + "\\" + System.IO.Path.GetFileName(whiteFilePath), material);
}
my problem is when is take a 8bit greyscaled image and convert it into an 24bit rgb24bpp my image gets zoomed in and the colorscale get mixed up( see 3).
My plan is to display a GigE-Cam with my program through a client-server implementation. Therfore i need it the picture to get grayscaled because of daterate issues, but i only get this wrongly sized and collored picture. This happens only if i covert them into the myImage/myImageFormat. My problem is that i need the picture for measurements afterwards.
The code i use to convert the image is as follows:
public myImage(Bitmap bmp, myImageFormat format)
{
if (bmp == null)
{
throw new ArgumentNullException("bmp");
}
this.Height = bmp.Height;
this.Width = bmp.Width;
this.Format = format;
// copy bmp matrix without padding to rgb or grey array
Rectangle rect = new Rectangle(0, 0, bmp.Width, bmp.Height);
//if (format == myImageFormat.Grey8)
//{ return; }
//else
//{
int factor = 3;
if (format == myImageFormat.Grey8)
{
factor = 1;
// save grey scale palette
m_colorPaletteColorData = new Color[bmp.Palette.Entries.Length];
for (int i = 0; i < bmp.Palette.Entries.Length; i++)
{
m_colorPaletteColorData[i] = bmp.Palette.Entries[i];
}
//return;
}
else if (format == myImageFormat.Rgb888
&& bmp.PixelFormat == PixelFormat.Format8bppIndexed)
{
// convert all type of bitmaps to 24-Bit bitmaps by using GDI+
Bitmap bmp24 = new Bitmap(bmp.Width, bmp.Height, PixelFormat.Format24bppRgb);
bmp24.SetResolution(bmp.HorizontalResolution, bmp.VerticalResolution); // prevent resolution conversion
using (Graphics g = Graphics.FromImage(bmp24))
{
g.PageUnit = GraphicsUnit.Pixel; // prevent DPI conversion
g.DrawImageUnscaled(bmp, 0, 0, bmp.Width, bmp.Height);
}
bmp = bmp24;
}
BitmapData bmpData = bmp.LockBits(rect, System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat); // LOCKED
int bytes = bmp.Height * bmp.Width * factor;
int byteIndex = 0;
m_imageData = new byte[bytes];
unsafe
{
for (int y = 0; y < bmpData.Height; y++)
{
byte* row = (byte*)bmpData.Scan0 + (y * bmpData.Stride);
for (int x = 0; x < bmpData.Width; x++)
{
m_imageData[byteIndex] = row[x * factor];
byteIndex++;
if (format == myImageFormat.Rgb888)
{
m_imageData[byteIndex] = row[x * factor + 1];
byteIndex++;
m_imageData[byteIndex] = row[x * factor + 2];
byteIndex++;
}
}
}
}
bmp.UnlockBits(bmpData); // UNLOCKED
//}
}
/// <summary>
/// returns a 8bppGrey or 24bppRgb Bitmap
/// </summary>
public Bitmap ToBitmap()
{
if (m_imageData == null)
{
throw new InvalidOperationException("Internal image data does not exist!");
}
PixelFormat pixelFormat;
int factor = 3;
if (this.Format == myImageFormat.Grey8)
{
pixelFormat = PixelFormat.Format8bppIndexed;
factor = 1;
}
else
{
pixelFormat = PixelFormat.Format24bppRgb;
}
m_bmp = new Bitmap(this.Width, this.Height, pixelFormat);
Rectangle rect = new Rectangle(0, 0, this.Width, this.Height);
BitmapData bmpData = m_bmp.LockBits(rect, System.Drawing.Imaging.ImageLockMode.WriteOnly, pixelFormat); // LOCKED
int counter = 0;
unsafe
{
for (int y = 0; y < bmpData.Height; y++)
{
byte* row = (byte*)bmpData.Scan0 + (y * bmpData.Stride);
for (int x = 0; x < bmpData.Width; x++)
{
byte color = m_imageData[counter];
row[x * factor] = color;
counter++;
if (this.Format == myImageFormat.Rgb888)
{
row[x * factor + 1] = m_imageData[counter];
counter++;
row[x * factor + 2] = m_imageData[counter];
counter++;
}
}
}
}
// copy original grayscale color palette, otherwise it will be a 8bit RGB bitmap
if (this.Format == myImageFormat.Grey8)
{
ColorPalette palette = m_bmp.Palette;
Color[] entries = palette.Entries;
if (m_colorPaletteColorData.Length >= entries.Length)
{
for (int i = 0; i < entries.Length; i++)
{
entries[i] = m_colorPaletteColorData[i];
}
}
m_bmp.Palette = palette;
}
m_bmp.UnlockBits(bmpData); // UNLOCKED
return m_bmp;
}
Can anyone help me on this problem?
