Currently, SkiaSharp doesn't support tiff images. (It supports jpg, gif, bmp, png, and a few others.)
How can you convert a tiff image into a SKBitmap object?
One idea: Perhaps there's an efficient way to convert a tiff stream > png stream > SKBitmap object? I'm not sure System.Drawing could handle the tiff>png stream efficiently. Another possible option is LibTiff.Net, though would need an example of how to convert a tiff stream to a png stream.
Another idea: Access the tiff pixels and draw it directly onto a SKCanvas?
Other ideas?
#DougS
Your implementation is mostly correct, but it is not very performant because of multiple memory allocations and copies.
I noticed that you are creating 3 memory chunks with a total size of (w*h*4 bytes) each:
// the int[]
raster = new int[width * height];
// the SKColor[]
pixels = new SKColor[width * height];
// the bitmap
bitmap = new SKBitmap(width, height)
You are also copying the pixels between the memory multiple times:
// decode the TIFF (first copy)
tifImg.ReadRGBAImageOriented(width, height, raster, Orientation.TOPLEFT)
// convert to SKColor (second copy)
pixels[arrayOffset] = new SKColor(...);
// set bitmap pixels (third copy)
bitmap.Pixels = pixels;
I think I managed to create a similar method that decodes the stream, with only a single copy and memory allocation:
public static SKBitmap OpenTiff(Stream tiffStream)
{
// open a TIFF stored in the stream
using (var tifImg = Tiff.ClientOpen("in-memory", "r", tiffStream, new TiffStream()))
{
// read the dimensions
var width = tifImg.GetField(TiffTag.IMAGEWIDTH)[0].ToInt();
var height = tifImg.GetField(TiffTag.IMAGELENGTH)[0].ToInt();
// create the bitmap
var bitmap = new SKBitmap();
var info = new SKImageInfo(width, height);
// create the buffer that will hold the pixels
var raster = new int[width * height];
// get a pointer to the buffer, and give it to the bitmap
var ptr = GCHandle.Alloc(raster, GCHandleType.Pinned);
bitmap.InstallPixels(info, ptr.AddrOfPinnedObject(), info.RowBytes, null, (addr, ctx) => ptr.Free(), null);
// read the image into the memory buffer
if (!tifImg.ReadRGBAImageOriented(width, height, raster, Orientation.TOPLEFT))
{
// not a valid TIF image.
return null;
}
// swap the red and blue because SkiaSharp may differ from the tiff
if (SKImageInfo.PlatformColorType == SKColorType.Bgra8888)
{
SKSwizzle.SwapRedBlue(ptr.AddrOfPinnedObject(), raster.Length);
}
return bitmap;
}
}
A gist lives here: https://gist.github.com/mattleibow/0a09babdf0dc9d2bc3deedf85f9b57d6
Let me explain the code... I basically am creating the int[] as you are, but then passing that to the SKBitmap and letting it take over. I am pinning it as the SKBitmap lives in unmanaged memory and the GC may move it, but I am sure to unpin it when the bitmap is disposed.
Here is a more detailed step through:
// this does not actually allocate anything
// - the size is 0x0 / 0 bytes of pixels
var bitmap = new SKBitmap();
// I create the only buffer for pixel data
var raster = new int[width * height];
// pin the managed array so it can be passed to unmanaged memory
var ptr = GCHandle.Alloc(raster, GCHandleType.Pinned);
// pass the pointer of the array to the bitmap
// making sure to free the pinned memory in the dispose delegate
// - this is also not an allocation, as the memory already exists
bitmap.InstallPixels(info, ptr.AddrOfPinnedObject(), info.RowBytes, null, (addr, ctx) => ptr.Free(), null);
// the first and only copy from the TIFF stream into memory
tifImg.ReadRGBAImageOriented(width, height, raster, Orientation.TOPLEFT)
// an unfortunate extra memory operation for some platforms
// - this is usually just for Windows as it uses a BGR color format
// - Linux, macOS, iOS, Android all are RGB, so no swizzle is needed
SKSwizzle.SwapRedBlue(ptr.AddrOfPinnedObject(), raster.Length);
Just for some raw stats from a debug session, your code takes about 500ms for one of my images, but my code only takes 20ms.
I hope I don't sound too harsh/negative towards your code, I am not meaning that in any way.
I'm no expert, so I welcome any expert who can make this code more efficient (or has completely different ideas to get a tiff into a SKBitmap).
