I have console application with numerical calculation, which I am trying to parallel using the ThreadPool.
I got object state as class (simple-data-passing):
public class DataContainer
{
public double[,] Exa;
public double[] EQ;
public int iStart;
public int iEnd;
}
Definition for WaitCallback
private void Calculate(object state)
{
DataContainer data = state as DataContainer;
for (int m = data.iStart; m < data.iEnd; m++)
{
double temp= 0.0;
for (int i = 0; i < 500000; i++)
{
for (int j = i + 1; j < 500000; j++)
{
//Some-Long-Calculation based on data.Exa-around 200 math operation with results of double EQC
if (EQC> temp) { temp= EQC; } //line performance issue-temp is declared in first for-loop block;
}
}
}
}
Execution:
WaitCallback waitCallback = Calculate;
const int numberOfThreads = 100;
ThreadPool.SetMaxThreads(30, 100);
for (int i = 0; i < numberOfThreads; i++)
{
DataContainer tempContainer = new DataContainer();
tempContainer.Exa = Exa;
tempContainer.EQ = EQ;
tempContainer.iStart = CalculateStart(i);
tempContainer.iEnd = CalculateEnd(i);
ThreadPool.QueueUserWorkItem(waitCallback, tempContainer);
}
int numberOfTotalThreads = 0;
int numberOfMaxThreads = 0;
int numberOfWorkingThreads = 0;
int temp = 0;
//do-while - waiting to finish all calculation
do
{
ThreadPool.GetAvailableThreads(out numberOfTotalThreads, out temp);
ThreadPool.GetMaxThreads(out numberOfMaxThreads, out temp);
numberOfWorkingThreads = numberOfMaxThreads - numberOfTotalThreads;
Console.WriteLine("Number of working threads {0}", numberOfWorkingThreads);
Thread.Sleep(1000);
} while (numberOfWorkingThreads > 0);
So one marked line:
if (EQC> temp) { temp= EQC; }
Time exeuction of program slow down from 40s to 600s.
Could you advice how these line should be written to avoid that problem?
Related
I am trying to generate a maze and I faced a stack overflow error while trying to do divide and conquer kind of approach to my 2D array.I will have to post the whole code since I have no idea what causes it and i am very inexperienced in the subject.
this is the details : System.StackOverflowException
HResult=0x800703E9
Message=
this is where the exception happens
!https://imgur.com/a/iwX8pKY
https://www.robinsnyder.com/MazeStaticGif I got the idea from here.
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Linq;
namespace labirentVize2
{
class labirentOlustur
{ public static int delik;
public static int x=0;
public static int y;
public static int N = 30;
public static int boy = 30;
int[,] uret = new int[N, N];
public Array girisCikis(int[,] uret)
{
int en1=1;
Random giris = new Random();
int gir = giris.Next(1, 29);
if (gir > 14)
{
int gir2 = giris.Next(15, 28);
int gir3 = (gir + gir2)/2;
uret[0, gir] = 1;
uret[0, gir2] = 1;
uret[0, gir3] = 1;
}
else
{
int gir2 = giris.Next(1, 15);
int gir3 = (gir + gir2)/2;
uret[0, gir] = 1;
uret[0, gir2] = 1;
uret[0, gir3] = 1;
}
Random cikis = new Random();
int cik = cikis.Next(1, 28);
if (cik > 14)
{
int cik2 = cikis.Next(1, 28);
int cik3 = (cik + cik2)/2;
uret[29, cik] = 1;
uret[29, cik2] = 1;
uret[29, cik3] = 1;
}
else
{
int cik2 = cikis.Next(15, 28);
int cik3 = (cik + cik2)/2;
uret[29, cik] = 1;
uret[29, cik2] = 1;
uret[29, cik3] = 1;
}
labYap(uret, en1, x, boy);
return uret;
}
void labGoster(int[,] uret)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
Console.Write(" " + uret[i, j] + " ");
Console.WriteLine();
}
}
public void labYap(int[,] uret, int en1, int x, int boy)
{
int total1 = 0;
Random rand2 = new Random();
for (int i = 0; i < uret.GetLength(0); i++)
{
for (int j = 0; j < uret.GetLength(1); j++)
{
total1 += uret[i, j];}
}
if(total1 > 800)
{
labGoster(uret);
}
else if (total1 == 784)
{
Random rand1 = new Random();
en1 = rand1.Next(2, 29);
x = 30;
delik = rand2.Next(1, 29);
}
else
{
Random rand = new Random();
en1 = rand.Next(1, en1);
boy = boy - en1;
delik = rand2.Next(1, en1);
}
if (diziUstToplam(uret, en1) >= diziAltToplam(uret, en1))
{
y = en1;
for (int j = 0; j < x ; j++)
{
uret[en1, j] = 0;
}
uret[en1, delik] = 1;
labYap(uret, en1, x, boy);
labYap(uret, boy, x, boy);
}
else
{ x = en1;
for (int j = 0; j < en1; j++)
{
uret[j, en1] = 0;
}
uret[delik, en1] = 1;
labYap(uret, en1, x, boy);
labYap(uret, en1, x, boy);
}
int diziUstToplam(int[,] uret, int en1)
{
int total = 0;
// Dizinin ilk boyutu için
for (int i = 0; i < en1; i++)
{
// Dizinin ikinci boyutu için
for (int j = 0; j < uret.GetLength(1); j++)
{
total += uret[i, j];
}
}
return total;
}
int diziAltToplam(int[,] uret, int en1)
{
int total = 0;
// Dizinin ilk boyutu için
for (int i = en1; i < 30; i++)
{
// Dizinin ikinci boyutu için
for (int j = 0; j < uret.GetLength(1); j++)
{
total += uret[i, j];
}
}
return total;
}
int rastgeleSayi()
{
Random rand = new Random();
int en1 = rand.Next(1, 29);
return en1;
}
}
}
}
The stack overflow error is because you call labYear() too many times from within itself. You need to ensure that you have some escape condition where the function can return.
