I have an interesting problem, I need to convert an int to a decimal.
So for example given:
int number = 2423;
decimal convertedNumber = Int2Dec(number,2);
// decimal should equal 24.23
decimal convertedNumber2 = Int2Dec(number,3);
// decimal should equal 2.423
I have played around, and this function works, I just hate that I have to create a string and convert it to a decimal, it doesn't seem very efficient:
decimal IntToDecConverter(int number, int precision)
{
decimal percisionNumber = Convert.ToDecimal("1".PadRight(precision+1,'0'));
return Convert.ToDecimal(number / percisionNumber);
}
Since you are trying to make the number smaller couldn't you just divide by 10 (1 decimal place), 100 (2 decimal places), 1000 (3 decimal places), etc.
Notice the pattern yet? As we increase the digits to the right of the decimal place we also increase the initial value being divided (10 for 1 digit after the decimal place, 100 for 2 digits after the decimal place, etc.) by ten times that.
So the pattern signifies we are dealing with a power of 10 (Math.Pow(10, x)).
Given an input (number of decimal places) make the conversion based on that.
Example:
int x = 1956;
int powBy=3;
decimal d = x/(decimal)Math.Pow(10.00, powBy);
//from 1956 to 1.956 based on powBy
With that being said, wrap it into a function:
decimal IntToDec(int x, int powBy)
{
return x/(decimal)Math.Pow(10.00, powBy);
}
Call it like so:
decimal d = IntToDec(1956, 3);
Going the opposite direction
You could also do the opposite if someone stated they wanted to take a decimal like 19.56 and convert it to an int. You'd still use the Pow mechanism but instead of dividing you would multiply.
double d=19.56;
int powBy=2;
double n = d*Math.Pow(10, powBy);
You can try create decimal explictly with the constructor which has been specially designed for this:
public static decimal IntToDecConverter(int number, int precision) {
return new decimal(Math.Abs(number), 0, 0, number < 0, (byte)precision);
}
E.g.
Console.WriteLine(IntToDecConverter(2423, 2));
Console.WriteLine(IntToDecConverter(1956, 3));
Outcome:
24.23
1.956
Moving the decimal point like that is just a function of multiplying/dividing by a power of 10.
So this function would work:
decimal IntToDecConverter(int number, int precision)
{
// -1 flips the number so its a fraction; same as dividing below
decimal factor = (decimal)Math.Pow(10, -1*precision)
return number * factor;
}
number/percisionNumber will give you an integer which you then convert to decimal.
Try...
return Convert.ToDecimal(number) / percisionNumber;
Convert your method like as below
public static decimal IntToDecConverter(int number, int precision)
{
return = number / ((decimal)(Math.Pow(10, precision)));
}
Check the live fiddle here.
Related
I know we can display decimals up to certain no of places (if that no of places is fixed). For example, we can display up to 2 places using String.Format:
String.Format("{0:0.00}", 123.4567);
But our requirement is, we have to fetch no of decimal places from database and display the decimal value up to that place. For example:
int n=no of decimal places
I want to write something like:
String.Format("{0:0.n}", 123.4567);
Any suggestions would be of great help.
Added Note: String.Format rounds off the digit. I am looking for something to omit the remaining digits.
Perhaps:
int n = 3;
string format = String.Format("{{0:0.{0}}}", new string('0', n));
Console.Write(String.Format(format, 123.4567)); // 123,457
as method:
public static string FormatNumber(double d, int decimalPlaces)
{
string format = String.Format("{{0:0.{0}}}", new string('0', decimalPlaces));
return String.Format(format, d);
}
or even simpler, using ToString + N format specifier:
public static string FormatNumber(double d, int decimalPlaces)
{
return d.ToString("N" + decimalPlaces);
}
if you don't want the default rounding behaviour but you just want to truncate the remaining decimal places:
public static string FormatNumberNoRounding(double d, int decimalPlaces)
{
double factor = Math.Pow(10, decimalPlaces);
double truncated = Math.Floor(d * factor) / factor;
return truncated.ToString();
}
If you prefer less string formatting, this is perhaps simpler:
decimal d = 123.4567
Console.Write("rounded: {0}", decimial.Round(d, 3));
Additionally, you can control the type of rounding used:
decimial.Round(d, 3, MidpointRounding.AwayFromZero)
Since not many people realise that .NET's default rounding method is ToEven, which rounds to the nearest even number. So values like 2.5 actually round to 2, not 3.