This uses LibTiff.Net
using BitMiracle.LibTiff.Classic;
. . . .
public static void ConvertTiffToSKBitmap(MemoryStream tifImage)
{
SKColor[] pixels;
int width, height;
// open a Tiff stored in the memory stream, and grab its pixels
using (Tiff tifImg = Tiff.ClientOpen("in-memory", "r", tifImage, new TiffStream()))
{
FieldValue[] value = tifImg.GetField(TiffTag.IMAGEWIDTH);
width = value[0].ToInt();
value = tifImg.GetField(TiffTag.IMAGELENGTH);
height = value[0].ToInt();
// Read the image into the memory buffer
int[] raster = new int[width * height];
if (!tifImg.ReadRGBAImageOriented(width, height, raster, Orientation.TOPLEFT))
{
// Not a valid TIF image.
}
// store the pixels
pixels = new SKColor[width * height];
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
int arrayOffset = y * width + x;
int rgba = raster[arrayOffset];
pixels[arrayOffset] = new SKColor((byte)Tiff.GetR(rgba), (byte)Tiff.GetG(rgba), (byte)Tiff.GetB(rgba), (byte)Tiff.GetA(rgba));
}
}
}
using (SKBitmap bitmap = new SKBitmap(width, height))
{
bitmap.Pixels = pixels;
// do something with the SKBitmap
}
}
Related
My game takes a screenshot each game loop and stores it memory. The user can then press "print screen" to trigger "SaveScreenshot" (see code below) to store each screenshot as a PNG and also compile them into an AVI using SharpAvi. The saving of images works fine, and a ~2sec AVI is produced, but it doesn't show any video when played. It's just the placeholder VLC Player icon. I think this is very close to working, but I can't determine what's wrong. Please see my code below. If anyone has any ideas, I'd be very appreciative!
private Bitmap GrabScreenshot()
{
try
{
Bitmap bmp = new Bitmap(this.ClientSize.Width, this.ClientSize.Height);
System.Drawing.Imaging.BitmapData data =
bmp.LockBits(this.ClientRectangle, System.Drawing.Imaging.ImageLockMode.WriteOnly,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);
GL.ReadPixels(0, 0, this.ClientSize.Width, this.ClientSize.Height, PixelFormat.Bgr, PixelType.UnsignedByte,
data.Scan0);
bmp.UnlockBits(data);
bmp.RotateFlip(RotateFlipType.RotateNoneFlipY);
return bmp;
} catch(Exception ex)
{
// occasionally getting GDI generic exception when rotating the image... skip that one.
return null;
}
}
private void SaveScreenshots()
{
var directory = "c:\\helioscreenshots\\";
var rootFileName = string.Format("{0}_", DateTime.UtcNow.Ticks);
var writer = new AviWriter(directory + rootFileName + ".avi")
{
FramesPerSecond = 30,
// Emitting AVI v1 index in addition to OpenDML index (AVI v2)
// improves compatibility with some software, including
// standard Windows programs like Media Player and File Explorer
EmitIndex1 = true
};
// returns IAviVideoStream
var aviStream = writer.AddVideoStream();
// set standard VGA resolution
aviStream.Width = this.ClientSize.Width;
aviStream.Height = this.ClientSize.Height;
// class SharpAvi.KnownFourCCs.Codecs contains FOURCCs for several well-known codecs
// Uncompressed is the default value, just set it for clarity
aviStream.Codec = KnownFourCCs.Codecs.Uncompressed;
// Uncompressed format requires to also specify bits per pixel
aviStream.BitsPerPixel = BitsPerPixel.Bpp32;
var index = 0;
while (this.Screenshots.Count > 0)
{
Bitmap screenshot = this.Screenshots.Dequeue();
var screenshotBytes = ImageToBytes(screenshot);
// write data to a frame
aviStream.WriteFrame(true, // is key frame? (many codecs use concept of key frames, for others - all frames are keys)
screenshotBytes, // array with frame data
0, // starting index in the array
screenshotBytes.Length); // length of the data
// save it!
// NOTE: compared jpeg, gif, and png. PNG had smallest file size.
index++;
screenshot.Save(directory + rootFileName + index + ".png", System.Drawing.Imaging.ImageFormat.Png);
}
// save the AVI!
writer.Close();
}
public static byte[] ImageToBytes(Image img)
{
using (var stream = new MemoryStream())
{
img.Save(stream, System.Drawing.Imaging.ImageFormat.Png);
return stream.ToArray();
}
}
From what I see, you're providing the byte-array in png-encoding, yet the stream is configured as KnownFourCCs.Codecs.Uncompressed.
