Nested parenthesis order of evaluation - Depth vs Ltr - c#

public static float BackInOut(float from, float to, float time)
{
const float s = 1.70158f * 1.525f;
to -= from;
if ((time /= .5f) < 1f)
// 5 6 3 4 0 1 2 7
return to * .5f * (time * time * ((s + 1f) * time - s)) + from;
// 3 0 1 2
return to * .5f * ((time -= 2) * time * ((s + 1f) * time + s) + 2f) + from;
}
In the second return is time used before (and after) being modified? Yes?
// 1 0 2 3
return to * .5f * ((time -= 2) * time * ((s + 1f) * time + s) + 2f) + from;
Or only after, like this? Idk?
Thanks.
source: http://robertpenner.com/easing/
EDIT:
Tried to simplify:
using System;
namespace New_folder
{
class Program
{
static public int s { get; set; } = 2;
static private int _test = 10;
static public int time
{
get
{
Console.WriteLine(_test);
return _test;
}
set { _test = value; }
}
static public void Main(string[] args)
{
var test = (time -= 2) * time * ((s + 1f) * time + s);
}
}
}
This shows:
10
8
8
which shows that my second guess is right and time is only used after modification i think
I guess i was just confused.
It goes into the right branch just to evaluate the deepest nesting then when back on higher level goes back to ltr and does not care where it was duh
thanks

Simplify the example
To answer your question "In the second return is time used before (and after) being modified? Yes?"
How about this?
public int ReturnZeroIfValueIsNegative(int x)
{
if ((x += 100) <= 100) // the "+=" operator changed the value of x
{
return 0;
}
return x; // this will return the altered value of x
}
The above may be re-written to
x = x + 100;
if (x <= 100)
{
return 0;
}
return x;
Order of operations
You could take a look here for a general explanation regarding the order of operations for programming languages.

Related

Big numbers in function in windows forms

im trying to do a function graph, its working but for some reason when i display function its giving me big numbers, i dunno why code looks fine to me, maybe i did something wrong with sample that i use. If you, for some reason, want to know what writen in these 3 textbox, here - first one is starting point, second one is end point, and last one is step.
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
{
{
double xn = Convert.ToDouble(textBox1.Text);
double xk = Convert.ToDouble(textBox2.Text);
double xh = Convert.ToDouble(textBox3.Text);
if ((xn >= xk) || (xh > (xk - xn))) { MessageBox.Show("Данные заполнены неверно"); }
else
{
double z;
double x = xn;
while (x <= xk)
{
if (x <= 0) z = (1 + x) / Math.Pow(1 + Math.Pow(x, 2), 1 / 3);
else
if (x > 0 && x <= 1) z = -x + Math.Exp(-2 * x);
else z = Math.Pow(Math.Abs(2 - x), 1 / 3);
chart1.Series[0].Points.AddXY(x, z);
x += xh;
}
}
}
}
}
I believe your problem might be with the division between two integers of 1 / 3 in the expression
Math.Pow(1 + Math.Pow(x, 2), 1 / 3)
because
double oneThirdWrong = 1 / 3; // is equal to 0
and you may be expecting
double oneThirdRight = 1 / (double)3; // is 0.333...
Test Code (in .Net Core 3)
Console.WriteLine($"One-third wrong {1/3}" );
Console.WriteLine($"One-third right {1/3.0}" );

C# Winforms: Returning values to a button event

I'm completely new to C# programming, and I'm trying to make a custom calculator using Windows Forms.
Three text boxes txtMinSkill, txtMaxSkill, txtCooldown should be keyed values into, and clicking a button buttonCalculate should do some calculations and present the result in a label resultLabel.
I have managed to get everything working down to the skill.Display function, but I have no idea how to display the variables hours, minutes, seconds in the label. When I try to access them from within the button event, I just get a message that it does not exist in the current context. And I can't access the label from the Display method.
Can anyone assist? Thanks!
