Issue with divisors finding function. Expected is <System.Int32[2]> - c#

I have an issue with the following one :
Create a function named divisors/Divisors that takes an integer and returns an array with all of the integer's divisors(except for 1 and the number itself). If the number is prime return the string '(integer) is prime' (null in C#) (use Either String a in Haskell and Result, String> in Rust).
My code:
static int[] divisors(int a)
{
int[] array = new int[a];
int x = 0;
for( int i =2; i<a; i++)
{
if(a % i == 0)
{
array[x] = i;
x++;
}
}
if(array.Length == 0)
{
return null;
}
else
{
return array;
}
}
When I try to run it, it throws :
"Expected is <System.Int32[2]>, actual is <System.Int32[15]>
Values differ at index [2]
Extra: < 0, 0, 0... >"
Not sure what to do with this one.
I'd really appreciate some help.
The sollution :
using System.Collections.Generic;
public class Kata
{
public static int[] Divisors(int n)
{
List<int> numbers = new List<int>();
for (int i = 2; i < n; i++)
{
if (n % i == 0)
{
numbers.Add (i);
}
}
if (numbers.Count == 0)
{
return null;
}
else
{
int[] array = new int[numbers.Count];
array =numbers.ToArray();
return array;
}
}
}

I did not get that error with your code; however, your function will not return null because you have determined the Length of your array as a. So the length will never be zero. You get all those zeros because value types initialize for you. Your int array filled up with zeros. I think this excercise should prove to you that a different collection type would be more suited to data that needs to be dynamicly resized but if you are required to stick to arrays, here is some code that does.
static int[] divisors(int a)
{
int x = 0;
int[] array = new int[x];
for (int i = 2; i < a; i++)
{
if (a % i == 0)
{
x++;
Array.Resize<int>(ref array, x);
array[x-1] = i;
}
}
if (array.Length == 0)
return null;
else
return array;
}
private void button1_Click(object sender, EventArgs e)
{
int b = Int32.Parse(textBox1.Text);
int[] a = divisors(b);
if (a == null)
MessageBox.Show($"{b} is a prime number.");
else
{
foreach (int x in a)
{
Debug.Print(x.ToString());
}
}
}

Related

returns the smallest positive integer (greater than 0) that does not occur in Array

