wpf inkcanvas stroke erase by pixel - c#

I'm developing drawing tool control using inkcanvs in wpf.
When i draw rectangle, this is original image.
Original Image
And i set that editing mode is erase by point. When i erase rectangle, this is image after working.
Erased Image
I want that erase function works as well as default drawing tool in windows. It would be worked by pixel. Erase shape by pixel.
Part of Source Codes
public class Label : Stroke
{
protected override void DrawCore(DrawingContext drawingContext, DrawingAttributes drawingAttributes)
Rect rect = new Rect((Point)this.StylusPoints[0], (Point)this.StylusPoints[1]);
drawingContext.DrawRectangle(...)

This is not possible with the standard API.
Only by translating an ink image (strokes, which are enhanced vectors) to a bitmap image (which contains pixels) individual pixels can be manipulated but the stroke information will be lost.
With quite some effort an application could be created that keeps track of all its user's actions (draw some strokes, add a pixel, remove a pixel) and replays them all every time the UI needs a redraw, injecting the transformation from vector to bitmap where needed.
This is a nice exercise but might prove to be too slow and/or complex.

Related

Maintaining Graphics Line on Background image in c# panel

I am drawing lines on a background image in a c# panel. The panel is anchored to the form so as the form resizes the panel resizes. The background image is set to be stretched so all you see as you resize the form is the background image.
My initial problem:
The lines drawn on the panel (via the OnPaint event) stay where they were originally drawn as the image resizes.
My current solution:
Record the location of the line and redraw it on a new bitmap by scaling the X and Y coordinates (works fine).
My new problem:
As you continually resize the window and draw lines you can't calculate the scaling factor from any point in time and apply it to all lines since the lines were originall drawn in different size images.
The two options I think I have:
After I redraw the line go through my array of lines and update the coordinate information so it now matches the current scale.
Or
In addition to storing the coordinate information of the line also store the size information of the panel at the time it was drawn so I can always calculate the scale for each line based on when it was drawn and the new panel size.
What I'm hoping for:
If you have thoughts on either of the two approaches that would be greatly appreciated....Even better would be to point me in the direction of a far better method to do this (I am fairly new to graphics processing in c#).
Can't write a comment, much as I want to. You do have a few options:
Draw your lines directly on the original Bitmap. This might not be an option for you, depending on the task.
Do it as you're doing now, keeping track of the lines' coordinates, updating them on resize, and redrawing them on Paint - if you use this, you'll be able to move and delete them, too,
Or do it by introducing a "scale factor" (float) which you update on every resize, and in your Paint event handler you draw everything using that scale factor. As you create a line, you calculate its coordinates using the scale factor BACK TO an unified coordinate system (scale factor 1) and then you don't have to modify your coordinates at all. This might be easy to debug due to that unified coordinate system. This is what I'd recommend, but it again depends on your task.
Draw to a full transparent Bitmap of the same size as your original image, use a scale factor like in the previous option. On creating a line, calculate its coordinates in the unified coordinate system, draw it on the Bitmap, and then on every Paint, draw the entire Bitmap over your original one. This, again, might not be an option if you need to delete or move your lines, or if you're tight on memory, or you don't want your lines to be blurred when you scale up, but somehow many ppl like this because it's like a "layer in Photoshop". :)

