Levenshtein distance. Max distance exception - c#

I have this levenstein algorithm:
public static int? GetLevenshteinDistance(string input, string output, int maxDistance)
{
var stringOne = String.Empty;
var stringTwo = String.Empty;
if (input.Length >= output.Length)
{
stringOne = input;
stringTwo = output;
}
else
{
stringOne = output;
stringTwo = input;
}
var stringOneLength = stringOne.Length;
var stringTwoLength = stringTwo.Length;
var matrix = new int[stringOneLength + 1, stringTwoLength + 1];
for (var i = 0; i <= stringOneLength; matrix[i, 0] = i++) { }
for (var j = 0; j <= stringTwoLength; matrix[0, j] = j++) { }
for (var i = 1; i <= stringOneLength; i++)
{
bool isBreak = true;
for (var j = 1; j <= stringTwoLength; j++)
{
var cost = (stringTwo[j - 1] == stringOne[i - 1]) ? 0 : 1;
matrix[i, j] = Math.Min(
Math.Min(matrix[i - 1, j] + 1, matrix[i, j - 1] + 1),
matrix[i - 1, j - 1] + cost);
if (matrix[i, j] < maxDistance)
{
isBreak = false;
}
}
if (isBreak)
{
return null;
}
}
return matrix[stringOneLength, stringTwoLength];
}
I checked each values and if it > max distance I break for.
But it does not always work correctly.
For example:
string1 = "#rewRPAF"
string2 = "#rewQVRZP"
maxDistance = 4
I get value 5 but don't null.
This solution i get this - Levenstein distance limit

We don't fix code on here, but I will help you fix it yourself.
Change this
if (matrix[i, j] < maxDistance)
{
isBreak = false;
}
to
if (matrix[i, j] < maxDistance)
{
isBreak = false;
} else {
System.Diagnostics.Debugger.Break();
}
that should break the debugger when you get to maxDistance, when that happens step forward in the debugger and follow what your program does. That should allow you to see what is happening that you don't want.

Look at what happens the first time around the inner loop. At this point the cost can not exceed one. Thus IsBreak is always being set to false if MaxDistance is greater than 1.
My gut says:
scrap everything to do with IsBreak
int Distance = matrix[stringOneLength, stringTwoLength];
return Distance > MaxDistance ? null : Distance;
but I haven't tried it.
Alternately (I haven't done enough with Levenshtein to be confident of this approach):
scrap everything to do with IsBreak
if (matrix[i, j] < maxDistance)
{
isBreak = false;
}
becomes
if (matrix[i, j] > maxDistance)
{
return null;
}
(Note that your termination test had an off-by-one.)

Related

element swapping in a 4x4 array with numbers

I am making a game like this one : https://i.stack.imgur.com/mnbFw.jpg. I am having trouble coding the algorithm to swap numbers between each others. In my game , the 0 acts as the empty tile. This algorithm was originally for a 3x3 grid but I simply switched the 3's to 4's. I think that this is what's causing issues but I can't seem to find why.
{
int j, i;
for (i = 1; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
if (t1[i, j] == 0)
{
t1[i, j] = t1[i - 1, j];
t1[i - 1, j] = 0;
}
}
}
}
static void scan_above(int[,] t1)
{
int j, i;
for (i = 1; i >= 0; i--)
{
for (j = 0; j < 4; j++)
{
if (t1[i, j] == 0)
{
t1[i, j] = t1[i + 1, j];
t1[i + 1, j] = 0;
}
}
}
}
static void scan_left(int[,] t1)
{
int j, i;
for (j = 1; j >= 0; j--)
{
for (i = 0; i < 4; i++)
{
if (t1[i, j] == 0)
{
t1[i, j] = t1[i, j + 1];
t1[i, j + 1] = 0;
}
}
}
}
static void scan_right(int[,] t1)
{
int j, i;
for (j = 1; j < 4; j++)
{
for (i = 0; i < 4; i++)
{
if (t1[i, j] == 0)
{
t1[i, j] = t1[i, j - 1];
t1[i, j - 1] = 0;
}
}
}
}```
I'm confused about why you're looping through all the values in the matrix. Unless there are considerations that aren't included in the question, this is all it should take:
static void MoveRight(int xOfZero, int yOfZero)
{
int rightValue = spaces[xOfZero, yOfZero + 1];
spaces[xOfZero, yOfZero + 1] = 0;
spaces[xOfZero, yOfZero] = rightValue;
}
FYI I hastily put together my matrix so it's indexed backwards, where x is the row number and y is the column. You could easily follow the same steps to make a move for every direction.