See more here: https://learn.microsoft.com/en-us/dotnet/api/system.stackoverflowexception?view=net-6.0
Ok so I finished my code n queens genetics in c# but I keep getting these compiler errors even though I changed the code several times
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace NQueen1
{
class Program
{
private const int sSize = 75; // Population size at start.
private const int mTest = 1000; // Arbitrary number of test cycles.
private const double pMating = 0.7; // Probability of two chromosomes mating. Range: 0.0 < MATING_PROBABILITY < 1.0
private const double rMutation = 0.001; // Mutation Rate. Range: 0.0 < MUTATION_RATE < 1.0
private const int minS = 10; // Minimum parents allowed for selection.
private const int MaxS = 50; // Maximum parents allowed for selection. Range: MIN_SELECT < MAX_SELECT < START_SIZE
private const int offSpring = 20; // New offspring created per generation. Range: 0 < OFFSPRING_PER_GENERATION < MAX_SELECT.
private const int minRandom = 8; // For randomizing starting chromosomes
private const int maxShuffles = 20;
private const int maxPBC = 4; // Maximum Position-Based Crossover points. Range: 0 < PBC_MAX < 8 (> 8 isn't good).
private const int maxLength = 10; // chess board width.
private static int epoch = 0;
private static int childCount = 0;
private static int nextMutation = 0; // For scheduling mutations.
private static int mutations = 0;
private static List<Chromosome> population = new List<Chromosome>();
private static void algorithm()
{
int popSize = 0;
Chromosome thisChromo = null;
bool done = false;
initializeChromosomes();
mutations = 0;
nextMutation = getRandomNumber(0, (int)Math.Round(1.0 / rMutation));
while (!done)
{
popSize = population.Count;
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
if ((thisChromo.conflicts() == 0) || epoch == mTest)
{
done = true;
}
}
getFitness();
rouletteSelection();
mating();
prepNextEpoch();
epoch++;
// This is here simply to show the runtime status.
Console.WriteLine("Epoch: " + epoch);
}
Console.WriteLine("done.");
if (epoch != rMutation)
{
popSize = population.Count;
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
if (thisChromo.conflicts() == 0)
{
printSolution(thisChromo);
}
}
}
Console.WriteLine("Completed " + epoch + " epochs.");
Console.WriteLine("Encountered " + mutations + " mutations in " + childCount + " offspring.");
return;
}
private static void getFitness()
{
// Lowest errors = 100%, Highest errors = 0%
int popSize = population.Count;
Chromosome thisChromo = null;
double bestScore = 0;
double worstScore = 0;
// The worst score would be the one with the highest energy, best would be lowest.
worstScore = population[maximum()].conflicts();
// Convert to a weighted percentage.