Best practice for OnPaint, Invalidate, Clipping and Regions

I have a User Control with completely custom drawn graphics of many objects which draw themselves (called from OnPaint), with the background being a large bitmap. I have zoom and pan functionality built in, and all the coordinates for the objects which are drawn on the canvas are in bitmap coordinates.
Therefore if my user control is 1000 pixels wide, the bitmap is 1500 pixels wide, and I am zoomed at 200% zoom, then at any given time I would only be looking at 1/3 of the bitmap's width. And an object which has a rectangle starting at point 100,100 on the bitmap, would appear at point 200,200 on the screen provided you were scrolled to the far left.
Basically what I need to do is create an efficient way of redrawing only what needs to be redrawn. For example, if I move an object, I can add the old clip rectangle of that object to a region, and union the new clip rectangle of that object to that same region, then call Invalidate(region) to redraw those two areas.
However doing it this way means I have to constantly convert the objects bitmap coordinates into screen coordinates before supplying them to Invalidate. I have to always assume that the ClipRectangle in PaintEventArgs is in screen coordinates for when other windows invalidate mine.
Is there a way that I can make use of the Region.Transform and Region.Translate capabilities so that I do not need to convert from bitmap to screen coordinates? In a way that it won't interfere with receiving PaintEventArgs in screen coordinates? Should I be using multiple regions or is there a better way to do all this?
Sample code for what I'm doing now:
invalidateRegion.Union(BitmapToScreenRect(SelectedItem.ClipRectangle));
SelectedItem.UpdateEndPoint(endPoint);
invalidateRegion.Union(BitmapToScreenRect(SelectedItem.ClipRectangle));
this.Invalidate(invalidateRegion);
And in the OnPaint()...
protected override void OnPaint(PaintEventArgs e)
{
invalidateRegion.Union(e.ClipRectangle);
e.Graphics.SetClip(invalidateRegion, CombineMode.Union);
e.Graphics.Clear(SystemColors.AppWorkspace);
e.Graphics.TranslateTransform(AutoScrollPosition.X + CanvasBounds.X, AutoScrollPosition.Y + CanvasBounds.Y);
DrawCanvas(e.Graphics, _ratio);
e.Graphics.ResetTransform();
e.Graphics.ResetClip();
invalidateRegion.MakeEmpty();
}
Since a lot of people are viewing this question I will go ahead and answer it to the best of my current knowledge.
The Graphics class supplied with PaintEventArgs is always hard-clipped by the invalidation request. This is usually done by the operating system, but it can be done by your code.
You can't reset this clip or escape from these clip bounds, but you shouldn't need to. When painting, you generally shouldn't care about how it's being clipped unless you desperately need to maximize performance.
The graphics class uses a stack of containers to apply clipping and transformations. You can extend this stack yourself by using Graphics.BeginContainer and Graphics.EndContainer. Each time you begin a container, any changes you make to the Transform or the Clip are temporary and they are applied after any previous Transform or Clip which was configured before the BeginContainer. So essentially, when you get an OnPaint event it has already been clipped and you are in a new container so you can't see the clip (your Clip region or ClipRect will show as being infinite) and you can't break out of those clip bounds.
When the state of your visual objects change (for example, on mouse or keyboard events or reacting to data changes), it's normally fine to simply call Invalidate() which will repaint the entire control. Windows will call OnPaint during moments of low CPU usage. Each call to Invalidate() usually will not always correspond to an OnPaint event. Invalidate could be called multiple times before the next paint. So if 10 properties in your data model change all at once, you can safely call Invalidate 10 times on each property change and you'll likely only trigger a single OnPaint event.
I've noticed you should be careful with using Update() and Refresh(). These force a synchronous OnPaint immediately. They're useful for drawing during a single threaded operation (updating a progress bar perhaps), but using them at the wrong times could lead to excessive and unnecessary painting.
If you want to use clip rectangles to improve performance while repainting a scene, you need not keep track of an aggregated clip area yourself. Windows will do this for you. Just invalidate a rectangle or a region that requires invalidation and paint as normal. For example, if an object that you are painting is moved, each time you want to invalidate it's old bounds and it's new bounds, so that you repaint the background where it originally was in addition to painting it in its new location. You must also take into account pen stroke sizes, etc.
And as Hans Passant mentioned, always use 32bppPArgb as the bitmap format for high resolution images. Here's a code snippet on how to load an image as "high performance":
public static Bitmap GetHighPerformanceBitmap(Image original)
{
Bitmap bitmap;
bitmap = new Bitmap(original.Width, original.Height, PixelFormat.Format32bppPArgb);
bitmap.SetResolution(original.HorizontalResolution, original.VerticalResolution);
using (Graphics g = Graphics.FromImage(bitmap))
{
g.DrawImage(original, new Rectangle(new Point(0, 0), bitmap.Size), new Rectangle(new Point(0, 0), bitmap.Size), GraphicsUnit.Pixel);
}
return bitmap;
}