I am writing a simple method that will calculate the number of decimal places in a decimal value. The method looks like this:
public int GetDecimalPlaces(decimal decimalNumber) {
try {
int decimalPlaces = 1;
double powers = 10.0;
if (decimalNumber > 0.0m) {
while (((double)decimalNumber * powers) % 1 != 0.0) {
powers *= 10.0;
++decimalPlaces;
}
}
return decimalPlaces;
I have run it against some test values to make sure that everything is working fine but am getting some really weird behavior back on the last one:
int test = GetDecimalPlaces(0.1m);
int test2 = GetDecimalPlaces(0.01m);
int test3 = GetDecimalPlaces(0.001m);
int test4 = GetDecimalPlaces(0.0000000001m);
int test5 = GetDecimalPlaces(0.00000000010000000001m);
int test6 = GetDecimalPlaces(0.0000000001000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001m);
Tests 1-5 work fine but test6 returns 23. I know that the value being passed in exceeds the maximum decimal precision but why 23? The other thing I found odd is when I put a breakpoint inside the GetDecimalPlaces method following my call from test6 the value of decimalNumber inside the method comes through as the same value that would have come from test5 (20 decimal places) yet even though the value passed in has 20 decimal places 23 is returned.
Maybe its just because I'm passing in a number that has way too many decimal places and things go wonky but I want to make sure that I'm not missing something fundamentally wrong here that might throw off calculations for the other values later down the road.
The number you're actually testing is this:
0.0000000001000000000100000000
That's the closest exact decimal value to 0.0000000001000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001.
So the correct answer is actually 20. However, your code is giving you 23 because you're using binary floating point arithmetic, for no obvious reason. That's going to be introducing errors into your calculations, completely unnecessarily. If you change to use decimal consistently, it's fine:
public static int GetDecimalPlaces(decimal decimalNumber) {
int decimalPlaces = 1;
decimal powers = 10.0m;
if (decimalNumber > 0.0m) {
while ((decimalNumber * powers) % 1 != 0.0m) {
powers *= 10.0m;
++decimalPlaces;
}
}
return decimalPlaces;
}
(Suggestion) You could calculate that this way:
public static int GetDecimalPlaces(decimal decimalNumber)
{
var s = decimalNumber.ToString();
return s.Substring(s.IndexOf(CultureInfo.CurrentCulture.NumberFormat.NumberDecimalSeparator) + 1).Length;
}
There is another way to do this and probably it works faster because it uses remainder operation only if the decimal number has a "trailing zeros" problem.
The basic idea:
In .NET any decimal is stored in memory in the form
m * Math.Power(10, -p)
where m is mantissa (96 bit size) and p is order (value from 0 to 28).
decimal.GetBits method retrieves this representation from decimal struct and returns it as array of int (of length 4).
Using this data we can construct another decimal. If we will use only mantissa, without "Math.Power(10, -p)" part, the result will be an integral decimal. And if this integral decimal number is divisible by 10, then our source number has one or more trailing zeros.
So here is my code
static int GetDecimalPlaces(decimal value)
{
// getting raw decimal structure
var raw = decimal.GetBits(value);
// getting current decimal point position
int decimalPoint = (raw[3] >> 16) & 0xFF;
// using raw data to create integral decimal with the same mantissa
// (note: it always will be absolute value because I do not analyze
// the sign information of source number)
decimal integral = new decimal(raw[0], raw[1], raw[2], false, 0);
// disposing from trailing zeros
while (integral > 0 && integral % 10 == 0)
{
decimalPoint--;
integral /= 10;
}
// returning the answer
return decimalPoint;
}
public class ExperienceTable
{
public static int MaxExperiencePoints;
public static double PercentToNextLevel;
public static void checkLevel(Hero player)
{
if (player.ExperiencePoints >= 0)
{
player.Level = 1;
MaxExperiencePoints = 15;
PercentToNextLevel = player.ExperiencePoints / MaxExperiencePoints;
}
}
Then drawing it to the screen using:
GameRef.SpriteBatch.DrawString(GUIFont, "" + ExperienceTable.PercentToNextLevel, new Vector2((int)player.Camera.Position.X + 1200, (int)player.Camera.Position.Y + 676), Color.White);
How come decimal places don't show up? Seems like the numbers are being rounded.