bestScore = worstScore - population[minimum()].conflicts();
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
thisChromo.fitness((worstScore - thisChromo.conflicts()) * 100.0 / bestScore);
}
return;
}
private static void rouletteSelection()
{
int j = 0;
int popSize = population.Count;
double genT = 0.0;
double selT = 0.0;
int maximumToSelect = getRandomNumber(minS, MaxS);
double rouletteSpin = 0.0;
Chromosome thisChromo = null;
Chromosome thatChromo = null;
bool done = false;
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
genT += thisChromo.fitness();
}
genT *= 0.01;
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
thisChromo.selectionProbability(thisChromo.fitness() / genT);
}
for (int i = 0; i < maximumToSelect; i++)
{
rouletteSpin = getRandomNumber(0, 99);
j = 0;
selT = 0;
done = false;
while (!done)
{
thisChromo = population[j];
selT += thisChromo.selectionProbability();
if (selT >= rouletteSpin)
{
if (j == 0)
{
thatChromo = population[j];
}
else if (j >= popSize - 1)
{
thatChromo = population[popSize - 1];
}
else
{
thatChromo = population[j - 1];
}
thatChromo.selected(true);
done = true;
}
else
{
j++;
}
}
}
return;
}
// This is where you can choose between options:
// To choose between crossover options, uncomment one of:
// partiallyMappedCrossover(),
// positionBasedCrossover(), while keeping the other two commented out.
private static void mating()
{
int getRand = 0;
int parentA = 0;
int parentB = 0;
int newIndex1 = 0;
int newIndex2 = 0;
Chromosome newChromo1 = null;
Chromosome newChromo2 = null;
for (int i = 0; i < offSpring; i++)
{
parentA = chooseParent();
// Test probability of mating.
getRand = getRandomNumber(0, 100);
if (getRand <= pMating * 100)
{
parentB = chooseParent(parentA);
newChromo1 = new Chromosome();
newChromo2 = new Chromosome();
population.Add(newChromo1);
newIndex1 = population.IndexOf(newChromo1);
population.Add(newChromo2);
newIndex2 = population.IndexOf(newChromo2);
// Choose either, or both of these:
partialCrossover(parentA, parentB, newIndex1, newIndex2);
//positionBasedCrossover(parentA, parentB, newIndex1, newIndex2);
if (childCount - 1 == nextMutation)
{
exchangeMutation(newIndex1, 1);
}
else if (childCount == nextMutation)
{
exchangeMutation(newIndex2, 1);
}
population[newIndex1].computeConflicts();
population[newIndex2].computeConflicts();
childCount += 2;
// Schedule next mutation.
if (childCount % (int)Math.Round(1.0 / rMutation) == 0)
{
nextMutation = childCount + getRandomNumber(0, (int)Math.Round(1.0 / rMutation));
}
}
} // i
return;
}
private static void partialCrossover(int chromA, int chromB, int child1, int child2)
{
int j = 0;
int item1 = 0;
int item2 = 0;
int pos1 = 0;
int pos2 = 0;
Chromosome thisChromo = population[chromA];
Chromosome thatChromo = population[chromB];
Chromosome newChromo1 = population[child1];
Chromosome newChromo2 = population[child2];
int crossPoint1 = getRandomNumber(0, maxLength - 1);
int crossPoint2 = getExclusiveRandomNumber(maxLength - 1, crossPoint1);
if (crossPoint2 < crossPoint1)
{
j = crossPoint1;
crossPoint1 = crossPoint2;
crossPoint2 = j;
}
// Copy Parent genes to offspring.
for (int i = 0; i < maxLength; i++)
{
newChromo1.data(i, thisChromo.data(i));
newChromo2.data(i, thatChromo.data(i));
}
for (int i = crossPoint1; i <= crossPoint2; i++)
{
// Get the two items to swap.
item1 = thisChromo.data(i);
item2 = thatChromo.data(i);
// Get the items// positions in the offspring.
for (j = 0; j < maxLength; j++)
{
if (newChromo1.data(j) == item1)
{
pos1 = j;
}
else if (newChromo1.data(j) == item2)
{
pos2 = j;
}
} // j
// Swap them.
if (item1 != item2)
{
newChromo1.data(pos1, item2);
newChromo1.data(pos2, item1);
}
// Get the items// positions in the offspring.
for (j = 0; j < maxLength; j++)
{
if (newChromo2.data(j) == item2)
{
pos1 = j;
}
else if (newChromo2.data(j) == item1)
{
pos2 = j;
}
} // j
// Swap them.
if (item1 != item2)
{
newChromo2.data(pos1, item1);
newChromo2.data(pos2, item2);
}
} // i
return;
}
private static void positionCrossover(int chromA, int chromB, int child1, int child2)
{
int k = 0;
int numPoints = 0;
int[] tempArray1 = new int[maxLength];
int[] tempArray2 = new int[maxLength];
bool matchFound = false;
Chromosome thisChromo = population[chromA];
Chromosome thatChromo = population[chromB];
Chromosome newChromo1 = population[child1];
Chromosome newChromo2 = population[child2];
// Choose and sort the crosspoints.