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void buttonCalculate_Click(object sender, EventArgs e)
{
double minSkill;
double maxSkill;
double coolDown;
minSkill = float.Parse(txtMinSkill.Text) * 10;
maxSkill = float.Parse(txtMaxSkill.Text) * 10;
coolDown = float.Parse(txtCooldown.Text);
SkillGainCalculator skill = new SkillGainCalculator();
skill.IntegerMax(maxSkill);
skill.RemainderMax(maxSkill);
skill.RemainderMin(minSkill);
skill.IntegerMin(minSkill);
skill.Calculate(minSkill,maxSkill);
skill.Display(coolDown);
}
}
class SkillGainCalculator
{
//member variables
private int integerMax;
private int remainderMax;
private int integerMin;
private int remainderMin;
private double counter;
const int constant = 6480;
private int i;
private double totalTime;
private int hours;
private int minutes;
private int seconds;
public double IntegerMax(double intMax)
{
integerMax = (int)((1000 - intMax) / 50);
return integerMax;
}
public int RemainderMax(double intMax)
{
remainderMax = (int)((1000 - intMax) % 50);
return remainderMax;
}
public int RemainderMin(double intMin)
{
remainderMin = (int)((1000 - intMin) % 50);
return remainderMin;
}
public int IntegerMin(double intMin)
{
if (remainderMin == 0)
{
integerMin = (int)((1000 - intMin) / 50) - 1;
return integerMin;
}
else
{
integerMin = (int)((1000 - intMin) / 50);
return integerMin;
}
}
public double Calculate(double intMax, double intMin)
{
for (i = integerMax; i <= integerMin; i++)
{
if (i == integerMax && remainderMax != 0)
{
if (intMax <= 700)
{
counter = counter + constant * Math.Pow(0.8, i) * (50 - remainderMax) / 50;
}
else
{
counter = counter + constant * Math.Pow(0.8, i) * (50 - remainderMax) / 50;
}
}
else if (i == integerMin && remainderMin != 0)
{
if (intMin < 700)
{
counter = counter + constant * Math.Pow(0.8, i) * remainderMin / 50;
}
else
{
counter = counter + constant * Math.Pow(0.8, i) * remainderMin / 50;
}
}
else if (i >= 6)
{
counter = counter + constant * Math.Pow(0.8, i);
}
else
{
counter = counter + constant * Math.Pow(0.8, i);
}
}
return counter;
}
public void Display(double clD)
{
totalTime = counter * clD / 3600;
hours = (int)(counter * clD / 3600);
minutes = (int)((totalTime - hours) * 3600 / 60);
seconds = (int)((totalTime - hours) * 3600 % 60);
}
}
I have no idea, what your code does and as #Steve already said your question misses some key infos. Nevertheless try changing your two methods Display and buttonCalculate_Click like this:
public string Display(double clD)
{
totalTime = counter * clD / 3600;
hours = (int)(counter * clD / 3600);
minutes = (int)((totalTime - hours) * 3600 / 60);
seconds = (int)((totalTime - hours) * 3600 % 60);
return "Hours: " + hours + ", Minutes: " + minutes + ", Seconds: " + seconds;
}
private void buttonCalculate_Click(object sender, EventArgs e)
{
double minSkill;
double maxSkill;
double coolDown;
minSkill = float.Parse(txtMinSkill.Text) * 10;
maxSkill = float.Parse(txtMaxSkill.Text) * 10;
coolDown = float.Parse(txtCooldown.Text);
SkillGainCalculator skill = new SkillGainCalculator();
skill.IntegerMax(maxSkill);
skill.RemainderMax(maxSkill);
skill.RemainderMin(minSkill);
skill.IntegerMin(minSkill);
skill.Calculate(minSkill, maxSkill);
resultLabel.Text = skill.Display(coolDown);
}
The method Display now generates the string you want to display and returns it when called so you can set resultLabel.Text from you calling method:

Write getter for Seconds of Fast Days

I have a function called getDayTimeParameter(), which gets the day parameter from 0 to 1. I also have two functions which are getters of hour and minute. I need to show time as hh:mm:ss. But the problem is I have no idea how to write getter for seconds. Thanks in advance!
public float getDayTimeParameter()
{
return System.DateTime.Now.Minute / 60f + System.DateTime.Now.Second / 3600f + System.DateTime.Now.Millisecond / 3600000f;
}
public int getHour()
{
int dayMinute = Mathf.RoundToInt(24 * 60 * getDayTimeParameter());
return Mathf.FloorToInt(dayMinute / 60f);
}
public int getMinute()
{
int dayMinute = Mathf.RoundToInt(24 * 60 * getDayTimeParameter());
int hour = getHour();
return Mathf.FloorToInt((dayMinute / 60f - hour) * 60f);
}
public int getSecond()
{
// What to do in here?