The Grey8 image converted into an RGB24
If you pass in a 24-bit bitmap to be converted to 8-bit gray, you won't have a valid source palette to copy, since 24-bit formats aren't indexed. So, when you save the palette into m_colorPaletteColorData[] from the 24-bit source image (in your constructor) and then set it on the 8-bit gray image (in ToBitmap()), what does that palette actually contain? In the constructor, when your source is 24-bit (and therefore has no valid palette), you need to create a new gray-scale palette rather than try to copy it out of a non-indexed image.
Another lesser point, when converting in both directions (8 to 24, 24 to 8), you assign the bytes from one image to the other directly; so, if one is intended to be a palettized 8-bit image, and the other is a 24-bit image, you are assigning a palette index as each of the R, G, and B values of the color component, or assigning one color component as the index.
This should work (sort of) if-and-only-if the palette is guaranteed to be a linear gradient where each index matches the shade of gray-scale, but palette-based images rarely use a perfectly-organized palette, so this is a dangerous assumption. To make this work properly, you should really translate the 8-bit index values into the Color values from your palette before assigning to a 24-bit image, and look up the closest match in your color palette from the 24-bit value when assigning to an 8-bit gray image.
I am trying to combine 3 grayscale bitmaps into one color bitmap. All three grayscale images are the same size (this is based off of data from the Hubble). My logic is:
Load "blue" image and convert to PixelFormat.Format24bppRgb. Based off of that create a new byte array that is 4 times as large as the blue data array length/3 (so it will be one byte for blue, one byte for green, one byte for red, one byte for alpha per pixel since my system is little endian). Populate the "blue" bytes of the array from the "blue" bytes of the blue image (and in this first loop set the alpha byte to 255). I then load the green and red bitmaps, convert them to PixelFormat.Format24bppRgb, and pull the g/r value and add it to the correct place in the data array. The final data array then has the bgra bytes set correctly from what I can tell.
When I have the data array populated, I have used it to:
Create a PixelFormats.Bgra32 BitmapSource then convert that to a Bitmap.
Create a PixelFormat.Format32bppArgb Bitmap using the Bitmap constructor (width, height, stride, PixelForma, IntPtr)
Create a PixelFormat.Format32bppArgb Bitmap using pointers
All three ways of creating a return bitmap result in the image being "skewed" (sorry, I don't know of a better word).
The actual output (of all three ways of generating the final bitmap) is: Actual output
The desired output is something like (this was done in photoshop so it is slightly different): Desired output
The three file names (_blueFileName, _greenFileName, _redFileName) are set in the constructor and I check to make sure the files exist before creating the class. I can post that code if anyone wants it.
Can anyone tell me what I am doing wrong? I am guessing that is is due to the stride or something like that?
Note: I can't post the links to the images I am using as input as I don't have 10 reputation points. Maybe I could send the links via email or something if someone wants them as well.
Here is my code (with some stuff commented out, the comments describe what happens if each commented out block is used instead):
public Bitmap Merge()
{
// Load original "blue" bitmap.
Bitmap tblueBitmap = (Bitmap)Image.FromFile(_blueFileName);
int width = tblueBitmap.Width;
int height = tblueBitmap.Height;
// Convert to 24 bpp rgb (which is bgr on little endian machines)
Bitmap blueBitmap = new Bitmap(width, height, PixelFormat.Format24bppRgb);
using (Graphics gr = Graphics.FromImage(blueBitmap))
{
gr.DrawImage(tblueBitmap, 0, 0, width, height);
}
tblueBitmap.Dispose();
// Lock and copy to byte array.