numPoints = getRandomNumber(0, maxPBC);
int[] crossPoints = new int[numPoints];
int negativeNancy = -1;
for (int i = 0; i < numPoints; i++)
{
crossPoints[i] = getRandomNumber(0, maxLength - negativeNancy, crossPoints);
} // i
// Get non-chosens from parent 2
k = 0;
for (int i = 0; i < maxLength; i++)
{
matchFound = false;
for (int j = 0; j < numPoints; j++)
{
if (thatChromo.data(i) == thisChromo.data(crossPoints[j]))
{
matchFound = true;
}
} // j
if (matchFound == false)
{
tempArray1[k] = thatChromo.data(i);
k++;
}
} // i
// Insert chosens into child 1.
for (int i = 0; i < numPoints; i++)
{
newChromo1.data(crossPoints[i], thisChromo.data(crossPoints[i]));
}
// Fill in non-chosens to child 1.
k = 0;
for (int i = 0; i < maxLength; i++)
{
matchFound = false;
for (int j = 0; j < numPoints; j++)
{
if (i == crossPoints[j])
{
matchFound = true;
}
} // j
if (matchFound == false)
{
newChromo1.data(i, tempArray1[k]);
k++;
}
} // i
// Get non-chosens from parent 1
k = 0;
for (int i = 0; i < maxLength; i++)
{
matchFound = false;
for (int j = 0; j < numPoints; j++)
{
if (thisChromo.data(i) == thatChromo.data(crossPoints[j]))
{
matchFound = true;
}
} // j
if (matchFound == false)
{
tempArray2[k] = thisChromo.data(i);
k++;
}
} // i
// Insert chosens into child 2.
for (int i = 0; i < numPoints; i++)
{
newChromo2.data(crossPoints[i], thatChromo.data(crossPoints[i]));
}
// Fill in non-chosens to child 2.
k = 0;
for (int i = 0; i < maxLength; i++)
{
matchFound = false;
for (int j = 0; j < numPoints; j++)
{
if (i == crossPoints[j])
{
matchFound = true;
}
} // j
if (matchFound == false)
{
newChromo2.data(i, tempArray2[k]);
k++;
}
} // i
return;
}
private static void exchangeMutation(int index, int exchanges)
{
int i = 0;
int tempData = 0;
Chromosome thisChromo = null;
int gene1 = 0;
int gene2 = 0;
bool done = false;
thisChromo = population[index];
while (!done)
{
gene1 = getRandomNumber(0, maxLength - 1);
gene2 = getExclusiveRandomNumber(maxLength - 1, gene1);
// Exchange the chosen genes.
tempData = thisChromo.data(gene1);
thisChromo.data(gene1, thisChromo.data(gene2));
thisChromo.data(gene2, tempData);
if (i == exchanges)
{
done = true;
}
i++;
}
mutations++;
return;
}
private static int chooseParent()
{
// Overloaded function, see also "chooseparent(ByVal parentA As Integer)".
int parent = 0;
Chromosome thisChromo = null;
bool done = false;
while (!done)
{
// Randomly choose an eligible parent.
parent = getRandomNumber(0, population.Count - 1);
thisChromo = population[parent];
if (thisChromo.selected() == true)
{
done = true;
}
}
return parent;
}
{
// Overloaded function, see also "chooseparent()".
int parent = 0;
Chromosome thisChromo = null;
bool done = false;
while (!done)
{
// Randomly choose an eligible parent.
parent = getRandomNumber(0, population.Count - 1);
if (parent != parentA)
{
thisChromo = population[parent];
if (thisChromo.selected() == true)
{
done = true;
}
}
}
return parent;
}
private static void prepNextEpoch()
{
int popSize = 0;
Chromosome thisChromo = null;
// Reset flags for selected individuals.
popSize = population.Count;
for (int i = 0; i < popSize; i++)
{
thisChromo = population[i];
thisChromo.selected(false);
}
return;
}
private static void printSolution(Chromosome bestSolution)
{
string[][] board = RectangularArrays.ReturnRectangularStringArray(maxLength, maxLength);
// Clear the board.
for (int x = 0; x < maxLength; x++)
{
for (int y = 0; y < maxLength; y++)
{
board[x][y] = "";
}
}
for (int x = 0; x < maxLength; x++)
{
board[x][bestSolution.data(x)] = "Q";
}
// Display the board.