}
public string getFullTimeString()
{
int hour = getHour();
int minute = getMinute();
int second = getSecond();
string minutesString;
if (minute < 10)
{
minutesString = "0" + minute;
}
else {
minutesString = "" + minute;
}
string hoursString;
if (hour < 10)
{
hoursString = "0" + hour;
}
else
{
hoursString = "" + hour;
}
string secondsString;
if (second < 10)
{
secondsString = "0" + second;
}
else
{
secondsString = "" + second;
}
return hoursString + ":" + minutesString + ":" + secondsString;
}
Given that your getDayTimeParameter function returns 0-1, and a full day equals 1
then the following should give you accurate Hours, Minutes and Seconds.
public int getHour()
{
return Mathf.FloorToInt(getDayTimeParameter() * 24);
}
public int getMinute()
{
var hourSubtraction = getHour() * 60;
return Mathf.FloorToInt((getDayTimeParameter() * 1440) - hourSubtraction);
}
public int getSecond()
{
var hourSubtraction = getHour() * 3600;
var minuteSubtraction = getMinute() * 60;
return Mathf.FloorToInt((getDayTimeParameter() * 86400) - hourSubtraction - minuteSubtraction);
}
can't you just use DateTime.Now.ToString("hh:mm:ss") with its various options if necessary

RSI vs Wilder's RSI Calculation Problems

I am having trouble getting a smoothed RSI. The below picture is from freestockcharts.com. The calculation uses this code.
public static double CalculateRsi(IEnumerable<double> closePrices)
{
var prices = closePrices as double[] ?? closePrices.ToArray();
double sumGain = 0;
double sumLoss = 0;
for (int i = 1; i < prices.Length; i++)
{
var difference = prices[i] - prices[i - 1];
if (difference >= 0)
{
sumGain += difference;
}
else
{
sumLoss -= difference;
}
}
if (sumGain == 0) return 0;
if (Math.Abs(sumLoss) < Tolerance) return 100;
var relativeStrength = sumGain / sumLoss;
return 100.0 - (100.0 / (1 + relativeStrength));
}
https://stackoverflow.com/questions/...th-index-using-some-programming-language-js-c
This seems to be the pure RSI with no smoothing. How does a smoothed RSI get calculated? I have tried changing it to fit the definitions of the these two sites however the output was not correct. It was barely smoothed.
(I don't have enough rep to post links)
tc2000 -> Indicators -> RSI_and_Wilder_s_RSI (Wilder's smoothing = Previous MA value + (1/n periods * (Close - Previous MA)))
priceactionlab -> wilders-cutlers-and-harris-relative-strength-index (RS = EMA(Gain(n), n)/EMA(Loss(n), n))
Can someone actually do the calculation with some sample data?
Wilder's RSI vs RSI
In order to calculate the RSI, you need a period to calculate it with. As noted on Wikipedia, 14 is used quite often.
So the calculation steps would be as follows:
Period 1 - 13, RSI = 0
Period 14:
AverageGain = TotalGain / PeriodCount;
AverageLoss = TotalLoss / PeriodCount;
RS = AverageGain / AverageLoss;
RSI = 100 - 100 / (1 + RS);
Period 15 - to period (N):
if (Period(N)Change > 0
AverageGain(N) = ((AverageGain(N - 1) * (PeriodCount - 1)) + Period(N)Change) / PeriodCount;
else
AverageGain(N) = (AverageGain(N - 1) * (PeriodCount - 1)) / PeriodCount;
if (this.Change < 0)
AverageLoss(N) = ((AverageLoss(N - 1) * (PeriodCount - 1)) + Math.Abs(Period(N)Change)) / PeriodCount;
else
AverageLoss(N) = (AverageLoss(N - 1) * (PeriodCount - 1)) / PeriodCount;
RS = AverageGain / AverageLoss;
RSI = 100 - (100 / (1 + RS));
Thereafter, to smooth the values, you need to apply a moving average of a certain period to your RSI values. To do that, traverse your RSI values from the last index to the first and calculate your average for the current period based on the preceding x smoothing periods.
Once done, just reverse the list of values to get the expected order:
List<double> SmoothedRSI(IEnumerable<double> rsiValues, int smoothingPeriod)
{
if (rsiValues.Count() <= smoothingPeriod)
throw new Exception("Smoothing period too large or too few RSI values passed.");
List<double> results = new List<double>();
List<double> reversedRSIValues = rsiValues.Reverse().ToList();
for (int i = 1; i < reversedRSIValues.Count() - smoothingPeriod - 1; i++)
results.Add(reversedRSIValues.Subset(i, i + smoothingPeriod).Average());
return results.Reverse().ToList();
}
The Subset method is just a simple extension method as follows:
public static List<double> Subset(this List<double> values, int start, int end)
{
List<double> results = new List<double>();
for (int i = start; i <= end; i++)
results.Add(values[i]);
return results;
}
Disclaimer, I did not test the code, but it should give you an idea of how the smoothing is applied.
You can't get accurate values without buffers / global variables to store data.