Why Am I Getting The Incorrect Levenshtein Distance?

I am attempting to implement the Levenshtein Distance algorithm in C# (for practice and because it'd be handy to have). I used an implementation from the Wikipedia page but for some reason I'm getting the wrong distance on one set of words. Here's the code (from LinqPad):
void Main()
{
var ld = new LevenshteinDistance();
int dist = ld.LevenshteinDistanceCalc("sitting","kitten");
dist.Dump();
}
// Define other methods and classes here
public class LevenshteinDistance
{
private int[,] distance;
public int LevenshteinDistanceCalc(string source, string target)
{
int sourceSize = source.Length, targetSize = target.Length;
distance = new int[sourceSize, targetSize];
for (int sIndex = 0; sIndex < sourceSize; sIndex++)
{
distance[sIndex, 0] = sIndex;
}
for (int tIndex = 0; tIndex < targetSize; tIndex++)
{
distance[0,tIndex] = tIndex;
}
// for j from 1 to n:
// for i from 1 to m:
// if s[i] = t[j]:
// substitutionCost:= 0
// else:
// substitutionCost:= 1
// d[i, j] := minimum(d[i - 1, j] + 1, // deletion
// d[i, j - 1] + 1, // insertion
// d[i - 1, j - 1] + substitutionCost) // substitution
//
//
// return d[m, n]
for (int tIndex = 1; tIndex < targetSize; tIndex++)
{
for (int sIndex = 1; sIndex < sourceSize; sIndex++)
{
int substitutionCost = source[sIndex] == target[tIndex] ? 0 : 1;
int deletion = distance[sIndex-1, tIndex]+1;
int insertion = distance[sIndex,tIndex-1]+1;
int substitution = distance[sIndex-1, tIndex-1] + substitutionCost;
distance[sIndex, tIndex] = leastOfThree(deletion, insertion, substitution);
}
}
return distance[sourceSize-1,targetSize-1];
}
private int leastOfThree(int a, int b, int c)
{
return Math.Min(a,(Math.Min(b,c)));
}
}
When I try "sitting" and "kitten" I get an LD of 2 (should be 3). Yet when I try "Saturday" and "Sunday" I get an LD of 3 (which is correct). I know something's wrong but I can't figure out what I'm missing.
The example on wikipedia uses 1-based strings. In C# we use 0-based strings.
In their matrix the 0-row and 0-column does exist. So the size of their matrix is [source.Length + 1, source.Length + 1] In your code it doesn't exist.
public int LevenshteinDistanceCalc(string source, string target)
{
int sourceSize = source.Length, targetSize = target.Length;
distance = new int[sourceSize + 1, targetSize + 1];
for (int sIndex = 1; sIndex <= sourceSize; sIndex++)
distance[sIndex, 0] = sIndex;
for (int tIndex = 1; tIndex <= targetSize; tIndex++)
distance[0, tIndex] = tIndex;
for (int tIndex = 1; tIndex <= targetSize; tIndex++)
{
for (int sIndex = 1; sIndex <= sourceSize; sIndex++)
{
int substitutionCost = source[sIndex-1] == target[tIndex-1] ? 0 : 1;
int deletion = distance[sIndex - 1, tIndex] + 1;
int insertion = distance[sIndex, tIndex - 1] + 1;
int substitution = distance[sIndex - 1, tIndex - 1] + substitutionCost;
distance[sIndex, tIndex] = leastOfThree(deletion, insertion, substitution);
}
}
return distance[sourceSize, targetSize];
}
Your matrix isn't big enough.
In the pseudo-code, s and t have lengths m and n respectively (char s[1..m], char t[1..n]). The matrix however has dimentions [0..m, 0..n] - i.e. one more than the length of the strings in each direction. You can see this in the tables below the pseudo-code.
So the matrix for "sitting" and "kitten" is 7x8, but your matrix is only 6x7.
You're also indexing into the strings incorrectly, because the strings in the pseudo-code are 1-indexed, but C#'s strings are 0-indexed.
After fixing these, you get this code, which works with "sitting" and "kitten":
public static class LevenshteinDistance
{
public static int LevenshteinDistanceCalc(string source, string target)
{
int sourceSize = source.Length + 1, targetSize = target.Length + 1;
int[,] distance = new int[sourceSize, targetSize];
for (int sIndex = 0; sIndex < sourceSize; sIndex++)
{
distance[sIndex, 0] = sIndex;
}
for (int tIndex = 0; tIndex < targetSize; tIndex++)
{
distance[0, tIndex] = tIndex;
}
// for j from 1 to n:
// for i from 1 to m:
// if s[i] = t[j]:
// substitutionCost:= 0
// else:
// substitutionCost:= 1
// d[i, j] := minimum(d[i - 1, j] + 1, // deletion
// d[i, j - 1] + 1, // insertion
// d[i - 1, j - 1] + substitutionCost) // substitution
//
//
// return d[m, n]
for (int tIndex = 1; tIndex < targetSize; tIndex++)
{
for (int sIndex = 1; sIndex < sourceSize; sIndex++)
{
int substitutionCost = source[sIndex - 1] == target[tIndex - 1] ? 0 : 1;
int deletion = distance[sIndex - 1, tIndex] + 1;
int insertion = distance[sIndex, tIndex - 1] + 1;
int substitution = distance[sIndex - 1, tIndex - 1] + substitutionCost;
distance[sIndex, tIndex] = leastOfThree(deletion, insertion, substitution);
}
}
return distance[sourceSize - 1, targetSize - 1];
}
private static int leastOfThree(int a, int b, int c)
{
return Math.Min(a, (Math.Min(b, c)));
}
}
(I also took the liberty of making distance a local variable since there's no need for it to be a field (it only makes your class non-threadsafe), and also making it static to avoid the unnecessary instantiation).
To debug this, I put a breakpoint on return distance[sourceSize - 1, targetSize - 1] and compared distance to the table on Wikipedia. It was very obvious that it was too small.