Console.WriteLine("Board:");
for (int y = 0; y < maxLength; y++)
{
for (int x = 0; x < maxLength; x++)
{
if (string.ReferenceEquals(board[x][y], "Q"))
{
Console.Write("Q ");
}
else
{
Console.Write(". ");
}
}
Console.Write("\n");
}
return;
}
private static int getRandomNumber(int low, int high)
{
return (int)Math.Round((high - low) * (new Random()).NextDouble() + low);
}
private static int getExclusiveRandomNumber(int high, int except)
{
bool done = false;
int getRand = 0;
while (!done)
{
getRand = (new Random()).Next(high);
if (getRand != except)
{
done = true;
}
}
return getRand;
}
private static int getRandomNumber(int low, int high, int[] except)
{
bool done = false;
int getRand = 0;
if (high != low)
{
while (!done)
{
done = true;
getRand = (int)Math.Round((high - low) * (new Random()).NextDouble() + low);
for (int i = 0; i < except.Length; i++) //UBound(except)
{
if (getRand == except[i])
{
done = false;
}
} // i
}
return getRand;
}
else
{
return high; // or low (it doesn't matter).
}
}
private static int minimum()
{
// Returns an array index.
int popSize = 0;
Chromosome thisChromo = null;
Chromosome thatChromo = null;
int winner = 0;
bool foundNewWinner = false;
bool done = false;
while (!done)
{
foundNewWinner = false;
popSize = population.Count;
for (int i = 0; i < popSize; i++)
{
if (i != winner)
{ // Avoid self-comparison.
thisChromo = population[i];
thatChromo = population[winner];
if (thisChromo.conflicts() < thatChromo.conflicts())
{
winner = i;
foundNewWinner = true;
}
}
}
if (foundNewWinner == false)
{
done = true;
}
}
return winner;
}
private static int maximum()
{
// Returns an array index.
int popSize = 0;
Chromosome thisChromo = null;
Chromosome thatChromo = null;
int winner = 0;
bool foundNewWinner = false;
bool done = false;
while (!done)
{
foundNewWinner = false;
popSize = population.Count;
for (int i = 0; i < popSize; i++)
{
if (i != winner)
{ // Avoid self-comparison.
thisChromo = population[i];
thatChromo = population[winner];
if (thisChromo.conflicts() > thatChromo.conflicts())
{
winner = i;
foundNewWinner = true;
}
}
}
if (foundNewWinner == false)
{
done = true;
}
}
return winner;
}
private static void initializeChromosomes()
{
int shuffles = 0;
Chromosome newChromo = null;
int chromoIndex = 0;
for (int i = 0; i < sSize; i++)
{
newChromo = new Chromosome();
population.Add(newChromo);
chromoIndex = population.IndexOf(newChromo);
// Randomly choose the number of shuffles to perform.
shuffles = getRandomNumber(minRandom, maxShuffles);
exchangeMutation(chromoIndex, shuffles);
population[chromoIndex].computeConflicts();
}
return;
}
private class Chromosome
{
internal int[] mData = new int[maxLength];
internal double mFitness = 0.0;
internal bool mSelected = false;
internal double mSelectionProbability = 0.0;
internal int mConflicts = 0;
public Chromosome()
{
for (int i = 0; i < maxLength; i++)
{
this.mData[i] = i;
}
return;
}
public virtual void computeConflicts()
{
int x = 0;
int y = 0;
int tempx = 0;
int tempy = 0;
//string[][] board = new string[MAX_LENGTH][MAX_LENGTH];
string[][] board = RectangularArrays.ReturnRectangularStringArray(maxLength, maxLength);
int conflicts = 0;
int[] dx = new int[] { -1, 1, -1, 1 };
int[] dy = new int[] { -1, 1, 1, -1 };
bool done = false;
// Clear the board.
for (int i = 0; i < maxLength; i++)
{
for (int j = 0; j < maxLength; j++)
{
board[i][j] = "";
}
}
for (int i = 0; i < maxLength; i++)
{
board[i][this.mData[i]] = "Q";
}
// Walk through each of the Queens and compute the number of conflicts.
for (int i = 0; i < maxLength; i++)
{
x = i;
y = this.mData[i];
// Check diagonals.