This is a smoothed indicator, meaning it doesn't only use 14 bars but ALL THE BARS:
Here's a step by step article with working and verified source codes generating exactly the same values if prices and number of available bars are the same, of course (you only need to load the price data from your source):
Tested and verified:
using System;
using System.Data;
using System.Globalization;
namespace YourNameSpace
{
class PriceEngine
{
public static DataTable data;
public static double[] positiveChanges;
public static double[] negativeChanges;
public static double[] averageGain;
public static double[] averageLoss;
public static double[] rsi;
public static double CalculateDifference(double current_price, double previous_price)
{
return current_price - previous_price;
}
public static double CalculatePositiveChange(double difference)
{
return difference > 0 ? difference : 0;
}
public static double CalculateNegativeChange(double difference)
{
return difference < 0 ? difference * -1 : 0;
}
public static void CalculateRSI(int rsi_period, int price_index = 5)
{
for(int i = 0; i < PriceEngine.data.Rows.Count; i++)
{
double current_difference = 0.0;
if (i > 0)
{
double previous_close = Convert.ToDouble(PriceEngine.data.Rows[i-1].Field<string>(price_index));
double current_close = Convert.ToDouble(PriceEngine.data.Rows[i].Field<string>(price_index));
current_difference = CalculateDifference(current_close, previous_close);
}
PriceEngine.positiveChanges[i] = CalculatePositiveChange(current_difference);
PriceEngine.negativeChanges[i] = CalculateNegativeChange(current_difference);
if(i == Math.Max(1,rsi_period))
{
double gain_sum = 0.0;
double loss_sum = 0.0;
for(int x = Math.Max(1,rsi_period); x > 0; x--)
{
gain_sum += PriceEngine.positiveChanges[x];
loss_sum += PriceEngine.negativeChanges[x];
}
PriceEngine.averageGain[i] = gain_sum / Math.Max(1,rsi_period);
PriceEngine.averageLoss[i] = loss_sum / Math.Max(1,rsi_period);
}else if (i > Math.Max(1,rsi_period))
{
PriceEngine.averageGain[i] = ( PriceEngine.averageGain[i-1]*(rsi_period-1) + PriceEngine.positiveChanges[i]) / Math.Max(1, rsi_period);
PriceEngine.averageLoss[i] = ( PriceEngine.averageLoss[i-1]*(rsi_period-1) + PriceEngine.negativeChanges[i]) / Math.Max(1, rsi_period);
PriceEngine.rsi[i] = PriceEngine.averageLoss[i] == 0 ? 100 : PriceEngine.averageGain[i] == 0 ? 0 : Math.Round(100 - (100 / (1 + PriceEngine.averageGain[i] / PriceEngine.averageLoss[i])), 5);
}
}
}
public static void Launch()
{
PriceEngine.data = new DataTable();
//load {date, time, open, high, low, close} values in PriceEngine.data (6th column (index #5) = close price) here
positiveChanges = new double[PriceEngine.data.Rows.Count];
negativeChanges = new double[PriceEngine.data.Rows.Count];
averageGain = new double[PriceEngine.data.Rows.Count];
averageLoss = new double[PriceEngine.data.Rows.Count];
rsi = new double[PriceEngine.data.Rows.Count];
CalculateRSI(14);
}
}
}
For detailed step-by-step instructions, I wrote a lengthy article, you can check it here: https://turmanauli.medium.com/a-step-by-step-guide-for-calculating-reliable-rsi-values-programmatically-a6a604a06b77
P.S. functions only work for simple indicators (Simple Moving Average), even Exponential Moving Average, Average True Range absolutely require global variables to store previous values.

c# LOESS/LOWESS regression [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed last year.
Improve this question
Do you know of a .net library to perform a LOESS/LOWESS regression? (preferably free/open source)
Port from java to c#
public class LoessInterpolator
{
public static double DEFAULT_BANDWIDTH = 0.3;
public static int DEFAULT_ROBUSTNESS_ITERS = 2;
/**
* The bandwidth parameter: when computing the loess fit at
* a particular point, this fraction of source points closest
* to the current point is taken into account for computing
* a least-squares regression.
*
* A sensible value is usually 0.25 to 0.5.
*/
private double bandwidth;
/**
* The number of robustness iterations parameter: this many
* robustness iterations are done.
*
* A sensible value is usually 0 (just the initial fit without any
* robustness iterations) to 4.
*/
private int robustnessIters;
public LoessInterpolator()
{
this.bandwidth = DEFAULT_BANDWIDTH;
this.robustnessIters = DEFAULT_ROBUSTNESS_ITERS;
}
public LoessInterpolator(double bandwidth, int robustnessIters)
{
if (bandwidth < 0 || bandwidth > 1)
{
throw new ApplicationException(string.Format("bandwidth must be in the interval [0,1], but got {0}", bandwidth));
}
this.bandwidth = bandwidth;
if (robustnessIters < 0)
{
throw new ApplicationException(string.Format("the number of robustness iterations must be non-negative, but got {0}", robustnessIters));
}
this.robustnessIters = robustnessIters;
}
/**
* Compute a loess fit on the data at the original abscissae.