Neural network [ocr]

I come looking for general tips about the program I'm writing now.
The goal is:
Use neural network program to recognize 3 letters [D,O,M] (or display "nothing is recognized" if i input anything other than those 3).
Here's what I have so far:
A class for my single neuron
public class neuron
{
double[] weights;
public neuron()
{
weights = null;
}
public neuron(int size)
{
weights = new double[size + 1];
Random r = new Random();
for (int i = 0; i <= size; i++)
{
weights[i] = r.NextDouble() / 5 - 0.1;
}
}
public double output(double[] wej)
{
double s = 0.0;
for (int i = 0; i < weights.Length; i++) s += weights[i] * wej[i];
s = 1 / (1 + Math.Exp(s));
return s;
}
}
A class for a layer:
public class layer
{
neuron[] tab;
public layer()
{
tab = null;
}
public layer(int numNeurons, int numInputs)
{
tab = new neuron[numNeurons];
for (int i = 0; i < numNeurons; i++)
{
tab[i] = new neuron(numInputs);
}
}
public double[] compute(double[] wejscia)
{
double[] output = new double[tab.Length + 1];
output[0] = 1;
for (int i = 1; i <= tab.Length; i++)
{
output[i] = tab[i - 1].output(wejscia);
}
return output;
}
}
And finally a class for a network
public class network
{
layer[] layers = null;
public network(int numLayers, int numInputs, int[] npl)
{
layers = new layer[numLayers];
for (int i = 0; i < numLayers; i++)
{
layers[i] = new layer(npl[i], (i == 0) ? numInputs : (npl[i - 1]));
}
}
double[] compute(double[] inputs)
{
double[] output = layers[0].compute(inputs);
for (int i = 1; i < layers.Length; i++)
{
output = layers[i].compute(output);
}
return output;
}
}
Now for the algorythm I chose:
I have a picture box, size 200x200, where you can draw a letter (or read one from jpg file).
I then convert it to my first array(get the whole picture) and 2nd one(cut the non relevant background around it) like so:
Bitmap bmp2 = new Bitmap(this.pictureBox1.Image);
int[,] binaryfrom = new int[bmp2.Width, bmp2.Height];
int minrow=0, maxrow=0, mincol=0, maxcol=0;
for (int i = 0; i < bmp2.Height; i++)
{
for (int j = 0; j < bmp2.Width; j++)
{
if (bmp2.GetPixel(j, i).R == 0)
{
binaryfrom[i, j] = 1;
if (minrow == 0) minrow = i;
if (maxrow < i) maxrow = i;
if (mincol == 0) mincol = j;
else if (mincol > j) mincol = j;
if (maxcol < j) maxcol = j;
}
else
{
binaryfrom[i, j] = 0;
}
}
}
int[,] boundaries = new int[binaryfrom.GetLength(0)-minrow-(binaryfrom.GetLength(0)-(maxrow+1)),binaryfrom.GetLength(1)-mincol-(binaryfrom.GetLength(1)-(maxcol+1))];
for(int i = 0; i < boundaries.GetLength(0); i++)
{
for(int j = 0; j < boundaries.GetLength(1); j++)
{
boundaries[i, j] = binaryfrom[i + minrow, j + mincol];
}
}
And convert it to my final array of 12x8 like so (i know I could shorten this a fair bit, but wanted to have every step in different loop so I can see what went wrong easier[if anything did]):
int[,] finalnet = new int[12, 8];
int k = 1;
int l = 1;
for (int i = 0; i < finalnet.GetLength(0); i++)
{
for (int j = 0; j < finalnet.GetLength(1); j++)
{
finalnet[i, j] = 0;
}
}
while (k <= finalnet.GetLength(0))
{
while (l <= finalnet.GetLength(1))
{
for (int i = (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * (k - 1); i < (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * k; i++)
{
for (int j = (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * (l - 1); j < (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * l; j++)