I have the following question:-
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A.
For example, given A = [1, 3, 6, 4, 1, 2], the function should return 5.
Given A = [1, 2, 3], the function should return 4.
Given A = [−1, −3], the function should return 1.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [−1,000,000..1,000,000].
now i tried this code:-
using System;
// you can also use other imports, for example:
// using System.Collections.Generic;
// you can write to stdout for debugging purposes, e.g.
// Console.WriteLine("this is a debug message");
class Solution
{
public int solution(int[] A)
{
// write your code in C# 6.0 with .NET 4.5 (Mono)
int n = 1;
Array.Sort(A);
for (int i = 1; i <= 100000; i++)
{
for (int i2 = 0; i2 <= A.Length - 1; i2++)
{
if (A[i2] == i)
{
n = A[i2] + 1;
break;
}
}
}
return n;
}
}
where my code worked well for these test data:-
A = [1, 2, 3]
A = [−1, −3]
while failed for this one:-
A = [1, 3, 6, 4, 1, 2] where it return 7 instead of 5.
any advice why my code failed on the 3rd test?
Thanks
using System.Linq;
int smallestNumber = Enumerable.Range(1, 100000).Except(A).Min();
I would use following approach that uses a HashSet<int> to check if a given integer is missing:
public static int? SmallestMissing(int[] A, int rangeStart = 1, int rangeEnd = 100_000)
{
HashSet<int> hs = new HashSet<int>(A);
for (int i = rangeStart; i <= rangeEnd; i++)
if(!hs.Contains(i)) return i;
return null;
}
A HashSet is a collection if unique values and it's very efficient in lookup items(complexity is O(1)). So you get a very readable and efficient algorithm at the cost of some memory.
Maybe you could optimize it by providing another algorithm in case the array is very large, you don't want to risk an OutOfMemoryException:
public static int? SmallestMissing(int[] A, int rangeStart = 1, int rangeEnd = 100_000)
{
if(A.Length > 1_000_000)
{
Array.Sort(A);
for (int i = rangeStart; i <= rangeEnd; i++)
{
int index = Array.BinarySearch(A, i);
if(index < 0) return i;
}
return null;
}
HashSet<int> hs = new HashSet<int>(A);
for (int i = rangeStart; i <= rangeEnd; i++)
if(!hs.Contains(i)) return i;
return null;
}
If you're allowed to sort the array in-place, which means modifying the input parameter value, here's a simple linear probe for the missing value (on top of the sort of course).
Here's the pseudo-code:
Sort the array
Skip all negatives and 0's at the start
Loopify the following:
Expect 1, if not found at current location return 1
Skip all 1's
Expect 2, if not found at current location return 2
Skip all 2's
Expect 3, if not found at current location return 3
Skip all 3's
... and so on for 4, 5, 6, etc. until end of array
If we get here, return currently expected value which should've been at the end
Here's the code:
public static int FirstMissingValue(int[] input)
{
Array.Sort(input);
int index = 0;
// Skip negatives
while (index < input.Length && input[index] < 1)
index++;
int expected = 1;
while (index < input.Length)
{
if (input[index] > expected)
return expected;
// Skip number and all duplicates
while (index < input.Length && input[index] == expected)
index++;
expected++;
}
return expected;
}
Test-cases:
Console.WriteLine(FirstMissingValue(new[] { 1, 3, 6, 4, 1, 2 }));
Console.WriteLine(FirstMissingValue(new[] { 1, 2, 3 }));
Console.WriteLine(FirstMissingValue(new[] { -1, -3 }));
output:
5
4
1
Your alg won't work in case input array becomes like this: [1,2-1,1,3,5]. I did this based on your alg. Give it a try:
int[] a = new int[] { -1, -2};
IEnumerable<int> uniqueItems = a.Distinct<int>().Where(x => x > 0);
if (uniqueItems.Count() == 0)
{
Console.WriteLine("result: 1");
}
else
{
Array asList = uniqueItems.ToArray();
Array.Sort(asList);
for (int i = 1; i <= 100000; i++)
{
if ((int)asList.GetValue(i - 1) != i)
{
Console.WriteLine("result: " + i);
break;
}
}
}
you can try like this.
public static int solution(int[] A)
{
int smallest = -1;
Array.Sort(A);
if(A[0] > 1)
return 1;
for(int i = 0; i < A.Length; i++)
{
if(A.Length != i+1 && A[i] + 1 != A[i + 1] && A[i+1] > 0)
{
smallest = A[i]+1;
break;
}
else if(A[i] > 0 && A.Length == i+1)
{
smallest = A[i] + 1;
}
}
return smallest > 0 ? smallest:1;
}
Here's the approach that uses O(N) partitioning followed by an O(N) search. This approach does not use any additional storage, but it DOES change the contents of the array.
This code was converted from here. Also see this article.
I've added comments to try to explain how the second stage findSmallestMissing() works. I've not commented the partitioning method, since that's just a variant of a standard partition as might be used in a QuickSort algorithm.
static class Program
{
public static void Main()
{
Console.WriteLine(FindSmallestMissing(1, 3, 6, 4, 1, 2));
Console.WriteLine(FindSmallestMissing(1, 2, 3));