*
* #param xval the arguments for the interpolation points
* #param yval the values for the interpolation points
* #return values of the loess fit at corresponding original abscissae
* #throws MathException if some of the following conditions are false:
* <ul>
* <li> Arguments and values are of the same size that is greater than zero</li>
* <li> The arguments are in a strictly increasing order</li>
* <li> All arguments and values are finite real numbers</li>
* </ul>
*/
public double[] smooth(double[] xval, double[] yval)
{
if (xval.Length != yval.Length)
{
throw new ApplicationException(string.Format("Loess expects the abscissa and ordinate arrays to be of the same size, but got {0} abscisssae and {1} ordinatae", xval.Length, yval.Length));
}
int n = xval.Length;
if (n == 0)
{
throw new ApplicationException("Loess expects at least 1 point");
}
checkAllFiniteReal(xval, true);
checkAllFiniteReal(yval, false);
checkStrictlyIncreasing(xval);
if (n == 1)
{
return new double[] { yval[0] };
}
if (n == 2)
{
return new double[] { yval[0], yval[1] };
}
int bandwidthInPoints = (int)(bandwidth * n);
if (bandwidthInPoints < 2)
{
throw new ApplicationException(string.Format("the bandwidth must be large enough to accomodate at least 2 points. There are {0} " +
" data points, and bandwidth must be at least {1} but it is only {2}",
n, 2.0 / n, bandwidth
));
}
double[] res = new double[n];
double[] residuals = new double[n];
double[] sortedResiduals = new double[n];
double[] robustnessWeights = new double[n];
// Do an initial fit and 'robustnessIters' robustness iterations.
// This is equivalent to doing 'robustnessIters+1' robustness iterations
// starting with all robustness weights set to 1.
for (int i = 0; i < robustnessWeights.Length; i++) robustnessWeights[i] = 1;
for (int iter = 0; iter <= robustnessIters; ++iter)
{
int[] bandwidthInterval = { 0, bandwidthInPoints - 1 };
// At each x, compute a local weighted linear regression
for (int i = 0; i < n; ++i)
{
double x = xval[i];
// Find out the interval of source points on which
// a regression is to be made.
if (i > 0)
{
updateBandwidthInterval(xval, i, bandwidthInterval);
}
int ileft = bandwidthInterval[0];
int iright = bandwidthInterval[1];
// Compute the point of the bandwidth interval that is
// farthest from x
int edge;
if (xval[i] - xval[ileft] > xval[iright] - xval[i])
{
edge = ileft;
}
else
{
edge = iright;
}
// Compute a least-squares linear fit weighted by
// the product of robustness weights and the tricube
// weight function.
// See http://en.wikipedia.org/wiki/Linear_regression
// (section "Univariate linear case")
// and http://en.wikipedia.org/wiki/Weighted_least_squares
// (section "Weighted least squares")
double sumWeights = 0;
double sumX = 0, sumXSquared = 0, sumY = 0, sumXY = 0;
double denom = Math.Abs(1.0 / (xval[edge] - x));
for (int k = ileft; k <= iright; ++k)
{
double xk = xval[k];
double yk = yval[k];
double dist;
if (k < i)
{
dist = (x - xk);
}
else
{
dist = (xk - x);
}
double w = tricube(dist * denom) * robustnessWeights[k];
double xkw = xk * w;
sumWeights += w;
sumX += xkw;
sumXSquared += xk * xkw;
sumY += yk * w;
sumXY += yk * xkw;
}
double meanX = sumX / sumWeights;
double meanY = sumY / sumWeights;
double meanXY = sumXY / sumWeights;
double meanXSquared = sumXSquared / sumWeights;
double beta;
if (meanXSquared == meanX * meanX)
{
beta = 0;
}
else
{
beta = (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX);
}
double alpha = meanY - beta * meanX;
res[i] = beta * x + alpha;
residuals[i] = Math.Abs(yval[i] - res[i]);
}
// No need to recompute the robustness weights at the last
// iteration, they won't be needed anymore
if (iter == robustnessIters)
{
break;
}
// Recompute the robustness weights.
// Find the median residual.
