BBP algorithm get nth digit of PI? - c#

I am trying to turn the BBP Formula (Bailey-Borwein-Plouffe) in to C# code, it is digit extraction of pi in base 16 (spigot algorithm), the idea is give the input of what index/decimal place you want of pi then get that single digit. Let's say I want the digit that are at the decimal place/index 40000 (in base 16) without having to calculate pi with 40000 decimals because I don't care about the other digits.
Anyhow here is the math formula, (doesn't look like it should be to much code? )
Can't say I understand 100% what the formal mean, if I did I probably be able to make it in to code, but from my understanding looking at it.
Is this correct?
pseudo code
Pi = SUM = (for int n = 0; n < infinity;n++) { SUM += ((4/((8*n)+1))
- (2/((8*n)+4)) - (1/((8*n)+5)) - (1/((8*n)+6))*((1/16)^n)) }
Capital sigma basically is like a "for loop" to sum sequences together?
example
and in C# code:
static int CapSigma(int _start, int _end)
{
int sum = 0;
for(int n = _start; n <= _end; n++)
{
sum += n;
}
return (sum);
}
Code so far (not working):
static int BBPpi(int _precision)
{
int pi = 0;
for(int n = 0; n < _precision; n++)
{
pi += ((16 ^ -n) * (4 / (8 * n + 1) - 2 / (8 * n + 4) - 1 / (8 * n + 5) - 1 / (8 * n + 6)));
}
return (pi);
}
I'm not sure how to make it in to actual code also if my pseudo code math is correct?
How to sum 0 to infinity? Can't do it in a for loop and also where in the formula is the part ("input") that specify what nth (index) digit you want to get out? is it the start n (n = 0)? so too get digit 40000 would be n =40000?

You need to cast to double :
class Program
{
static void Main(string[] args)
{
double sum = 0;
for (int i = 1; i < 100; i++)
{
sum += BBPpi(i);
Console.WriteLine(sum.ToString());
}
Console.ReadLine();
}
static double BBPpi(int n)
{
double pi = ((16 ^ -n) * (4.0 / (8.0 * (double)n + 1.0) - 2 / (8.0 * (double)n + 4.0) - 1 / (8.0 * (double)n + 5.0) - 1.0 / (8.0 * (double)n + 6.0)));
return (pi);
}
}

Related

I am trying to find a value of multiple factorials . both values will be divided by like 100!/98! =?

static void Main(string[] args)
{
Console.WriteLine("Enter your number: ");
int number= Convert.ToInt32(Console.ReadLine());
int number2 = Convert.ToInt32(Console.ReadLine());
double factorial = Factorial(number,number2);
Console.WriteLine("Factorial of " + number +" / "+ number2 + " = " + factorial );
Console.ReadKey();
}
//Factorial function added
public static double Factorial(int number, int number2)
{
if (number == 1 && number2 ==1 )
{
return 1;
}
double factorial = 1;
double factorial1 = 1;
double factorial2 = 1;
for (int i = number, j = number2; i >= 1 && j >= 1; i--, j--)
{
factorial1 = (factorial * i);
factorial2 = (factorial * j);
factorial = factorial1 / factorial2;
}
return factorial;
}
Your attempted solution is simply so overcomplicated, I wouldn't know where to begin. This usually happens when you don't stop to think about how you'd resolve this problem by hand:
So, the question is, whats 5!/3!? Ok, lets write it out:
(5 * 4 * 3 * 2 * 1) / (3 * 2 * 1)
Wow, that looks like it can be simplified simply to 5 * 4.
The key insight here is that m! % n! = 0 if n is less or equal to m. In other words, m! is always divisible by n! because there is always an integer r such that r * n! = m!, and you don't need to evaluate m! or n! to figure out what r is, you simple do:
r = m * (m - 1) * (m - 2) * ... * (n + 1); // m >= n
If n > m, r is zero unless you are looking for a real number solution in which case you would simply evaluate r as n! / m! and then return 1.0 / r because m! / n! = 1 / (n! / m!).
How to evaluate r?
public static long DivideFactorials(int m, int n)
{
if (n > m)
return 0;
var r = 1L;
for (var k = m; k > n; k--)
r *= k;
return r;
}
Or the real number solution:
public static double DivideFactorials(int m, int n)
{
if (n > m)
return 1 / DivideFactorials(n, m);
var r = 1.0;
for (var k = m; k > n; k--)
r *= k;
return r;
}
If I had to save your try:
public static double Factorial(int number, int number2)
{
if (number == 1 && number2 == 1)
{
return 1;
}
double facNum = 1;
double facNum2 = 1;
// counting up is easier, we start at 2 as we initialized to 1
// we count up to the max of both numbers
for (int i = 2; i <= Math.Max(number, number2); i++)
{
if (i <= number)
facNum *= i; // we mult this until we reached number
if (i <= number2)
facNum2 *= i; // we mult this until we reach number2
}
// return the devision of both - this wont handle number < number2 well!
return facNum / facNum2; // do this outside the loop
}
If I had to create a solution:
Factorial division of integers has 3 outcomes (I can think of):
N! / O! with N == O:
let N=3, O=3
N! = 1*2*3
O! = 1*2*3
N! / O! = 1*2*3/(1*2*3) == 1
N! / O! with N > O:
let N=5, O=3
N! = 1*2*3*4*5
O! = 1*2*3
N! / O! == 1*2*3*4*5/(1*2*3) == 4*5 == 20
N! / O! with N < O:
let N=3, O=5
N! = 1*2*3
O! = 1*2*3*4*5
N! / O! == 1*2*3/(1*2*3*4*5) == 1/(4*5) == 1/20
Based on this I would model the problem like that:
using System;
using System.Collections.Generic;
using System.Linq;
internal class Program
{
public static decimal CalcFactDivision(int n1, int n2)
{
// calclulate the division of a factorial by another, num1 must be >= num2
IEnumerable<int> getRemaining(int num1, int num2)
{
// special cases: div by 0 and 0 div something
if (num2 == 0)
num2 = 1; // 0! == 1
else if (num1 == 0)
return new[] { 0 };
// get all numbers that make up the factorial in one step
// I can guarantee that num1 will always be bigger then num2
// by how I call this
return Enumerable.Range(num2 + 1, num1 - num2);
}
// calculate the product of an ienumerable of ints
int product(IEnumerable<int> nums) => nums.Aggregate((a, b) => a * b);
if (n1 == n2)
return 1;
else if (n1 > n2) // use product(...) to calc
return product(getRemaining(n1, n2));
else // flip them and use 1/product(...) to calc
return (decimal)1 / product(getRemaining(n2, n1));
}
static void Main(string[] args)
{
foreach (var a in Enumerable.Range(1, 10))
Console.WriteLine($"{a}! / {10 - a}! = {CalcFactDivision(a, 10 - a)} ");
Console.ReadLine();
}
}
Output:
1! / 9! = 0,0000027557319223985890652557
2! / 8! = 0,0000496031746031746031746032
3! / 7! = 0,0011904761904761904761904762
4! / 6! = 0,0333333333333333333333333333
5! / 5! = 1
6! / 4! = 30
7! / 3! = 840
8! / 2! = 20160
9! / 1! = 362880
10! / 0! = 3628800