By default, the decimal place will not be shown if the double is already a rounded number in the first place. I'm guessing player.ExperiencePoints is an int. And int divided by another int will always result to an int, resulting in a rounded value.
Assuming that player.ExperiencePoints is really an int, and you want to have the fraction when dividing it, you should change the division line to the following:
PercentToNextLevel = (double) player.ExperiencePoints / MaxExperiencePoints;
And if you want to have the decimal places displayed eventhough it's .00, then change the ExperienceTable.PercentToNextLevel to something like the following.
ExperienceTable.PercentToNextLevel.ToString("0.00")
.ToString("0.00") will convert the double value to a string with 2 decimal places, and will round it to two decimal places if it have to.
I think
PercentToNextLevel = player.ExperiencePoints / MaxExperiencePoints;
is an integer division (that's if player.ExperiencePoints is an integer).
Try that:
PercentToNextLevel = (double)player.ExperiencePoints / MaxExperiencePoints;
If player.ExperiencePoints is also an int, then you are dividing an integer by an integer, and the result is a rounded integer. Instead, use
PercentToNextLevel = (double)player.ExperiencePoints / MaxExperiencePoints
I have a double typed variable. This variable stores information that is part of a more complex formula. Importantly, this variable can only include information up to the tenths location, or one decimal position (i.e. 10.1, 100.2, etc). However, when determining this value, it must be calculated such that anything past the tenths location is truncated, not rounded. For instance:
if the value equals 10.44, The variable value should be 10.4.
if the value equals 10.45, The variable value should also be set to 10.4
How do I truncate values in C# with respect to a decimal place?
Using an extension method:
public static double RoundDown(this double value, int digits)
{
int factor = Math.Pow(10,digits);
return Math.Truncate(value * factor) / factor;
}
Then you simply use it like this:
double rounded = number.RoundDown(2);
You have to do that by your own:
public static decimal Truncate(decimal value, int decimals)
{
if ((decimals < 0) || (decimals > 28))
{
throw new ArgumentOutOfRangeException("decimals", "The number of fractional decimals must be between 0 and 28.");
}
decimal integral = Math.Truncate(value);
decimal fractional = value - integral;
decimal shift = (decimal)Math.Pow(10, decimals);
fractional = Math.Truncate(shift * fractional);
fractional = fractional / shift;
return (integral + fractional);
}
System.Math.Truncate (d * 10) / 10
Generally, if you're working with numbers where the precise decimal representation is important, you should use decimal - not double.
With decimal, you can do something like...
decimal d = ...;
d = decimal.Truncate(d*10)/10;
If you use a double value, your truncated number will not generally be precisely representable - you may end up with excess digits or minor rounding errors. For example Math.Truncate((4.1-4.0)*10) is not 1, but 0.
While I would probably use Phillippe's answer, if you wanted to avoid scaling the number up (unlikely to be a problem for 1dp), you could:
public static double RoundDown(this double x, int numPlaces)
{
double output = Math.Round(x, numPlaces, MidpointRounding.AwayFromZero);
return (output > x ? output - Math.Pow(10, -numPlaces) : output);
}
How can i truncate the leading digit of double value in C#,I have tried Math.Round(doublevalue,2) but not giving the require result. and i didn't find any other method in Math class.
For example i have value 12.123456789 and i only need 12.12.
EDIT: It's been pointed out that these approaches round the value instead of truncating. It's hard to genuinely truncate a double value because it's not really in the right base... but truncating a decimal value is more feasible.
You should use an appropriate format string, either custom or standard, e.g.
string x = d.ToString("0.00");
or
string x = d.ToString("F2");
It's worth being aware that a double value itself doesn't "know" how many decimal places it has. It's only when you convert it to a string that it really makes sense to do so. Using Math.Round will get the closest double value to x.xx00000 (if you see what I mean) but it almost certainly won't be the exact value x.xx00000 due to the way binary floating point types work.
If you need this for anything other than string formatting, you should consider using decimal instead. What does the value actually represent?
I have articles on binary floating point and decimal floating point in .NET which you may find useful.