BitmapData blueData = blueBitmap.LockBits(new Rectangle(0, 0, blueBitmap.Width, blueBitmap.Height), ImageLockMode.ReadOnly,
blueBitmap.PixelFormat);
int numbBytes = blueData.Stride*blueBitmap.Height;
byte[] blueBytes = new byte[numbBytes];
Marshal.Copy(blueData.Scan0, blueBytes, 0, numbBytes);
blueBitmap.UnlockBits(blueData);
blueData = null;
blueBitmap.Dispose();
int mult = 4;
byte[] data = new byte[(numbBytes/3)*mult];
int count = 0;
// Copy every third byte starting at 0 to the final data array (data).
for (int i = 0; i < data.Length / mult; i++)
{
// Check for overflow
if (blueBytes.Length <= count*3 + 2)
{
continue;
}
// First pass, set Alpha channel.
data[i * mult + 3] = 255;
// Set blue byte.
data[i*mult] = blueBytes[count*3];
count++;
}
// Cleanup.
blueBytes = null;
int generation = GC.GetGeneration(this);
GC.Collect(generation);
Bitmap tgreenBitmap = (Bitmap)Image.FromFile(_greenFileName);
Bitmap greenBitmap = new Bitmap(width, height, PixelFormat.Format24bppRgb);
using (Graphics gr = Graphics.FromImage(greenBitmap))
{
gr.DrawImage(tgreenBitmap, 0, 0, width, height);
}
tgreenBitmap.Dispose();
BitmapData greenData = greenBitmap.LockBits(new Rectangle(0, 0, greenBitmap.Width, greenBitmap.Height), ImageLockMode.ReadOnly,
greenBitmap.PixelFormat);
numbBytes = greenData.Stride * greenBitmap.Height;
byte[] greenBytes = new byte[numbBytes];
Marshal.Copy(greenData.Scan0, greenBytes, 0, numbBytes);
greenBitmap.UnlockBits(greenData);
greenData = null;
greenBitmap.Dispose();
count = 0;
for (int i = 0; i < data.Length / mult; i++)
{
if (greenBytes.Length <= count * 3 + 1)
{
continue;
}
// Set green byte
data[i * mult + 1] = greenBytes[count * 3 + 1];
count++;
}
greenBytes = null;
generation = GC.GetGeneration(this);
GC.Collect(generation);
Bitmap tredBitmap = (Bitmap)Image.FromFile(_redFileName);
Bitmap redBitmap = new Bitmap(width, height, PixelFormat.Format24bppRgb);
using (Graphics gr = Graphics.FromImage(redBitmap))
{
gr.DrawImage(tredBitmap, 0, 0, width, height);
}
tredBitmap.Dispose();
BitmapData redData = redBitmap.LockBits(new Rectangle(0, 0, redBitmap.Width, redBitmap.Height), ImageLockMode.ReadOnly,
redBitmap.PixelFormat);
numbBytes = redData.Stride * redBitmap.Height;
byte[] redBytes = new byte[numbBytes];
Marshal.Copy(redData.Scan0, redBytes, 0, numbBytes);
redBitmap.UnlockBits(redData);
redData = null;
redBitmap.Dispose();
count = 0;
for (int i = 0; i < data.Length / mult; i++)
{
if (redBytes.Length <= count * 3+2)
{
count++;
continue;
}
// set red byte
data[i * mult + 2] = redBytes[count * 3 + 2];
count++;
}
redBytes = null;
generation = GC.GetGeneration(this);
GC.Collect(generation);
int stride = (width*32 + 7)/8;
var bi = BitmapSource.Create(width, height, 96, 96, PixelFormats.Bgra32, null, data, stride);
// uncomment out below to see what a bitmap source to bitmap does. So far, it is exactly the same as
// the uncommented out lines below.
// ---------------------------------------------------------------------------------------------------
//return BitmapImage2Bitmap(bi);
unsafe
{
fixed (byte* p = data)
{
IntPtr ptr = (IntPtr)p;
// Trying the commented out lines returns the same bitmap as the uncommented out lines.