Furthermore, from the manual:
AVI expects uncompressed data in format of standard Windows DIB, that is bottom-up bitmap of the specified bit-depth. For each frame, put its data in byte array and call IAviVideoStream.WriteFrame()
Next, all encoders expect input image data in specific format. It's BGR32 top-down - 32 bits per pixel, blue byte first, alpha byte not used, top line goes first. This is the format you can often get from existing images. [...] So, you simply pass an uncompressed top-down BGR32
I would retrieve the byte-array directly from the Bitmap using LockBits and Marshal.Copy as described in the manual.
I've a set of images that I'm programmatically drawing a simple watermark on them using System.Windows and System.Windows.Media.Imaging (yes, not with GDI+) by following a tutorial in here.
Most of the images are not more than 500Kb, but after applying a simple watermark, which is a text with a transparent background, the image size is drastically increasing.
For example, a 440Kb image is becoming 8.33MB after applying the watermark with the below method, and that is shocking me.
private static BitmapFrame ApplyWatermark(BitmapFrame image, string waterMarkText) {
const int x = 5;
var y = image.Height - 20;
var targetVisual = new DrawingVisual();
var targetContext = targetVisual.RenderOpen();
var brush = (SolidColorBrush)(new BrushConverter().ConvertFrom("#FFFFFF"));
brush.Opacity = 0.5;
targetContext.DrawImage(image, new Rect(0, 0, image.Width, image.Height));
targetContext.DrawRectangle(brush, new Pen(), new Rect(0, y, image.Width, 20));
targetContext.DrawText(new FormattedText(waterMarkText, CultureInfo.CurrentCulture, FlowDirection.LeftToRight,
new Typeface("Batang"), 13, Brushes.Black), new Point(x, y));
targetContext.Close();
var target = new RenderTargetBitmap((int)image.Width, (int)image.Height, 96, 96, PixelFormats.Default);
target.Render(targetVisual);
var targetFrame = BitmapFrame.Create(target);
return targetFrame;
}
I've noticed that the image quality is improved compared than the original image. The image is more smoother and colors are more lighter. But, you know I don't really want this. I want the image to be as it is, but include the watermark. No quality increases, and of course no drastic changes in image size.
Is there any settings that I'm missing in here to tell my program to keep the quality as same as source image? How can I prevent the significant change of the image size after the changes in my ApplyWatermark method?
Edit
1. This is how I convert BitmapFrame to Stream. Then I use that Stream to save the image to AmazonS3
private Stream EncodeBitmap(BitmapFrame image) {
BitmapEncoder enc = new BmpBitmapEncoder();
enc.Frames.Add(BitmapFrame.Create(image));
var memoryStream = new MemoryStream();
enc.Save(memoryStream);
return memoryStream;
}
2. This is how I get the BitmapFrame from Stream
private static BitmapFrame ReadBitmapFrame(Stream stream) {
var photoDecoder = BitmapDecoder.Create(
stream,
BitmapCreateOptions.PreservePixelFormat,
BitmapCacheOption.None);
return photoDecoder.Frames[0];
}
3. This is how I read the file from local directory
public Stream FindFileInLocalImageDir() {
try {
var path = #"D:\Some\Path\Image.png";
return !File.Exists(path) ? null : File.Open(path, FileMode.Open, FileAccess.Read, FileShare.Read);
} catch (Exception) {
return null;
}
}
The problem is that when you edit the image, the compression is gone. A 730x1108 JPG with 433kB disc size with 32bit (you mentioned transparency, so ARGB) will need at least 730 * 1108 * 4 = 3,09MB on disc. Of course you can compress it afterwards again (for disc, network stream of what else).
This is the reason why image software always needs much memory even when working with compressed data.
Conclusion: You will need the free memory to work with the image. Not possible to have it otherwise completly at hand.
The reason I asked my question in the comments earlier, is because I noticed there were several different encoders available. A bitmap usually has a significantly larger file size, due to the amount of information it's storing about your image.
I haven't tested this myself, but have you tried a different encoder?
var pngEncoder = new PngBitmapEncoder();
pngEncoder.Frames.Add(ApplyWatermark(null, null));
MemoryStream stm = File.Create(image);
pngEncoder.Save(stm);
return stm;
I am trying to convert a raw RGB24 data array into a bitmap in C#, but I am running into trouble in doing so.