for (int j = 0; j <= 3; j++)
{
tempx = x;
tempy = y;
done = false;
while (!done)
{
tempx += dx[j];
tempy += dy[j];
if ((tempx < 0 || tempx >= maxLength) || (tempy < 0 || tempy >= maxLength))
{
done = true;
}
else
{
if (board[tempx][tempy].ToString().ToUpper().Equals("Q"))// ignore the case of 2 strings
{
conflicts++;
}
}
}
}
}
this.mConflicts = conflicts;
}
public virtual void conflicts(int value)
{
this.mConflicts = value;
return;
}
public virtual int conflicts()
{
return this.mConflicts;
}
public virtual double selectionProbability()
{
return mSelectionProbability;
}
public virtual void selectionProbability(double SelProb)
{
mSelectionProbability = SelProb;
return;
}
public virtual bool selected()
{
return mSelected;
}
public virtual void selected(bool sValue)
{
mSelected = sValue;
return;
}
public virtual double fitness()
{
return mFitness;
}
public virtual void fitness(double score)
{
mFitness = score;
return;
}
public virtual int data(int index)
{
return mData[index];
}
public virtual void data(int index, int value)
{
mData[index] = value;
return;
}
} // Chromosome
static void Main(string[] args)
{
algorithm();
return;
}
}
}
This is the second code here:
namespace NQueen1
{
internal static class RectangularArrays
{
internal static string[][] ReturnRectangularStringArray(int size1, int size2)
{
string[][] newArray = new string[size1][];
for (int array1 = 0; array1 < size1; array1++)
{
newArray[array1] = new string[size2];
}
return newArray;
}
}
}
THe Error:
Unhandled Exception: System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less than the size of the collection.
Parameter name: index
at System.ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument argument, ExceptionResource resource)
at System.Collections.Generic.List`1.get_Item(Int32 index)
at NQueen1.Program.rouletteSelection() in C:\Users\Inspiron\Documents\coid\NQueen1\NQueen1\Program.cs:line 143
at NQueen1.Program.algorithm() in C:\Users\Inspiron\Documents\coid\NQueen1\NQueen1\Program.cs:line 56
at NQueen1.Program.Main(String[] args) in C:\Users\Inspiron\Documents\coid\NQueen1\NQueen1\Program.cs:line 841
I have no clue why its throwing off these errors I tried about almost everything I could think of to fix it
This is just a random guess.
My Spidey Senses tells me thisChromo = population[j] is probably overrunning the size of array, i.e. its in a while loop with j++ and there is no real bounds checking
private static void rouletteSelection()
{
...
for (int i = 0; i < maximumToSelect; i++)
{
...
while (!done)
{
thisChromo = population[j];
...
j++;
If this is the problem, I'd consider the possibility that j will be larger than population.Length and therefore breaking out of the loop; using an if statement; or just refactoring this logic
Tips for your future questions
If you have a runtime error, show us the line of code it has the error on
Pasting code is vital, however pasting too much is annoying and hard to read
If you paste code, at least try to format it
Learn to use the debugger and breakpoints (see: How to use the Debugger, Using Breakpoints).
I am trying to create an application to record the time elapsed per machine using simple arithmetic operations.
Using console application, with parameters of number of loop and the threads to use with the code below:
public static Int64 IterationCount { get; set; }
static void Main(string[] args)
{
int iterations = int.Parse(args[0]);
int threads = int.Parse(args[1]);
IterationCount = iterations * 1000000000;
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 0; i < threads; i++)
{
Task.Factory.StartNew(() => Calculate());
Task.WaitAll();
}
sw.Stop();
Console.WriteLine("Elapsed={0}", sw.Elapsed);
}
And my Calculate method:
private static void Calculate()
{
for (int i = 0; i < IterationCount; i++)
{
a = 1 + 2;
b = 1 - 2;
c = 1 * 2;
a = 1 / 2;
}
}
Now I think this is not working because the result of my elapsed time when I entered 10 iterations (I am multiplying the first parameter to 1 billion: 10 * 1,000,000,000) and 4 threads is:
00:00:00:0119747
Any thing I missed?
Your call to Task.WaitAll() has no effect as the signature of the function is
public static void WaitAll(params Task[] tasks).
You see, you can supply a variable count of Tasks to wait for and you call this function with no task; so it will not wait at all.
If you replace your code by the following, you will see the effect.
Task[] tasks = new Task[threads];
for (int i = 0; i < threads; i++)
{
tasks[i] = Task.Factory.StartNew(() => Calculate());
}
Task.WaitAll(tasks);
Turns out my comment is accurate. If I copy the contents of your Calculate method into Visual Studio:
private static void Calculate()
{
for (int i = 0; i < IterationCount; i++)
{
a = 1 + 2;
b = 1 - 2;
c = 1 * 2;
d = 1 / 2;
}
}
after compilation, the generated C# code looks like this:
private static void Calculate()
{
for (int i = 0; i < Program.IterationCount; i++)
{
Program.a = 3;
Program.b = -1;
Program.c = 2;
Program.d = 0;
}
}
Instead, you're going to have to make one of the constants into a variable:
private static void Calculate()
{
int x = 1;
for (int i = 0; i < IterationCount; i++)
{
a = x + 2;
b = x - 2;
c = x * 2;
d = x / 2;
}
}
This code becomes:
private static void Calculate()
{
int x = 1;
for (int i = 0; i < Program.IterationCount; i++)
{
Program.a = x + 2;
Program.b = x - 2;
Program.c = x * 2;
Program.d = x / 2;
}
}
In order to learn and understand how Dijkstra's algorithm is used to solve the "Grocery Store" ([Hydrogenium 2013]: https://codility.com/programmers/challenges/hydrogenium2013) problem on codility, I'm trying to rewrite the #2, O(n^2) solution(https://codility.com/media/train/solution-grocery-store.pdf) in C#.