Console.WriteLine(FindSmallestMissing(-1, -3));
}
public static int FindSmallestMissing(params int[] array)
{
return findSmallestMissing(array, partition(array));
}
// Places all the values > 0 before any values <= 0,
// and returns the index of the first value <= 0.
// The values are unordered.
static int partition(int[] arr)
{
void swap(int x, int y)
{
var temp = arr[x];
arr[x] = arr[y];
arr[y] = temp;
}
int pIndex = 0; // Index of pivot.
for (int i = 0; i < arr.Length; i++)
{
if (arr[i] > 0) // pivot is 0, hence "> 0"
swap(i, pIndex++);
}
return pIndex;
}
// This is the clever bit.
// We will use the +ve values in the array as flags to indicate that the number equal to that index is
// present in the array, by making the value negative if it is found in the array.
// This way we can store both the original number AND whether or not the number equal to that index is present
// in a single value.
//
// Given n numbers that are all > 0, find the smallest missing number as follows:
//
// For each array index i in (0..n):
// val = |arr[i]| - 1; // Subtract 1 so val will be between 0 and max +ve value in original array.
// if (val is in range) // If val beyond the end of the array we can ignore it
// and arr[val] is non-negative // If already negative, no need to make it negative.
// make arr[val] negative
//
// After that stage, we just need to find the first positive number in the array, which indicates that
// the number equal to that index + 1 is missing.
// n = number of values at the start of the array that are > 0
static int findSmallestMissing(int[] arr, int n)
{
for (int i = 0; i < n; i++)
{
int val = Math.Abs(arr[i]) - 1;
if (val < n && arr[val] >= 0)
arr[val] = -arr[val];
}
for (int i = 0; i < n; i++)
{
if (arr[i] > 0) // Missing number found.
return i + 1;
}
return n + 1; // No missing number found.
}
}
class Program
{
static void Main(string[] args)
{
int [] A = new int[] {1, 2, 3};
int n = 0;
bool found = false;
Array.Sort(A);
for (int i = 1; i <= 100000; i++) {
for (int x = 0; x <= A.Length - 1; x++) {
int next = (x + 1) < A.Length ? (x + 1): x;
if (A[x] > 0 && (A[next] - A[x]) > 0) {
n = A[x] + 1;
found = true;
break;
}
}
if(found) {
break;
}
}
Console.WriteLine("Smallest number: " + n);
}
}
int smallestNumber=Enumerable.Range(1,(int.Parse(A.Length.ToString())+1)).Except(A).Min();
Array.Sort(A);
for (int number = 1; number <= 100000; number++)
{
for (int num = number; i2 <= A.Length - 1; num++)
{
if (A[num] == number)
{
smallestNumber = A[num] + 1;
break;
}
}
}
return smallestNumber;
}
The easiest one :)
class Solution
{
public int solution(int[] array)
{
int[] onlyPositiveArray = array.Where(a => a > 0).OrderBy(a => a).Distinct().ToArray();
int smallestNumber = 1;
foreach (var number in onlyPositiveArray)
{
if (smallestNumber != number)
{
break;
}
smallestNumber ++;
}
if (!onlyPositiveArray.Contains(smallestNumber ))
{
return smallestNumber;
}
else
{
return smallestNumber + 1;
}
}
}
PHP Solution:
function solution($A) {
// write your code in PHP7.0
// sort array
sort($A);
// get the first
$smallest = $A[0];
// write while
while( in_array(($smallest),$A) || (($smallest) < 1 ) )
{
$smallest++;
}
return $smallest;
}
My solution, also if someone could test how performant it is?
public int solution(int[] N) {
if (N.Length == 0)
return 1;
else if (N.Length == 1)
return N[0] >= 0 ? N[0] + 1 : 1;
Array.Sort(N);
int min = Array.Find(N, IsUnderZero);
if (min ==
default)
return 1;
HashSet < int > hashSet = new HashSet < int > (N);
int max = N[N.Length - 1];
for (int i = min + 1; i <= max + 1; i++) {
if (!hashSet.Contains(i) && i > 0)
return i;
}
return max + 1;
bool IsUnderZero(int i) => i <= 0;
}
Try the below:
public static int MinIntegerGreaterThanZeroInArray(int[] A)
{
int minInt;
if (A.Length > 0)
{
Array.Sort(A);
for (minInt = 1; minInt <= A.Length; minInt++)
{
int index = Array.BinarySearch(A, minInt);
if (index < 0) return minInt;
}
return minInt;
}
//Array is empty.
throw new InvalidOperationException();
}
public static int Smallest(int[] A)
{
int maxPositiveInt = 1;
HashSet<int> NumDic = new HashSet<int>();
for (int i = 0; i < A.Length; i++)
{
if (A[i] <= 0)
{
continue;
}
if (!NumDic.Contains(A[i]))
{
NumDic.Add(A[i]);
}
maxPositiveInt = Math.Max(A[i], maxPositiveInt);
}
//All numbers are negative
if (NumDic.Count == 0)
{
return 1;
}
int smallestinteger = 1;
for (int i = 0; i < A.Length; i++)
{
if (A[i] <= 0)
{
continue;
}
if (!NumDic.Contains(smallestinteger))
{
return smallestinteger;
}
else
{
smallestinteger++;
}
}
return maxPositiveInt + 1;
}
static void Main(string[] args)
{
Console.WriteLine(solution(new int[]{1, 3, 6, 4, 1, 2}));
}
public static int solution(int[] A)
{
Array.Sort(A);
int smallest = A[0];
while (A.Contains(smallest+1)|| (smallest+1)<1)
{
smallest++;
}
return smallest +1;
}