// An arraycopy and a sort are completely tractable here,
// because the preceding loop is a lot more expensive
System.Array.Copy(residuals, sortedResiduals, n);
//System.arraycopy(residuals, 0, sortedResiduals, 0, n);
Array.Sort<double>(sortedResiduals);
double medianResidual = sortedResiduals[n / 2];
if (medianResidual == 0)
{
break;
}
for (int i = 0; i < n; ++i)
{
double arg = residuals[i] / (6 * medianResidual);
robustnessWeights[i] = (arg >= 1) ? 0 : Math.Pow(1 - arg * arg, 2);
}
}
return res;
}
/**
* Given an index interval into xval that embraces a certain number of
* points closest to xval[i-1], update the interval so that it embraces
* the same number of points closest to xval[i]
*
* #param xval arguments array
* #param i the index around which the new interval should be computed
* #param bandwidthInterval a two-element array {left, right} such that: <p/>
* <tt>(left==0 or xval[i] - xval[left-1] > xval[right] - xval[i])</tt>
* <p/> and also <p/>
* <tt>(right==xval.length-1 or xval[right+1] - xval[i] > xval[i] - xval[left])</tt>.
* The array will be updated.
*/
private static void updateBandwidthInterval(double[] xval, int i, int[] bandwidthInterval)
{
int left = bandwidthInterval[0];
int right = bandwidthInterval[1];
// The right edge should be adjusted if the next point to the right
// is closer to xval[i] than the leftmost point of the current interval
int nextRight = nextNonzero(weights, right);
if (nextRight < xval.Length && xval[nextRight] - xval[i] < xval[i] - xval[left])
{
int nextLeft = nextNonzero(weights, bandwidthInterval[0]);
bandwidthInterval[0] = nextLeft;
bandwidthInterval[1] = nextRight;
}
}
/**
* Compute the
* tricube
* weight function
*
* #param x the argument
* #return (1-|x|^3)^3
*/
private static double tricube(double x)
{
double tmp = Math.abs(x);
tmp = 1 - tmp * tmp * tmp;
return tmp * tmp * tmp;
}
/**
* Check that all elements of an array are finite real numbers.
*
* #param values the values array
* #param isAbscissae if true, elements are abscissae otherwise they are ordinatae
* #throws MathException if one of the values is not
* a finite real number
*/
private static void checkAllFiniteReal(double[] values, bool isAbscissae)
{
for (int i = 0; i < values.Length; i++)
{
double x = values[i];
if (Double.IsInfinity(x) || Double.IsNaN(x))
{
string pattern = isAbscissae ?
"all abscissae must be finite real numbers, but {0}-th is {1}" :
"all ordinatae must be finite real numbers, but {0}-th is {1}";
throw new ApplicationException(string.Format(pattern, i, x));
}
}
}
/**
* Check that elements of the abscissae array are in a strictly
* increasing order.
*
* #param xval the abscissae array
* #throws MathException if the abscissae array
* is not in a strictly increasing order
*/
private static void checkStrictlyIncreasing(double[] xval)
{
for (int i = 0; i < xval.Length; ++i)
{
if (i >= 1 && xval[i - 1] >= xval[i])
{
throw new ApplicationException(string.Format(
"the abscissae array must be sorted in a strictly " +
"increasing order, but the {0}-th element is {1} " +
"whereas {2}-th is {3}",
i - 1, xval[i - 1], i, xval[i]));
}
}
}
}
Since I'm unable to comment on other people's posts (new user), and people seem to think I should do that with this instead of editing the above answer, I'm simply going to write it as an answer even though I know this is better as a comment.
The updateBandwidthInterval method in the above answer forgets to check the left side as written in the method comment. This can give NaN issues for sumWeights. The below should fix that. I encountered this when doing a c++ implementation based on the above.
/**
* Given an index interval into xval that embraces a certain number of
* points closest to xval[i-1], update the interval so that it embraces
* the same number of points closest to xval[i]
*
* #param xval arguments array
* #param i the index around which the new interval should be computed
* #param bandwidthInterval a two-element array {left, right} such that: <p/>
* <tt>(left==0 or xval[i] - xval[left-1] > xval[right] - xval[i])</tt>
* <p/> and also <p/>
* <tt>(right==xval.length-1 or xval[right+1] - xval[i] > xval[i] - xval[left])</tt>.
* The array will be updated.
*/
private static void updateBandwidthInterval(double[] xval, int i, int[] bandwidthInterval)
{
int left = bandwidthInterval[0];
int right = bandwidthInterval[1];
// The edges should be adjusted if the previous point to the
// left is closer to x than the current point to the right or
// if the next point to the right is closer
// to x than the leftmost point of the current interval
if (left != 0 &&
xval[i] - xval[left - 1] < xval[right] - xval[i])
{
bandwidthInterval[0]++;
bandwidthInterval[1]++;
}
else if (right < xval.Length - 1 &&
xval[right + 1] - xval[i] < xval[i] - xval[left])
{
bandwidthInterval[0]++;
bandwidthInterval[1]++;
}
}
Hope someone after 5 years find this useful. This is the original code posted by Tutcugil but with the missing methods and updated.
using System;
using System.Linq;
namespace StockCorrelation
{
public class LoessInterpolator
{
public static double DEFAULT_BANDWIDTH = 0.3;
public static int DEFAULT_ROBUSTNESS_ITERS = 2;
/**
* The bandwidth parameter: when computing the loess fit at
* a particular point, this fraction of source points closest
* to the current point is taken into account for computing
* a least-squares regression.