// ------------------------------------------------------------------------------------
byte* p2 = (byte*)ptr;
Bitmap retBitmap = new Bitmap(width, height, PixelFormat.Format32bppArgb);
BitmapData fData = retBitmap.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite,
PixelFormat.Format32bppArgb);
unsafe
{
for (int i = 0; i < fData.Height; i++)
{
byte* imgPtr = (byte*)(fData.Scan0 + (fData.Stride * i));
for (int x = 0; x < fData.Width; x++)
{
for (int ii = 0; ii < 4; ii++)
{
*imgPtr++ = *p2++;
}
//*imgPtr++ = 255;
}
}
}
retBitmap.UnlockBits(fData);
//Bitmap retBitmap = new Bitmap(width, height, GetStride(width, PixelFormat.Format32bppArgb),
// PixelFormat.Format32bppArgb, ptr);
return retBitmap;
}
}
}
private Bitmap BitmapImage2Bitmap(BitmapSource bitmapSrc)
{
using (MemoryStream outStream = new MemoryStream())
{
BitmapEncoder enc = new BmpBitmapEncoder();
enc.Frames.Add(BitmapFrame.Create(bitmapSrc));
enc.Save(outStream);
Bitmap bitmap = new Bitmap(outStream);
return new Bitmap(bitmap);
}
}
private int GetStride(int width, PixelFormat pxFormat)
{
int bitsPerPixel = ((int)pxFormat >> 8) & 0xFF;
int validBitsPerLine = width * bitsPerPixel;
int stride = ((validBitsPerLine + 31) / 32) * 4;
return stride;
}
You are missing the gap between the lines. The Stride value is not the amount of data in a line, it's the distance between the start of one line to the next. There may be a gap at the end of each line to align the next line on an even address boundary.
The Stride value can even be negative, then the image is stored upside down in memory. To get the data without the gaps and to handle all cases you need to copy one line at a time:
BitmapData blueData = blueBitmap.LockBits(new Rectangle(0, 0, blueBitmap.Width, blueBitmap.Height), ImageLockMode.ReadOnly, blueBitmap.PixelFormat);
int lineBytes = blueBitmap.Width * 3;
int numbBytes = lineBytes * blueBitmap.Height;
byte[] blueBytes = new byte[numbBytes];
for (int y = 0; y < blueBitmap.Height; y++) {
Marshal.Copy(blueData.Scan0 + y * blueData.Stride, blueBytes, y * lineBytes, lineBytes);
}
blueBitmap.UnlockBits(blueData);
blueBitmap.Dispose();
I'm trying to display dicom image using openDicom.net. What should i correct here?
openDicom.Image.PixelData obraz = new openDicom.Image.PixelData(file.DataSet);
// System.Drawing.Bitmap obrazek = (Bitmap)Bitmap.FromFile(element);
pictureBox1.Image = obraz;
pictureBox1.Show();
PixelData is not an image. PixelData is raw image information. In my experience, most DICOM files will be using jpeg2000 images. In order to convert them to something usable by a PictureBox, you'll need to convert it to an Image. For raw monochrome types, you can make it into a System.Drawing.Bitmap using the following conversion:
openDicom.Image.PixelData obraz = new openDicom.Image.PixelData(file.DataSet);
Bitmap img = new System.Drawing.Bitmap(obraz.Columns, obraz.Rows, System.Drawing.Imaging.PixelFormat.Format24bppRgb);
int resampleval = (int)Math.Pow(2, (obraz.BitsAllocated - obraz.BitsStored));
int pxCount = 0;
int temp = 0;
try
{
unsafe
{
BitmapData bd = img.LockBits(new Rectangle(0, 0, obraz.Columns, obraz.Rows), ImageLockMode.WriteOnly, img.PixelFormat);
for (int r = 0; r < bd.Height; r++)
{
byte* row = (byte*)bd.Scan0 + (r * bd.Stride);
for (int c = 0; c < bd.Width; c++)
{
temp = PixelData16[pxCount] / resampleval;
while (temp > 255)
temp = temp / resampleval;
row[(c * 3)] = (byte)temp;
row[(c * 3) + 1] = (byte)temp;
row[(c * 3) + 2] = (byte)temp;
pxCount++;
}
}
img.UnlockBits(bd);
}
}
catch
{
img = new Bitmap(10, 10);
}
pictureBox1.Image = img;
pictureBox1.Show();
For other image types, you'll need to do a similar conversion with the appropriate values. This conversion is strictly for monochrome types, and only after they have been converted from jpeg2000 to jpeg. Performing this operation on a jpeg2000 image will give you exactly half of the image filled with static and the other half completely empty.