{
if (boundaries[i, j] == 1) finalnet[k-1, l-1] = 1;
}
}
l++;
}
l = 1;
k++;
}
int a = boundaries.GetLength(0);
int b = finalnet.GetLength(1);
if((a%b) != 0){
k = 1;
while (k <= finalnet.GetLength(1))
{
for (int i = (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * finalnet.GetLength(0); i < boundaries.GetLength(0); i++)
{
for (int j = (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * (k - 1); j < (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * k; j++)
{
if (boundaries[i, j] == 1) finalnet[finalnet.GetLength(0) - 1, k - 1] = 1;
}
}
k++;
}
}
if (boundaries.GetLength(1) % finalnet.GetLength(1) != 0)
{
k = 1;
while (k <= finalnet.GetLength(0))
{
for (int i = (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * (k - 1); i < (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * k; i++)
{
for (int j = (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * finalnet.GetLength(1); j < boundaries.GetLength(1); j++)
{
if (boundaries[i, j] == 1) finalnet[k - 1, finalnet.GetLength(1) - 1] = 1;
}
}
k++;
}
for (int i = (int)(boundaries.GetLength(0) / finalnet.GetLength(0)) * finalnet.GetLength(0); i < boundaries.GetLength(0); i++)
{
for (int j = (int)(boundaries.GetLength(1) / finalnet.GetLength(1)) * finalnet.GetLength(1); j < boundaries.GetLength(1); j++)
{
if (boundaries[i, j] == 1) finalnet[finalnet.GetLength(0) - 1, finalnet.GetLength(1) - 1] = 1;
}
}
}
The result is a 12x8 (I can change it in the code to get it from some form controls) array of 0 and 1, where 1 form the rough shape of a letter you drawn.
Now my questions are:
Is this a correct algorythm?
Is my function
1/(1+Math.Exp(x))
good one to use here?
What should be the topology? 2 or 3 layers, and if 3, how many neurons in hidden layer? I have 96 inputs (every field of the finalnet array), so should I also take 96 neurons in the first layer? Should I have 3 neurons in the final layer or 4(to take into account the "not recognized" case), or is it not necessary?
Thank you for your help.
EDIT: Oh, and I forgot to add, I'm gonna train my network using Backpropagation algorythm.
You may need 4 layers at least to get accurate results using back propagation method. 1 input, 2 middle layers, and an output layer.
12 * 8 matrix is too small(and you may end up in data loss which will result in total failure) - try some thing 16 * 16. If you want to reduce the size then you have to peel out the outer layers of black pixels further.
Think about training the network with your reference characters.
Remember that you have to feed back the output back to the input layer again and iterate it multiple times.
A while back I created a neural net to recognize digits 0-9 (python, sorry), so based on my (short) experience, 3 layers are ok and 96/50/3 topology will probably do a good job. As for the output layer, it's your choice; you can either backpropagate all 0s when the input image is not a D, O or M or use the fourth output neuron to indicate that the letter was not recognized. I think that the first option would be the best one because it's simpler (shorter training time, less problems debugging the net...), you just need to apply a threshold under which you classify the image as 'not recognized'.
I also used the sigmoid as activation function, I didn't try others but it worked :)