*
* A sensible value is usually 0.25 to 0.5.
*/
private double bandwidth;
/**
* The number of robustness iterations parameter: this many
* robustness iterations are done.
*
* A sensible value is usually 0 (just the initial fit without any
* robustness iterations) to 4.
*/
private int robustnessIters;
public LoessInterpolator()
{
this.bandwidth = DEFAULT_BANDWIDTH;
this.robustnessIters = DEFAULT_ROBUSTNESS_ITERS;
}
public LoessInterpolator(double bandwidth, int robustnessIters)
{
if (bandwidth < 0 || bandwidth > 1)
{
throw new ApplicationException(string.Format("bandwidth must be in the interval [0,1], but got {0}", bandwidth));
}
this.bandwidth = bandwidth;
if (robustnessIters < 0)
{
throw new ApplicationException(string.Format("the number of robustness iterations must be non-negative, but got {0}", robustnessIters));
}
this.robustnessIters = robustnessIters;
}
/**
* Compute a loess fit on the data at the original abscissae.
*
* #param xval the arguments for the interpolation points
* #param yval the values for the interpolation points
* #return values of the loess fit at corresponding original abscissae
* #throws MathException if some of the following conditions are false:
* <ul>
* <li> Arguments and values are of the same size that is greater than zero</li>
* <li> The arguments are in a strictly increasing order</li>
* <li> All arguments and values are finite real numbers</li>
* </ul>
*/
public double[] smooth(double[] xval, double[] yval, double[] weights)
{
if (xval.Length != yval.Length)
{
throw new ApplicationException(string.Format("Loess expects the abscissa and ordinate arrays to be of the same size, but got {0} abscisssae and {1} ordinatae", xval.Length, yval.Length));
}
int n = xval.Length;
if (n == 0)
{
throw new ApplicationException("Loess expects at least 1 point");
}
checkAllFiniteReal(xval, true);
checkAllFiniteReal(yval, false);
checkStrictlyIncreasing(xval);
if (n == 1)
{
return new double[] { yval[0] };
}
if (n == 2)
{
return new double[] { yval[0], yval[1] };
}
int bandwidthInPoints = (int)(bandwidth * n);
if (bandwidthInPoints < 2)
{
throw new ApplicationException(string.Format("the bandwidth must be large enough to accomodate at least 2 points. There are {0} " +
" data points, and bandwidth must be at least {1} but it is only {2}",
n, 2.0 / n, bandwidth
));
}
double[] res = new double[n];
double[] residuals = new double[n];
double[] sortedResiduals = new double[n];
double[] robustnessWeights = new double[n];
// Do an initial fit and 'robustnessIters' robustness iterations.
// This is equivalent to doing 'robustnessIters+1' robustness iterations
// starting with all robustness weights set to 1.
for (int i = 0; i < robustnessWeights.Length; i++) robustnessWeights[i] = 1;
for (int iter = 0; iter <= robustnessIters; ++iter)
{
int[] bandwidthInterval = { 0, bandwidthInPoints - 1 };
// At each x, compute a local weighted linear regression
for (int i = 0; i < n; ++i)
{
double x = xval[i];
// Find out the interval of source points on which
// a regression is to be made.
if (i > 0)
{
updateBandwidthInterval(xval, weights, i, bandwidthInterval);
}
int ileft = bandwidthInterval[0];
int iright = bandwidthInterval[1];
// Compute the point of the bandwidth interval that is
// farthest from x
int edge;
if (xval[i] - xval[ileft] > xval[iright] - xval[i])
{
edge = ileft;
}
else
{
edge = iright;
}
// Compute a least-squares linear fit weighted by
// the product of robustness weights and the tricube
// weight function.