What have you tried? It works as expected for me:
double original = 12.123456789;
double truncated = Math.Truncate(original * 100) / 100;
Console.WriteLine(truncated); // displays 12.12
double original = 12.123456789;
double truncated = Truncate(original, 2);
Console.WriteLine(truncated.ToString());
// or
// Console.WriteLine(truncated.ToString("0.00"));
// or
// Console.WriteLine(Truncate(original, 2).ToString("0.00"));
public static double Truncate(double value, int precision)
{
return Math.Truncate(value * Math.Pow(10, precision)) / Math.Pow(10, precision);
}
How about:
double num = 12.12890;
double truncatedNum = ((int)(num * 100))/100.00;
This could work (although not tested):
public double RoundDown(this double value, int digits)
{
int factor = Math.Pow(10,digits);
return Math.Truncate(value * factor) / factor;
}
Then you simply use it like this:
double rounded = number.RoundDown(2);
This code....
double x = 12.123456789;
Console.WriteLine(x);
x = Math.Round(x, 2);
Console.WriteLine(x);
Returns this....
12.123456789
12.12
What is your desired result that is different?
If you want to keep the value as a double, and just strip of any digits after the second decimal place and not actually round the number then you can simply subtract 0.005 from your number so that round will then work. For example.
double x = 98.7654321;
Console.WriteLine(x);
double y = Math.Round(x - 0.005, 2);
Console.WriteLine(y);
Produces this...
98.7654321
98.76
There are a lot of answers using Math.Truncate(double).
However, the approach using Math.Truncate(double) can lead to incorrect results.
For instance, it will return 5.01 truncating 5.02, because multiplying of double values doesn't work precisely and 5.02*100=501.99999999999994
If you really need this precision, consider, converting to Decimal before truncating.
public static double Truncate(double value, int precision)
{
decimal power = (decimal)Math.Pow(10, precision);
return (double)(Math.Truncate((decimal)value * power) / power);
}
Still, this approach is ~10 times slower.
I'm sure there's something more .netty out there but why not just:-
double truncVal = Math.Truncate(val * 100) / 100;
double remainder = val-truncVal;
If you are looking to have two points after the decimal without rounding the number, the following should work
string doubleString = doublevalue.ToString("0.0000"); //To ensure we have a sufficiently lengthed string to avoid index issues
Console.Writeline(doubleString
.Substring(0, (doubleString.IndexOf(".") +1) +2));
The second parameter of substring is the count, and IndexOf returns to zero-based index, so we have to add one to that before we add the 2 decimal values.
This answer is assuming that the value should NOT be rounded
For vb.net use this extension:
Imports System.Runtime.CompilerServices
Module DoubleExtensions
<Extension()>
Public Function Truncate(dValue As Double, digits As Integer)
Dim factor As Integer
factor = Math.Pow(10, digits)
Return Math.Truncate(dValue * factor) / factor
End Function
End Module
I use a little formatting class that I put together which can add gaps and all sorts.
Here is one of the methods that takes in a decimal and return different amounts of decimal places based on the decimal display setting in the app
public decimal DisplayDecimalFormatting(decimal input, bool valueIsWeightElseMoney)
{
string inputString = input.ToString();
if (valueIsWeightElseMoney)
{
int appDisplayDecimalCount = Program.SettingsGlobal.DisplayDecimalPlacesCount;
if (appDisplayDecimalCount == 3)//0.000
{
inputString = String.Format("{0:#,##0.##0}", input, displayCulture);
}
else if (appDisplayDecimalCount == 2)//0.00
{
inputString = String.Format("{0:#,##0.#0}", input, displayCulture);
}
else if (appDisplayDecimalCount == 1)//0.0
{
inputString = String.Format("{0:#,##0.0}", input, displayCulture);
}
else//appDisplayDecimalCount 0 //0
{
inputString = String.Format("{0:#,##0}", input, displayCulture);
}
}
else
{
inputString = String.Format("{0:#,##0.#0}", input, displayCulture);
}
//Check if worked and return if worked, else return 0
bool itWorked = false;
decimal returnDec = 0.00m;
itWorked = decimal.TryParse(inputString, out returnDec);
if (itWorked)
{
return returnDec;
}
else
{
return 0.00m;
}
}
object number = 12.123345534;
string.Format({"0:00"},number.ToString());