c# permutation without repetition when order is important [duplicate]

I have a list of Offers, from which I want to create "chains" (e.g. permutations) with limited chain lengths.
I've gotten as far as creating the permutations using the Kw.Combinatorics project.
However, the default behavior creates permutations in the length of the list count. I'm not sure how to limit the chain lengths to 'n'.
Here's my current code:
private static List<List<Offers>> GetPerms(List<Offers> list, int chainLength)
{
List<List<Offers>> response = new List<List<Offers>>();
foreach (var row in new Permutation(list.Count).GetRows())
{
List<Offers> innerList = new List<Offers>();
foreach (var mix in Permutation.Permute(row, list))
{
innerList.Add(mix);
}
response.Add(innerList);
innerList = new List<Offers>();
}
return response;
}
Implemented by:
List<List<AdServer.Offers>> lst = GetPerms(offers, 2);
I'm not locked in KWCombinatorics if someone has a better solution to offer.
Here's another implementation which I think should be faster than the accepted answer (and it's definitely less code).
public static IEnumerable<IEnumerable<T>> GetVariationsWithoutDuplicates<T>(IList<T> items, int length)
{
if (length == 0 || !items.Any()) return new List<List<T>> { new List<T>() };
return from item in items.Distinct()
from permutation in GetVariationsWithoutDuplicates(items.Where(i => !EqualityComparer<T>.Default.Equals(i, item)).ToList(), length - 1)
select Prepend(item, permutation);
}
public static IEnumerable<IEnumerable<T>> GetVariations<T>(IList<T> items, int length)
{
if (length == 0 || !items.Any()) return new List<List<T>> { new List<T>() };
return from item in items
from permutation in GetVariations(Remove(item, items).ToList(), length - 1)
select Prepend(item, permutation);
}
public static IEnumerable<T> Prepend<T>(T first, IEnumerable<T> rest)
{
yield return first;
foreach (var item in rest) yield return item;
}
public static IEnumerable<T> Remove<T>(T item, IEnumerable<T> from)
{
var isRemoved = false;
foreach (var i in from)
{
if (!EqualityComparer<T>.Default.Equals(item, i) || isRemoved) yield return i;
else isRemoved = true;
}
}
On my 3.1 GHz Core 2 Duo, I tested with this:
public static void Test(Func<IList<int>, int, IEnumerable<IEnumerable<int>>> getVariations)
{
var max = 11;
var timer = System.Diagnostics.Stopwatch.StartNew();
for (int i = 1; i < max; ++i)
for (int j = 1; j < i; ++j)
getVariations(MakeList(i), j).Count();
timer.Stop();
Console.WriteLine("{0,40}{1} ms", getVariations.Method.Name, timer.ElapsedMilliseconds);
}
// Make a list that repeats to guarantee we have duplicates
public static IList<int> MakeList(int size)
{
return Enumerable.Range(0, size/2).Concat(Enumerable.Range(0, size - size/2)).ToList();
}
Unoptimized
GetVariations 11894 ms
GetVariationsWithoutDuplicates 9 ms
OtherAnswerGetVariations 22485 ms
OtherAnswerGetVariationsWithDuplicates 243415 ms
With compiler optimizations
GetVariations 9667 ms
GetVariationsWithoutDuplicates 8 ms
OtherAnswerGetVariations 19739 ms
OtherAnswerGetVariationsWithDuplicates 228802 ms
You're not looking for a permutation, but for a variation. Here is a possible algorithm. I prefer iterator methods for functions that can potentially return very many elements. This way, the caller can decide if he really needs all elements:
IEnumerable<IList<T>> GetVariations<T>(IList<T> offers, int length)
{
var startIndices = new int[length];
var variationElements = new HashSet<T>(); //for duplicate detection