C# LevenshteinDistance algorithm for spellchecker

Hi i'm using the levenshtein algorithm to calculate the difference between two strings, using the below code. It currently provides the total number of changes which need to be made to get from 'answer' to 'target', but i'd like to split these up into the types of errors being made. So classifying an error as a deletion, substitution or insertion.
I've tried adding a simple count but i'm new at this and don't really understand how the code works so not sure how to go about it.
static class LevenshteinDistance
{
/// <summary>
/// Compute the distance between two strings.
/// </summary>
public static int Compute(string s, string t)
{
int n = s.Length;
int m = t.Length;
int[,] d = new int[n + 1, m + 1];
// Step 1
if (n == 0)
{
return m;
}
if (m == 0)
{
return n;
}
// Step 2
for (int i = 0; i <= n; d[i, 0] = i++)
{
}
for (int j = 0; j <= m; d[0, j] = j++)
{
}
// Step 3
for (int i = 1; i <= n; i++)
{
//Step 4
for (int j = 1; j <= m; j++)
{
// Step 5
int cost = (t[j - 1] == s[i - 1]) ? 0 : 1;
// Step 6
d[i, j] = Math.Min(
Math.Min(d[i - 1, j] + 1, d[i, j - 1] + 1),
d[i - 1, j - 1] + cost);
}
}
// Step 7
return d[n, m];
}
}
Thanks in advance.