This is the corresponding code:
using System.Runtime.InteropServices;
byte[] frame;
//... code
frame = new byte[1280 * 960];
// code to get the frame
System.Runtime.InteropServices.GCHandle pinnedArray =
GCHandle.Alloc(frame, GCHandleType.Pinned);
IntPtr pointer = pinnedArray.AddrOfPinnedObject();
Bitmap bmp = new Bitmap(width, height, 3 * width,
PixelFormat.Format24bppRgb, pointer);
MemoryStream JPEGStream = new MemoryStream ();
bmp.Save(filepath, System.Drawing.Imaging.ImageFormat.Bmp);**
I get a
"An unhandled exception of type 'System.AccessViolationException' occurred in System.Drawing.dll"
with the code above.
However if i change:
Bitmap bmp = new Bitmap(width, height, stride,
PixelFormat.Format24bppRgb, pointer);
to
Bitmap bmp = new Bitmap(width/3, height/3, stride,
PixelFormat.Format24bppRgb, pointer);
I do not crash and get 3 images covering 1/3 of the total area. What I should be getting is a single image that covers the entire 1280 X 960 area space.
Format24bppRgb means one pixel takes 24 bits (3 bytes), not 1 as you pre-allocate in your sample.
Change amount of bytes allocated to account for bits-per-pixel (in bytes, if using different sizes don't forget padding):
frame = new byte[1280 * 960 * 3]; // 24bpp = 3 bytes
Have you tried width-1 and height-1?
I am using .NET4.5, Windows Forms and C#.
I am loading an image onto a button using:
theButton.BackgroundImage = Image.FromFile("file.png");
The issue is that my button is 128x128 and the image is 4000x8000. The line above consumes very large amounts of memory because file.png is so large.
Does anyone know of a technique I can use to reduce this memory footprint? I am thinking of some function like this:
Image.FromFile(file,width,height);
Any pointers? Thanks.
Yes it works. It's quite simple to resize the image and then display it on button.
But, I don't think that the above code maintains the aspect ratio of the image.
It's quite simple to resize the image with aspect ratio; and then display it on button.
Below is the sample code helps you to resize the image by maintaining the aspect ratio.
You can define a new class or implement the "ResizeImage" method in an existing class. Whichever is comfortable to you.
public class ImageManipulation
{
public static Bitmap ResizeImage(Bitmap originalBitmap, int newWidth, int maxHeight, bool onlyResizeIfWider)
{
if (onlyResizeIfWider)
{
if (originalBitmap.Width <= newWidth)
{
newWidth = originalBitmap.Width;
}
}
int newHeight = originalBitmap.Height * newWidth / originalBitmap.Width;
if (newHeight > maxHeight)
{
// Resize with height instead
newWidth = originalBitmap.Width * maxHeight / originalBitmap.Height;
newHeight = maxHeight;
}
var alteredImage = new Bitmap(originalBitmap, new Size(newWidth, newHeight));
alteredImage.SetResolution(72, 72);
return alteredImage;
}
}
USAGE:
private void DisplayPhoto()
{
// make sure the file is JPEG or GIF
System.IO.FileInfo testFile = new System.IO.FileInfo(myFile);
// Create a new stream to load this photo into
FileStream myFileStream = new FileStream(myFile, FileMode.Open, FileAccess.Read);
// Create a buffer to hold the stream of bytes
photo = new byte[myFileStream.Length];
// Read the bytes from this stream and put it into the image buffer
myStream.Read(photo, 0, (int)myFileStream.Length);
// Close the stream
myFileStream.Close();
// Create a new MemoryStream and write all the information from
// the byte array into the stream
MemoryStream myStream = new MemoryStream(photo, true);
myStream.Write(photo, 0, photo.Length);
// Use the MemoryStream to create the new BitMap object
Bitmap FinalImage = new Bitmap(myStream);
upicPhoto.Image = ImageManipulation.ResizeImage(
FinalImage,
upicPhoto.Width,
upicPhoto.Height,
true);
// Close the stream
myStream.Close();
}
I think your best path here is to just resize the image, to 128x128.
An image that large is always going to take up a lot of memory, no matter what you do with it.
This will also allow you to make the image something that will look good at that size.