while (startIndices[0] < offers.Count)
{
var variation = new List<T>(length);
var valid = true;
for (int i = 0; i < length; ++i)
{
var element = offers[startIndices[i]];
if (variationElements.Contains(element))
{
valid = false;
break;
}
variation.Add(element);
variationElements.Add(element);
}
if (valid)
yield return variation;
//Count up the indices
startIndices[length - 1]++;
for (int i = length - 1; i > 0; --i)
{
if (startIndices[i] >= offers.Count)
{
startIndices[i] = 0;
startIndices[i - 1]++;
}
else
break;
}
variationElements.Clear();
}
}
The idea for this algorithm is to use a number in offers.Count base. For three offers, all digits are in the range 0-2. We then basically increment this number step by step and return the offers that reside at the specified indices. If you want to allow duplicates, you can remove the check and the HashSet<T>.
Update
Here is an optimized variant that does the duplicate check on the index level. In my tests it is a lot faster than the previous variant:
IEnumerable<IList<T>> GetVariations<T>(IList<T> offers, int length)
{
var startIndices = new int[length];
for (int i = 0; i < length; ++i)
startIndices[i] = i;
var indices = new HashSet<int>(); // for duplicate check
while (startIndices[0] < offers.Count)
{
var variation = new List<T>(length);
for (int i = 0; i < length; ++i)
{
variation.Add(offers[startIndices[i]]);
}
yield return variation;
//Count up the indices
AddOne(startIndices, length - 1, offers.Count - 1);
//duplicate check
var check = true;
while (check)
{
indices.Clear();
for (int i = 0; i <= length; ++i)
{
if (i == length)
{
check = false;
break;
}
if (indices.Contains(startIndices[i]))
{
var unchangedUpTo = AddOne(startIndices, i, offers.Count - 1);
indices.Clear();
for (int j = 0; j <= unchangedUpTo; ++j )
{
indices.Add(startIndices[j]);
}
int nextIndex = 0;
for(int j = unchangedUpTo + 1; j < length; ++j)
{
while (indices.Contains(nextIndex))
nextIndex++;
startIndices[j] = nextIndex++;
}
break;
}
indices.Add(startIndices[i]);
}
}
}
}
int AddOne(int[] indices, int position, int maxElement)
{
//returns the index of the last element that has not been changed
indices[position]++;
for (int i = position; i > 0; --i)
{
if (indices[i] > maxElement)
{
indices[i] = 0;
indices[i - 1]++;
}
else
return i;
}
return 0;
}
If I got you correct here is what you need
this will create permutations based on the specified chain limit
public static List<List<T>> GetPerms<T>(List<T> list, int chainLimit)
{
if (list.Count() == 1)
return new List<List<T>> { list };
return list
.Select((outer, outerIndex) =>
GetPerms(list.Where((inner, innerIndex) => innerIndex != outerIndex).ToList(), chainLimit)
.Select(perms => (new List<T> { outer }).Union(perms).Take(chainLimit)))
.SelectMany<IEnumerable<IEnumerable<T>>, List<T>>(sub => sub.Select<IEnumerable<T>, List<T>>(s => s.ToList()))
.Distinct(new PermComparer<T>()).ToList();
}
class PermComparer<T> : IEqualityComparer<List<T>>
{
public bool Equals(List<T> x, List<T> y)
{
return x.SequenceEqual(y);
}
public int GetHashCode(List<T> obj)
{
return (int)obj.Average(o => o.GetHashCode());
}
}
and you'll call it like this
List<List<AdServer.Offers>> lst = GetPerms<AdServer.Offers>(offers, 2);
I made this function is pretty generic so you may use it for other purpose too
eg
List<string> list = new List<string>(new[] { "apple", "banana", "orange", "cherry" });
List<List<string>> perms = GetPerms<string>(list, 2);
result