// See http://en.wikipedia.org/wiki/Linear_regression
// (section "Univariate linear case")
// and http://en.wikipedia.org/wiki/Weighted_least_squares
// (section "Weighted least squares")
double sumWeights = 0;
double sumX = 0, sumXSquared = 0, sumY = 0, sumXY = 0;
double denom = Math.Abs(1.0 / (xval[edge] - x));
for (int k = ileft; k <= iright; ++k)
{
double xk = xval[k];
double yk = yval[k];
double dist;
if (k < i)
{
dist = (x - xk);
}
else
{
dist = (xk - x);
}
double w = tricube(dist * denom) * robustnessWeights[k];
double xkw = xk * w;
sumWeights += w;
sumX += xkw;
sumXSquared += xk * xkw;
sumY += yk * w;
sumXY += yk * xkw;
}
double meanX = sumX / sumWeights;
double meanY = sumY / sumWeights;
double meanXY = sumXY / sumWeights;
double meanXSquared = sumXSquared / sumWeights;
double beta;
if (meanXSquared == meanX * meanX)
{
beta = 0;
}
else
{
beta = (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX);
}
double alpha = meanY - beta * meanX;
res[i] = beta * x + alpha;
residuals[i] = Math.Abs(yval[i] - res[i]);
}
// No need to recompute the robustness weights at the last
// iteration, they won't be needed anymore
if (iter == robustnessIters)
{
break;
}
// Recompute the robustness weights.
// Find the median residual.
// An arraycopy and a sort are completely tractable here,
// because the preceding loop is a lot more expensive
System.Array.Copy(residuals, sortedResiduals, n);
//System.arraycopy(residuals, 0, sortedResiduals, 0, n);
Array.Sort<double>(sortedResiduals);
double medianResidual = sortedResiduals[n / 2];
if (medianResidual == 0)
{
break;
}
for (int i = 0; i < n; ++i)
{
double arg = residuals[i] / (6 * medianResidual);
robustnessWeights[i] = (arg >= 1) ? 0 : Math.Pow(1 - arg * arg, 2);
}
}
return res;
}
public double[] smooth(double[] xval, double[] yval)
{
if (xval.Length != yval.Length)
{
throw new Exception($"xval and yval len are different");
}
double[] unitWeights = Enumerable.Repeat(1.0, xval.Length).ToArray();
return smooth(xval, yval, unitWeights);
}
/**
* Given an index interval into xval that embraces a certain number of
* points closest to xval[i-1], update the interval so that it embraces
* the same number of points closest to xval[i]
*
* #param xval arguments array
* #param i the index around which the new interval should be computed
* #param bandwidthInterval a two-element array {left, right} such that: <p/>
* <tt>(left==0 or xval[i] - xval[left-1] > xval[right] - xval[i])</tt>
* <p/> and also <p/>
* <tt>(right==xval.length-1 or xval[right+1] - xval[i] > xval[i] - xval[left])</tt>.
* The array will be updated.
*/
private static void updateBandwidthInterval(double[] xval, double[] weights,
int i,
int[] bandwidthInterval)
{
int left = bandwidthInterval[0];
int right = bandwidthInterval[1];
// The right edge should be adjusted if the next point to the right
// is closer to xval[i] than the leftmost point of the current interval
int nextRight = nextNonzero(weights, right);
if (nextRight < xval.Length && xval[nextRight] - xval[i] < xval[i] - xval[left])
{
int nextLeft = nextNonzero(weights, bandwidthInterval[0]);
bandwidthInterval[0] = nextLeft;
bandwidthInterval[1] = nextRight;
}
}
private static int nextNonzero(double[] weights, int i)
{
int j = i + 1;
while (j < weights.Length && weights[j] == 0)
{
++j;
}
return j;
}
/**
* Compute the
* tricube
* weight function
*
* #param x the argument
* #return (1-|x|^3)^3
*/
private static double tricube(double x)
{
double tmp = Math.Abs(x);
tmp = 1 - tmp * tmp * tmp;
return tmp * tmp * tmp;
}
/**
* Check that all elements of an array are finite real numbers.
*
* #param values the values array
* #param isAbscissae if true, elements are abscissae otherwise they are ordinatae
* #throws MathException if one of the values is not
* a finite real number
*/
private static void checkAllFiniteReal(double[] values, bool isAbscissae)
{
for (int i = 0; i < values.Length; i++)
{
double x = values[i];
if (Double.IsInfinity(x) || Double.IsNaN(x))
{
string pattern = isAbscissae ?
"all abscissae must be finite real numbers, but {0}-th is {1}" :
"all ordinatae must be finite real numbers, but {0}-th is {1}";
throw new ApplicationException(string.Format(pattern, i, x));
}
}
}
/**
* Check that elements of the abscissae array are in a strictly
* increasing order.
*
* #param xval the abscissae array
* #throws MathException if the abscissae array
* is not in a strictly increasing order
*/
private static void checkStrictlyIncreasing(double[] xval)
{
for (int i = 0; i < xval.Length; ++i)
{
if (i >= 1 && xval[i - 1] >= xval[i])
{
throw new ApplicationException(string.Format(
"the abscissae array must be sorted in a strictly " +
"increasing order, but the {0}-th element is {1} " +
"whereas {2}-th is {3}",
i - 1, xval[i - 1], i, xval[i]));
}
}
}
}
}

Categories

Resources