This is quite a general problem, AFAIK you have few possibilities
Compress image before uploading , in real world this will not work.
Put a check on size and dimensions of image, in real world it works, even linkedin, facebook they won't allow us to upload images above there specified dimensions.
Use buffering, this is cleanest way you can do in .net
Use some third party plugins or development enviornment, I have done it in Silverlight
I have the Image of a PictureBox pointing to a certain file "A". At execution time I want to change the Image of the PictureBox to a different one "B" but I get the following error:
"A first chance exception of type 'System.IO.IOException' occurred in mscorlib.dll
Additional information: The process cannot access the file "A" because it is being used by another process."
I'm setting the Image as follows:
pbAvatar.Image = new Bitmap(filePath);
How can I unlock the first file?
Here is my approach to opening an image without locking the file...
public static Image FromFile(string path)
{
var bytes = File.ReadAllBytes(path);
var ms = new MemoryStream(bytes);
var img = Image.FromStream(ms);
return img;
}
UPDATE: I did some perf tests to see which method was the fastest. I compared it to #net_progs "copy from bitmap" answer (which seems to be the closest to correct, though does have some issues). I loaded the image 10000 times for each method and calculated the average time per image. Here are the results:
Loading from bytes: ~0.26 ms per image.
Copying from bitmap: ~0.50 ms per image.
The results seem to make sense since you have to create the image twice using the copy from bitmap method.
UPDATE:
if you need a BitMap you can do:
return (Bitmap)Image.FromStream(ms);
This is a common locking question widely discussed over the web.
The suggested trick with stream will not work, actually it works initially, but causes problems later. For example, it will load the image and the file will remain unlocked, but if you try to save the loaded image via Save() method, it will throw a generic GDI+ exception.
Next, the way with per pixel replication doesn't seem to be solid, at least it is noisy.
What I found working is described here: http://www.eggheadcafe.com/microsoft/Csharp/35017279/imagefromfile--locks-file.aspx
This is how the image should be loaded:
Image img;
using (var bmpTemp = new Bitmap("image_file_path"))
{
img = new Bitmap(bmpTemp);
}
I was looking for a solution to this problem and this method works fine for me so far, so I decided to describe it, since I found that many people advise the incorrect stream approach here and over the web.
Using a filestream will unlock the file once it has been read from and disposed:
using (var fs = new System.IO.FileStream("c:\\path to file.bmp", System.IO.FileMode.Open))
{
var bmp = new Bitmap(fs);
pct.Image = (Bitmap) bmp.Clone();
}
Edit: Updated to allow the original bitmap to be disposed, and allow the FileStream to be closed.
THIS ANSWER IS NOT SAFE - See comments, and see discussion in net_prog's answer. The Edit to use Clone does not make it any safer - Clone clones all fields, including the filestream reference, which in certain circumstances will cause a problem.
You can't dispose / close a stream while a bitmap object is still using it. (Whether the bitmap object will need access to it again is only deterministic if you know what type of file you are working with and exactly what operations you will be performing. -- for example for SOME .gif format images, the stream is closed before the constructor returns.)
Clone creates an "exact copy" of the bitmap (per documentation; ILSpy shows it calling native methods, so it's too much to track down right now) likely, it copies that Stream data as well -- or else it wouldn't be an exact copy.
Your best bet is creating a pixel-perfect replica of the image -- though YMMV (with certain types of images there may be more than one frame, or you may have to copy palette data as well.) But for most images, this works:
static Bitmap LoadImage(Stream stream)
{
Bitmap retval = null;
using (Bitmap b = new Bitmap(stream))
{
retval = new Bitmap(b.Width, b.Height, b.PixelFormat);
using (Graphics g = Graphics.FromImage(retval))
{
g.DrawImage(b, Point.Empty);
g.Flush();
}
}
return retval;
}
And then you can invoke it like such:
using (Stream s = ...)
{
Bitmap x = LoadImage(s);
}
As far as I know, this is 100% safe, since the resulting image is 100% created in memory, without any linked resources, and with no open streams left behind in memory. It acts like any other Bitmap that's created from a constructor that doesn't specify any input sources, and unlike some of the other answers here, it preserves the original pixel format, meaning it can be used on indexed formats.
Based on this answer, but with extra fixes and without external library import.
/// <summary>
/// Clones an image object to free it from any backing resources.
/// Code taken from http://stackoverflow.com/a/3661892/ with some extra fixes.