Find combination of numbers with backtrack

I'm looking for a backtrack algorithm in C# that will search the correct numbers from a List<int> where the sum of these numbers is closest to X.
e.g: list={5,1,3,5}, X = 10 the output should be (5,5) (5+5 is the closest to 10)
it cant be (3,3,3,1) because I can't use a number more than once from the List. (if we have two piece from number 3 than we can use two times)
e.g.2: list={4,1,3,4}, X=10 the output should be {4,1,3} and {1,3,4}.
I got this kind of code to start, but i cant do it;
(I know there are wikipedia about backtracking, and knapsack, but it doesn't help me)
static void BackTrack(int lvl, bool Van, int[] E)
{
int i = -1;
do
{
i++;
if (ft(lvl, i))
{
int k = 0;
while (k < szint && fk(E[i], E[k]))
{
k++;
}
if (k == szint)
{
E[k] = R[lvl,i];
if (lvl == E.Length - 1)
{
}
else
{
BackTrack(lvl + 1, Van, E);
}
}
}
}
while (i < E.Length - 1);
}
static bool fk(int nr, int nr2)
{
return (nr + nr2 <= 10);
}
static bool ft(int lvl, int nr)
{
return true;
}
From what i am reading, this example:
e.g.2: list={4,1,3,4}, X=10 the output should be {4,1,3} and {1,3,4}.
output should be {4,1,4} 9 is closer then 8.
Here is what i did. it works with the two examples you gave.
public List<int> highest(List<int> list, int number)
{
//probably a better way to do this
IEnumerable<int> orderedList = list.OrderByDescending(item => item);
var currentNumber = 0;
List<int> combinationResult = new List<int>();
foreach (var item in orderedList)
{
var temp = currentNumber + item;
if (temp <= number)
{
combinationResult.Add(item);
currentNumber = temp;
}
}
return combinationResult;
}

Does code exist, for shifting List elements to left or right by specified amount, in C#?