1) What language are those solutions written in?
2) What would be the C# equivalent to this bit of code?
G = [[]] *N
for i in xrange(M):
G[A[i]] = G[A[i]] + [(B[i], C[i])]
G[B[i]] = G[B[i]] + [(A[i], C[i])]
This is what I have so far
int[] G = new int[N];
for (int i = 0; i < M; i++)
{
G[A[i]] = G[A[i]];
G[B[i]] = G[B[i]];
}
Thanks in advance,
Gregory
Downloaded IDLE (a python IDE...kind of) and figured it out. It appears to be adding pairs to each array element. Here's the code I came up with if anyone else happens to stumble across the same problem.
private struct nodePair
{
public int node;
public int time;
public nodePair(int node, int time)
{
this.node = node;
this.time = time;
}
}
public int solution(int[] A, int[] B, int[] C, int[] D)
{
int M = A.Length;
int N = D.Length;
//build the graph
List<nodePair>[] G = new List<nodePair>[N];
for (int i = 0; i < N; i++)
{
G[i] = new List<nodePair>();
}
for (int i = 0; i < M; i++)
{
G[A[i]].Add(new nodePair(B[i], C[i]));
G[B[i]].Add(new nodePair(A[i], C[i]));
}
//initialize the distance table
int[] dist = new int[N];
for (int i = 0; i < N; i++)
{
dist[i] = int.MaxValue;
}
bool[] visited = new bool[N];
for (int i = 0; i < N; i++)
{
visited[i] = false;
}
//look for the minimum value
int ii = 0; ;
dist[0] = 0;
for (int k = 0; k < N; k++)
{
int s = int.MaxValue;
//find the minimum
for (int j = 0; j < N; j++)
{
if ((dist[j] < s) && (visited[j] == false))
{
s = dist[j];
ii = j;
}
}
visited[ii] = true;
if (s < D[ii])
{
return s;
}
List<nodePair> thisNodeLIst = G[ii];
foreach (nodePair oneNode in thisNodeLIst)
{
dist[oneNode.node] = Math.Min(dist[oneNode.node], s + oneNode.time);
}
}//for
return -1;
}
}
In Code Complete 2 (page 601 and 602) there is a table of "Cost of Common Operations".
The baseline operation integer assignment is given a value 1 and then the relative time for common operations is listed for Java and C++. For example:
C++ Java
Integer assignment 1 1
Integer division 5 1.5
Floating point square root 15 4
The question is has anyone got this data for C#? I know that these won't help me solve any problems specifically, I'm just curious.
I implemented some of the tests from the book. Some raw data from my computer:
Test Run #1:
TestIntegerAssignment 00:00:00.6680000
TestCallRoutineWithNoParameters 00:00:00.9780000
TestCallRoutineWithOneParameter 00:00:00.6580000
TestCallRoutineWithTwoParameters 00:00:00.9650000
TestIntegerAddition 00:00:00.6410000
TestIntegerSubtraction 00:00:00.9630000
TestIntegerMultiplication 00:00:00.6490000
TestIntegerDivision 00:00:00.9720000
TestFloatingPointDivision 00:00:00.6500000
TestFloatingPointSquareRoot 00:00:00.9790000
TestFloatingPointSine 00:00:00.6410000
TestFloatingPointLogarithm 00:00:41.1410000
TestFloatingPointExp 00:00:34.6310000
Test Run #2:
TestIntegerAssignment 00:00:00.6750000
TestCallRoutineWithNoParameters 00:00:00.9720000
TestCallRoutineWithOneParameter 00:00:00.6490000
TestCallRoutineWithTwoParameters 00:00:00.9750000
TestIntegerAddition 00:00:00.6730000
TestIntegerSubtraction 00:00:01.0300000
TestIntegerMultiplication 00:00:00.7000000
TestIntegerDivision 00:00:01.1120000
TestFloatingPointDivision 00:00:00.6630000
TestFloatingPointSquareRoot 00:00:00.9860000
TestFloatingPointSine 00:00:00.6530000
TestFloatingPointLogarithm 00:00:39.1150000
TestFloatingPointExp 00:00:33.8730000
Test Run #3:
TestIntegerAssignment 00:00:00.6590000
TestCallRoutineWithNoParameters 00:00:00.9700000
TestCallRoutineWithOneParameter 00:00:00.6680000
TestCallRoutineWithTwoParameters 00:00:00.9900000
TestIntegerAddition 00:00:00.6720000
TestIntegerSubtraction 00:00:00.9770000