/// </summary>
/// <param name="sourceImage">The image to clone</param>
/// <returns>The cloned image</returns>
public static Bitmap CloneImage(Bitmap sourceImage)
{
Rectangle rect = new Rectangle(0, 0, sourceImage.Width, sourceImage.Height);
Bitmap targetImage = new Bitmap(rect.Width, rect.Height, sourceImage.PixelFormat);
targetImage.SetResolution(sourceImage.HorizontalResolution, sourceImage.VerticalResolution);
BitmapData sourceData = sourceImage.LockBits(rect, ImageLockMode.ReadOnly, sourceImage.PixelFormat);
BitmapData targetData = targetImage.LockBits(rect, ImageLockMode.WriteOnly, targetImage.PixelFormat);
Int32 actualDataWidth = ((Image.GetPixelFormatSize(sourceImage.PixelFormat) * rect.Width) + 7) / 8;
Int32 h = sourceImage.Height;
Int32 origStride = sourceData.Stride;
Boolean isFlipped = origStride < 0;
origStride = Math.Abs(origStride); // Fix for negative stride in BMP format.
Int32 targetStride = targetData.Stride;
Byte[] imageData = new Byte[actualDataWidth];
IntPtr sourcePos = sourceData.Scan0;
IntPtr destPos = targetData.Scan0;
// Copy line by line, skipping by stride but copying actual data width
for (Int32 y = 0; y < h; y++)
{
Marshal.Copy(sourcePos, imageData, 0, actualDataWidth);
Marshal.Copy(imageData, 0, destPos, actualDataWidth);
sourcePos = new IntPtr(sourcePos.ToInt64() + origStride);
destPos = new IntPtr(destPos.ToInt64() + targetStride);
}
targetImage.UnlockBits(targetData);
sourceImage.UnlockBits(sourceData);
// Fix for negative stride on BMP format.
if (isFlipped)
targetImage.RotateFlip(RotateFlipType.Rotate180FlipX);
// For indexed images, restore the palette. This is not linking to a referenced
// object in the original image; the getter of Palette creates a new object when called.
if ((sourceImage.PixelFormat & PixelFormat.Indexed) != 0)
targetImage.Palette = sourceImage.Palette;
// Restore DPI settings
targetImage.SetResolution(sourceImage.HorizontalResolution, sourceImage.VerticalResolution);
return targetImage;
}
To call, simply use:
/// <summary>Loads an image without locking the underlying file.</summary>
/// <param name="path">Path of the image to load</param>
/// <returns>The image</returns>
public static Bitmap LoadImageSafe(String path)
{
using (Bitmap sourceImage = new Bitmap(path))
{
return CloneImage(sourceImage);
}
}
Or, from bytes:
/// <summary>Loads an image from bytes without leaving open a MemoryStream.</summary>
/// <param name="fileData">Byte array containing the image to load.</param>
/// <returns>The image</returns>
public static Bitmap LoadImageSafe(Byte[] fileData)
{
using (MemoryStream stream = new MemoryStream(fileData))
using (Bitmap sourceImage = new Bitmap(stream)) {
{
return CloneImage(sourceImage);
}
}
Here's the technique I'm currently using, and seems to work best. It has the advantage of producing a Bitmap object with the same pixel format (24-bit or 32-bit) and resolution (72 dpi, 96 dpi, whatever) as the source file.
// ImageConverter object used to convert JPEG byte arrays into Image objects. This is static
// and only gets instantiated once.
private static readonly ImageConverter _imageConverter = new ImageConverter();
This can be used as often as needed, as follows:
Bitmap newBitmap = (Bitmap)_imageConverter.ConvertFrom(File.ReadAllBytes(fileName));
Edit:
Here's an update of the above technique: https://stackoverflow.com/a/16576471/253938
(The accepted answer is wrong. When you try to LockBits(...) on the cloned bitmap eventually you will encounter GDI+ errors.)
I see only 3 ways to get out of this:
copy your file to a temporary file and open that the easy way new Bitmap(temp_filename)
open your file, read image, create a pixel-size-pixelformat copy (don't Clone()) and dispose the first bitmap
(accept the locked-file-feature)
I suggest to use PixelMap which is available on NuGet
Very easy to use and much faster than standard Bitmap from .NET
PixelMap pixelMap = new PixelMap(path);
pictureBox1.Image = pixelMap.GetBitmap();
Read it into the stream, create bitmap, close the stream.