Does code exist, for shifting List elements to left or right by specified amount, in C#?
It is tricky code, it will take some time to write and test special cases, I would rather
reuse something if it exists.
Thanks
Something like this for shift left...
public static void ShiftLeft<T>(List<T> lst, int shifts)
{
for (int i = shifts; i < lst.Count; i++)
{
lst[i - shifts] = lst[i];
}
for (int i = lst.Count - shifts; i < lst.Count; i++)
{
lst[i] = default(T);
}
}
For shift right it's a little more tricky, because we must copy in reverse
public static void ShiftRight<T>(List<T> lst, int shifts)
{
for (int i = lst.Count - shifts - 1; i >= 0; i--)
{
lst[i + shifts] = lst[i];
}
for (int i = 0; i < shifts; i++)
{
lst[i] = default(T);
}
}
With arrays it's a lot more simple, because Array has very powerful methods:
public static void ShiftLeft<T>(T[] arr, int shifts)
{
Array.Copy(arr, shifts, arr, 0, arr.Length - shifts);
Array.Clear(arr, arr.Length - shifts, shifts);
}
public static void ShiftRight<T>(T[] arr, int shifts)
{
Array.Copy(arr, 0, arr, shifts, arr.Length - shifts);
Array.Clear(arr, 0, shifts);
}
And yes, Array.Copy is protected against overleap: If sourceArray and destinationArray overlap, this method behaves as if the original values of sourceArray were preserved in a temporary location before destinationArray is overwritten.
Below are a couple of extension methods that will shift the list either right or left. The methods will return a list.
public static class ShiftList
{
public static List<T> ShiftLeft<T>(this List<T> list, int shiftBy)
{
if (list.Count <= shiftBy)
{
return list;
}
var result = list.GetRange(shiftBy, list.Count-shiftBy);
result.AddRange(list.GetRange(0,shiftBy));
return result;
}
public static List<T> ShiftRight<T>(this List<T> list, int shiftBy)
{
if (list.Count <= shiftBy)
{
return list;
}
var result = list.GetRange(list.Count - shiftBy, shiftBy);
result.AddRange(list.GetRange(0, list.Count - shiftBy));
return result;
}
}
Here's an example of how to call it.
class Program
{
static void Main(string[] args)
{
List<int> test = Enumerable.Range(0, 10).ToList();
test = test.ShiftLeft(1);
PrintList(test);
Console.WriteLine("");
PrintList(test.ShiftRight(2));
Console.ReadLine();
}
private static void PrintList(List<int> test)
{
for (int i = 0; i < test.Count; i++)
{
Console.WriteLine(test[i]);
}
}
}
Keep it simple by taking the first part and second part and flipping them. Same thing but flip other way for the ShiftRight
public static List<int> ShiftLeft(List<int> a, int d)
{
if (a.Count > d)
{
var beginingPart = a.GetRange(0, d);
var remainingPart = a.GetRange(d, a.Count - d);
return remainingPart.Concat(beginingPart).ToList();
}
else if (a.Count < d)
{
var mod = d % a.Count;
if (mod != 0)
{
return rotLeft(a, mod);
}
}
return a;
}
Given that "iterations" is the times you want to shift and "numbers" is the List
Shift left:
static void ShiftLeft(int iterations)
{
for (int i = 0; i < iterations; i++)
{
numbers.Add(numbers[0]);
numbers.RemoveAt(0);
}
}
ShiftRight:
static void ShiftRight(int iterations)
{
for (int i = 0; i < iterations; i++)
{
numbers.Insert(0, numbers[numbers.Count - 1]);
numbers.RemoveAt(numbers.Count - 1);
}
}