TestIntegerMultiplication 00:00:00.6580000
TestIntegerDivision 00:00:00.9930000
TestFloatingPointDivision 00:00:00.6740000
TestFloatingPointSquareRoot 00:00:01.0120000
TestFloatingPointSine 00:00:00.6700000
TestFloatingPointLogarithm 00:00:39.1020000
TestFloatingPointExp 00:00:35.3560000
(1 Billion Tests Per Benchmark, Compiled with Optimize, AMD Athlon X2 3.0ghz, using Jon Skeet's microbenchmarking framework available at http://www.yoda.arachsys.com/csharp/benchmark.html)
Source:
class TestBenchmark
{
[Benchmark]
public static void TestIntegerAssignment()
{
int i = 1;
int j = 2;
for (int x = 0; x < 1000000000; x++)
{
i = j;
}
}
[Benchmark]
public static void TestCallRoutineWithNoParameters()
{
for (int x = 0; x < 1000000000; x++)
{
TestStaticRoutine();
}
}
[Benchmark]
public static void TestCallRoutineWithOneParameter()
{
for (int x = 0; x < 1000000000; x++)
{
TestStaticRoutine2(5);
}
}
[Benchmark]
public static void TestCallRoutineWithTwoParameters()
{
for (int x = 0; x < 1000000000; x++)
{
TestStaticRoutine3(5,7);
}
}
[Benchmark]
public static void TestIntegerAddition()
{
int i = 1;
int j = 2;
int k = 3;
for (int x = 0; x < 1000000000; x++)
{
i = j + k;
}
}
[Benchmark]
public static void TestIntegerSubtraction()
{
int i = 1;
int j = 6;
int k = 3;
for (int x = 0; x < 1000000000; x++)
{
i = j - k;
}
}
[Benchmark]
public static void TestIntegerMultiplication()
{
int i = 1;
int j = 2;
int k = 3;
for (int x = 0; x < 1000000000; x++)
{
i = j * k;
}
}
[Benchmark]
public static void TestIntegerDivision()
{
int i = 1;
int j = 6;
int k = 3;
for (int x = 0; x < 1000000000; x++)
{
i = j/k;
}
}
[Benchmark]
public static void TestFloatingPointDivision()
{
float i = 1;
float j = 6;
float k = 3;
for (int x = 0; x < 1000000000; x++)
{
i = j / k;
}
}
[Benchmark]
public static void TestFloatingPointSquareRoot()
{
double x = 1;
float y = 6;
for (int x2 = 0; x2 < 1000000000; x2++)
{
x = Math.Sqrt(6);
}
}
[Benchmark]
public static void TestFloatingPointSine()
{
double x = 1;
float y = 6;
for (int x2 = 0; x2 < 1000000000; x2++)
{
x = Math.Sin(y);
}
}
[Benchmark]
public static void TestFloatingPointLogarithm()
{
double x = 1;
float y = 6;
for (int x2 = 0; x2 < 1000000000; x2++)
{
x = Math.Log(y);
}
}
[Benchmark]
public static void TestFloatingPointExp()
{
double x = 1;
float y = 6;
for (int x2 = 0; x2 < 1000000000; x2++)
{
x = Math.Exp(6);
}
}
private static void TestStaticRoutine() {
}
private static void TestStaticRoutine2(int i)
{
}
private static void TestStaticRoutine3(int i, int j)
{
}
private static class TestStaticClass
{
}
Straight from the source, Know what things cost.
IIRC Rico Mariani had relative measures as the ones you asked for on his blog, I can't find it anymore, though (I know it's in one of thoe twohudnred "dev" bookmarks...)
It's a reasonable question, but nearly every performance problem I've seen, especially in Java and C# boiled down to:
too many layers of abstraction, and
reliance on event-based notification-style coding.
which have little or nothing to do with basic operations.
The problem with abstraction is it is fine until the workload gets heavy. Each layer usually exacts a small performance penalty, and these accumulate in a compounded fashion. At that point you start needing workarounds. (I think StringBuilder is an example of such a workaround.)
The problem with event-based notification-style coding (as opposed to simpler data structures kept consistent by a periodic process) is that what can seem like simple actions, such as setting a property to a value, can result in a ripple effect of actions throughout the data structure doing far more than one might expect.