Damerau - Levenshtein Distance, adding a threshold

I have the following implementation, but I want to add a threshold, so if the result is going to be greater than it, just stop calculating and return.
How would I go about that?
EDIT: Here is my current code, threshold is not yet used...the goal is that it is used
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
// Return trivial case - where they are equal
if (string1.Equals(string2))
return 0;
// Return trivial case - where one is empty
if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
return (string1 ?? "").Length + (string2 ?? "").Length;
// Ensure string2 (inner cycle) is longer
if (string1.Length > string2.Length)
{
var tmp = string1;
string1 = string2;
string2 = tmp;
}
// Return trivial case - where string1 is contained within string2
if (string2.Contains(string1))
return string2.Length - string1.Length;
var length1 = string1.Length;
var length2 = string2.Length;
var d = new int[length1 + 1, length2 + 1];
for (var i = 0; i <= d.GetUpperBound(0); i++)
d[i, 0] = i;
for (var i = 0; i <= d.GetUpperBound(1); i++)
d[0, i] = i;
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
var cost = string1[i - 1] == string2[j - 1] ? 0 : 1;
var del = d[i - 1, j] + 1;
var ins = d[i, j - 1] + 1;
var sub = d[i - 1, j - 1] + cost;
d[i, j] = Math.Min(del, Math.Min(ins, sub));
if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
d[i, j] = Math.Min(d[i, j], d[i - 2, j - 2] + cost);
}
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}
}
This is Regarding ur answer this: Damerau - Levenshtein Distance, adding a threshold
(sorry can't comment as I don't have 50 rep yet)
I think you have made an error here. You initialized:
var minDistance = threshold;
And ur update rule is:
if (d[i, j] < minDistance)
minDistance = d[i, j];
Also, ur early exit criteria is:
if (minDistance > threshold)
return int.MaxValue;
Now, observe that the if condition above will never hold true! You should rather initialize minDistance to int.MaxValue
Here's the most elegant way I can think of. After setting each index of d, see if it exceeds your threshold. The evaluation is constant-time, so it's a drop in the bucket compared to the theoretical N^2 complexity of the overall algorithm:
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
...
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
...
var temp = d[i,j] = Math.Min(del, Math.Min(ins, sub));
if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
temp = d[i,j] = Math.Min(temp, d[i - 2, j - 2] + cost);
//Does this value exceed your threshold? if so, get out now
if(temp > threshold)
return temp;
}
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}
You also asked this as a SQL CLR UDF question so I'll answer in that specific context: you best optmiziation won't come from optimizing the Levenshtein distance, but from reducing the number of pairs you compare. Yes, a faster Levenshtein algorithm will improve things, but not nearly as much as reducing the number of comparisons from N square (with N in the millions of rows) to N*some factor. My proposal is to compare only elements who have the length difference within a tolerable delta. On your big table, you add a persisted computed column on LEN(Data) and then create an index on it with include Data:
ALTER TABLE Table ADD LenData AS LEN(Data) PERSISTED;
CREATE INDEX ndxTableLenData on Table(LenData) INCLUDE (Data);
Now you can restrict the sheer problem space by joining within an max difference on lenght (eg. say 5), if your data's LEN(Data) varies significantly:
SELECT a.Data, b.Data, dbo.Levenshtein(a.Data, b.Data)
FROM Table A
JOIN Table B ON B.DataLen BETWEEN A.DataLen - 5 AND A.DataLen+5
Finally got it...though it's not as beneficial as I had hoped
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
// Return trivial case - where they are equal
if (string1.Equals(string2))
return 0;
// Return trivial case - where one is empty
if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
return (string1 ?? "").Length + (string2 ?? "").Length;
// Ensure string2 (inner cycle) is longer
if (string1.Length > string2.Length)
{
var tmp = string1;
string1 = string2;
string2 = tmp;
}
// Return trivial case - where string1 is contained within string2
if (string2.Contains(string1))
return string2.Length - string1.Length;
var length1 = string1.Length;
var length2 = string2.Length;
var d = new int[length1 + 1, length2 + 1];
for (var i = 0; i <= d.GetUpperBound(0); i++)
d[i, 0] = i;
for (var i = 0; i <= d.GetUpperBound(1); i++)
d[0, i] = i;
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
var im1 = i - 1;
var im2 = i - 2;
var minDistance = threshold;
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
var jm1 = j - 1;
var jm2 = j - 2;
var cost = string1[im1] == string2[jm1] ? 0 : 1;
var del = d[im1, j] + 1;
var ins = d[i, jm1] + 1;
var sub = d[im1, jm1] + cost;
//Math.Min is slower than native code
//d[i, j] = Math.Min(del, Math.Min(ins, sub));
d[i, j] = del <= ins && del <= sub ? del : ins <= sub ? ins : sub;
if (i > 1 && j > 1 && string1[im1] == string2[jm2] && string1[im2] == string2[jm1])
d[i, j] = Math.Min(d[i, j], d[im2, jm2] + cost);
if (d[i, j] < minDistance)
minDistance = d[i, j];
}
if (minDistance > threshold)
return int.MaxValue;
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)] > threshold
? int.MaxValue
: d[d.GetUpperBound(0), d.GetUpperBound(1)];
}

Categories

Resources