Interactive Zooming into a 2D graphics bitmap in C#

I have made a program that reads voltage and current values of some diode curves from an xml file and draws them on screen (Just using plain 2D graphics and some simple commands like DrawCurve and stuff like that).
My main image frame is 800 by 800 pixels (you can see a smaller screenshot down below). Now I want to add a zoom function that when I hover the mouse over this image area, a flying smaller square pops up and zooms in + moves when I move the mouse over this area.
I have no idea how to approach this. Ofcourse I don't ask the full working code but please help me to get closer and closer!
For instance, can I make the zoom to work, without reading the curve data and painting real time? or there is no escape from it? How can I have a hovering image box when I move mouse over the orginal image?
Thanks!
Have you timed how long DrawCurve takes? Perhaps it's fast enough to do in real time. Don't forget, the GDI will clip the drawing primitives to the drawing area. You just need to set up a clipping rectangle as you move the mouse around.
To speed up the redraw, create the main window image (the one you pasted) as an off-screen bitmap, and just DrawImage the off-screen version to the window in the paint events. That way you reduce the impact of the DrawCurve.
Finally, to get good looking results, overload the OnPaintBackground (can't remember the name exactly but it's something like that) so it does nothing (not even call the base class) and do all your painting in the OnPaint method using a BufferedGraphics object.
Update
Your paint function might look like this:
OnPaint (...)
{
the_graphics_object.DrawImage (the background image);
the_graphics_object.Clip = new Region (new Rectangle (coords relative to mouse position));
the_graphics_object.TranslateTransform (drawing offset based on mouse position);
RenderScene (the_graphics_object, scale_factor); // draws grid and curve, etc
the_graphics_object.DrawRectangle (zoom view rectangle); // draw a frame around the zoomed view
}
This will produce a floating 'window' relative to the mouse position.
Typically, cases where redrawing can be time consuming, zooming is usually tackled by providing a "quick but ugly" implementation, alongside the "correct but slow" implementation. While the zoom operation is actively in progress (say, while the user has a slider clicked, or until a 50ms since the last change in zoom value has happened), you use the quick and ugly mode, so the user can see a preview of what the final image will be. Once they let go of the zoom slider (or whatever mechanism you provided), you can recalculate the image in detail. The quick version is usually calculated based on the original image that you are working with.
In your case, you could simply take the original image, work out the bounding box of the new, zoomed image, and scale the relevant part of the original image up to the full image size. If say 100ms has passed with no change in zoom, recalculate the entire image.
Examples of this kind of functionality are quite widespread: most fractal generators use exactly this technique, and even unrelated things like Google StreetView (which provides a very ugly distorted version of the previous image when you move around, until the actual image has downloaded).

image processing in c#

before question think about for example photoshop. When you draw a rectangle on the picture.You can move it. And when you move it works very quickly and it doeasnt make some traces on the picture.
So my question is, how to do that in c# application?
This might be useful for you
Image Processing for Dummies with C# and GDI+ Part 1 - Per Pixel Filters
Image Processing for Dummies with C# and GDI+ Part 2 - Convolution Filters
Image Processing for Dummies with C# and GDI+ Part 3 - Edge Detection Filters
Image Processing for Dummies with C# and GDI+ Part 4 - Bilinear Filters and Resizing
Image Processing for Dummies with C# and GDI+ Part 5 - Displacement filters, including swirl
Image Processing for Dummies with C# and GDI+ Part 6 - The HSL color space
When you are moving the rectangle, Photoshop doesn't put it in the image and then draw the image, instead the image is drawn without the rectangle, and the rectangle is drawn on top of that on the screen. That way when you move the rectangle it can redraw the part of the image that previously was covered by the rectangle, and draw the rectangle at the new position.
I think you're asking about selection rectangles (or other temporary shapes) on top of the document image. This effect is sometimes known as “rubber banding”, especially when drawing a line from one point to another (it stretches like a rubber band).
Traditionally, this was done by using XOR drawing -- instead of overwriting the image with the selection shape, the colors in that area are inverted. Then, to remove the selection, it suffices to invert the colors again, returning to the same original image. Today, graphics rendering is fast enough that such tricks are not usually necessary; it suffices to simply repaint that part of the window (without the rectangle).
Either way, it is important to recognize that the document image — the image the user is editing — is not the same as the window image, which is just a copy to be remade whenever necessary. In the window, the document image is drawn and then selections, guide marks, and other such controls are drawn on top of it.
I'm not familiar with C#'s GUI facilities (and I understand there is more than one GUI framework you might be using), but it's probably got the usual structure of putting many "widgets", "views", or "controls" in the window (possibly nested inside each other). You can do a straightforward selection box — though not an optimally efficient one — by just putting an appropriately sized rectangle widget (with a solid border and a transparent background) on top of an image widget. This lets your GUI framework take care of the appropriate redrawing for you and is probably a good cheap way to start.

In .NET, How can I draw shapes on a picture?

I'm doing a software where I need to put squary bordering fields on a satelite map (.png image), so that the fields can be clicked.
What is the best way to add shapes on a picture and associate them with data ?
Overlay a custom-draw UserControl on top of the Image control. Make part of it transparent to reveal the underlying image, but still be able to capture the mouse interaction.
You will have to calculate the exact position (pixel offset from the map top-left corner) of your control to overlay the proper map area. How you calculate that offset and the actual size of your custom control depends on the map zoom level and whether you use GPS coordinates or image recognition to determine which area needs to be overlayed.
Graphics.FillPolygon()
Is your friend. Hit testing is relatively trivial, with several algorithms available
You want to use the System.Drawing namespace to initially create a graphics object from your source image..then you want to draw on top of it, and finally export your edited graphics object to the filesystem...
Image image = Image.FromFile(Server.MapPath(String.Format("~/{0}.jpg", "YourImageNameHere")));
Graphics MyGraphic = Graphics.FromImage(LabelImage);
MyGraphic.DrawRectangle(SomePenObject, Point1, Point2, Point3, Point4);
Image.Save("C:\somepath.jpg",ImageFormat.Jpeg);

Categories

Resources