n-th prime number problem, need to speed it up a bit

There is simple cipher that translates number to series of . ( )
In order to encrypt a number (0 .. 2147483647) to this representation, I (think I) need:
prime factorization
for given p (p is Prime), order sequence of p (ie. PrimeOrd(2) == 0, PrimeOrd(227) == 49)
Some examples
0 . 6 (()())
1 () 7 (...())
2 (()) 8 ((.()))
3 (.()) 9 (.(()))
4 ((())) 10 (().())
5 (..()) 11 (....())
227 (................................................())
2147483648 ((..........()))
My source code for the problem
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
static class P
{
static List<int> _list = new List<int>();
public static int Nth(int n)
{
if (_list.Count == 0 || _list.Count < n)
Primes().Take(n + 1);
return _list[n];
}
public static int PrimeOrd(int prime)
{
if (_list.Count == 0 || _list.Last() < prime)
Primes().First(p => p >= prime);
return (_list.Contains(prime)) ? _list.FindIndex(p => p == prime) : -1;
}
public static List<int> Factor(int N)
{
List<int> ret = new List<int>();
for (int i = 2; i ≤ N; i++)
while (N % i == 0)
{
N /= i;
ret.Add(i);
}
return ret;
}
public static IEnumerable<int> Primes()
{
_list = new List<int>();
_list.Add(2);
yield return 2;
Func<int, bool> IsPrime = n => _list.TakeWhile(p => p ≤ (int)Math.Sqrt(n)).FirstOrDefault(p => n % p == 0) == 0;
for (int i = 3; i < Int32.MaxValue; i += 2)
{
if (IsPrime(i))
{
_list.Add(i);
yield return i;
}
}
}
public static string Convert(int n)
{
if (n == 0) return ".";
if (n == 1) return "()";
StringBuilder sb = new StringBuilder();
var p = Factor(n);
var max = PrimeOrd(p.Last());
for (int i = 0; i ≤ max; i++)
{
var power = p.FindAll((x) => x == Nth(i)).Count;
sb.Append(Convert(power));
}
return "(" + sb.ToString() + ")";
}
}
class Program
{
static void Main(string[] args)
{
string line = Console.ReadLine();
try
{
int num = int.Parse(line);
Console.WriteLine("{0}: '{1}'", num, P.Convert(num));
}
catch
{
Console.WriteLine("You didn't entered number!");
}
}
}
The problem is SLOWNESS of procedure PrimeOrd. Do you know some FASTER solution for finding out order of prime in primes?
Heading
If You know how to speed-up finding order of prime number, please, suggest something. :-)
Thank You.
P.S. The biggest prime less than 2,147,483,648 is 2,147,483,647 and it's 105,097,565th prime. There is no need to expect bigger number than 2^31.
This is not something you should be doing at run-time. A better option is to pre-calculate all these primes and then put them in your program somehow (a static array, or a file to be read in). The slow code is then run as part of the development process (which is slow anyway :-), not at the point where you need your speed.
Then it's just a matter of a lookup of some sort rather than calculating them every time you need them.
Please see SO questions:
http://www.google.com/search?q=site%3Astackoverflow.com+prime+number&btnG=Search
Finding prime numbers with the Sieve of Eratosthenes (Originally: Is there a better way to prepare this array?)
Prime number calculation fun
How can I find prime numbers through bit operations in C++?
prime numbers c#
Finding composite numbers
Prime numbers program
If you need a list of known primes, have a look here
You should cache the primes to _list and then use it for both Factor and PrimeOrd. Additionally avoid operators LINQ operators like TakeWhile that create values that you throw away.
Here's an optimized version:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
static class P
{
private static List<int> _list = new List<int>();
public static int Nth(int n)
{
if (_list.Count == 0 || _list.Count <= n)
{
GenerateNextPrimes().First(p => _list.Count >= n);
}
return _list[n];
}
public static int PrimeOrd(int prime)
{
var primes = GrowPrimesTo(prime);
return primes.IndexOf(prime);
}
public static List<int> Factor(int N)
{
List<int> ret = new List<int>();
GrowPrimesTo(N);
for (int ixDivisor = 0; ixDivisor < _list.Count; ixDivisor++)
{
int currentDivisor = _list[ixDivisor];
while (N % currentDivisor == 0)
{
N /= currentDivisor;
ret.Add(currentDivisor);
}
if (N <= 1)
{
break;
}
}
return ret;
}
private static List<int> GrowPrimesTo(int max)
{
if (_list.LastOrDefault() >= max)
{
return _list;
}
GenerateNextPrimes().First(prime => prime >= max);
return _list;
}
private static IEnumerable<int> GenerateNextPrimes()
{
if (_list.Count == 0)
{
_list.Add(2);
yield return 2;
}
Func<int, bool> IsPrime =
n =>
{
// cache upperBound
int upperBound = (int)Math.Sqrt(n);
for (int ixPrime = 0; ixPrime < _list.Count; ixPrime++)
{
int currentDivisor = _list[ixPrime];
if (currentDivisor > upperBound)
{
return true;
}
if ((n % currentDivisor) == 0)
{
return false;
}
}
return true;
};
// Always start on next odd number
int startNum = _list.Count == 1 ? 3 : _list[_list.Count - 1] + 2;
for (int i = startNum; i < Int32.MaxValue; i += 2)
{
if (IsPrime(i))
{
_list.Add(i);
yield return i;
}
}
}
public static string Convert(int n)
{
if (n == 0) return ".";
if (n == 1) return "()";
StringBuilder sb = new StringBuilder();
var p = Factor(n);
var max = PrimeOrd(p.Last());
for (int i = 0; i <= max; i++)
{
var power = p.FindAll(x => x == Nth(i)).Count;
sb.Append(Convert(power));
}
return "(" + sb.ToString() + ")";
}
}
class Program
{
static void Main(string[] args)
{
string line = Console.ReadLine();
int num;
if(int.TryParse(line, out num))
{
Console.WriteLine("{0}: '{1}'", num, P.Convert(num));
}
else
{
Console.WriteLine("You didn't entered number!");
}
}
}

Categories

Resources