Is there a possible loop for this?

I just started to learn C# and only know really basic stuff. So this question may be easy to you, but very hard to me. The more detail in your answer, the better.
The next line of code will check if a studentnumber is real or fake. The number is real when the sum of all the characters (when multiplied by their place number) are a multiple of 11.
Console.WriteLine("What is your studentnumber?");
stnum = Console.ReadLine();
var stnumint = Convert.ToInt32(stnum);
var ans1 = (stnumint % 10 - stnumint % 1) / 1;
var ans2 = (stnumint % 100 - stnumint % 10) / 10;
var ans3 = (stnumint % 1000 - stnumint % 100) / 100;
var ans4 = (stnumint % 10000 - stnumint % 1000) / 1000;
var ans5 = (stnumint % 100000 - stnumint % 10000) / 10000;
var ans6 = (stnumint % 1000000 - stnumint % 100000) / 100000;
var ans7 = (stnumint % 10000000 - stnumint % 1000000) / 1000000;
var control = ans1 * 1 + ans2 * 2 + ans3 * 3 + ans4 * 4 + ans5 * 5 + ans6 * 6 + ans7 * 7;
var endnum = control % 11;
if (endnum == 0)
{
Console.WriteLine("You have got a valid studentnumber.");
}
else
{
Console.WriteLine("Check if your studentnumber is correct. If it is, you are not a student.");
}
Take for example studentnumber 9232753. When calculating: (9*7 + 2*6 + 3*5 + 2*4 + 7*3 + 5*2 + 3*1) % 11, the answer will be 0.
How can I write this line of code into a smaller loop?
One equivalent loop would be:
int control = 0;
int power10 = 1; // var to save an expensive `Math.Power` call
for (int i = 1; i <= 7; i++)
{
control += ((stnumint % (power10*10) - stnumint % power10) / power10) * i;
power10 *= 10;
}
I would highly recommend not using var for built-in types like int, string, etc. You leave the resulting type at the mercy of the compiler which can give you unexpected results. Save var for when the actual type is difficult (or impossible) to determine at design-time.
var totalAns = 0;
for (int i = 1; i <= 10000000; i *= 10)
{
ans += (stnumint % (10*i) - stnumint % i) / i;
}
Here is the part for calculation. If you need to save stnumint, copy it another variable.
int stnumint=...; //must be sure, that data type is n
int checksum=0;
int i=1;
while(stnumint>0)
{
checksum=(stnumint%10)*i;
i++;
//in real numbers will look like floor(stnumint/10)
//will automaticly floor because of data type int
stnumint=stnumint/10;
}

Result not matching. Floating point error?

I am trying to rewrite the R function acf that computes Auto-Correlation into C#:
class AC
{
static void Main(string[] args)
{
double[] y = new double[] { 772.9, 909.4, 1080.3, 1276.2, 1380.6, 1354.8, 1096.9, 1066.7, 1108.7, 1109, 1203.7, 1328.2, 1380, 1435.3, 1416.2, 1494.9, 1525.6, 1551.1, 1539.2, 1629.1, 1665.3, 1708.7, 1799.4, 1873.3, 1973.3, 2087.6, 2208.3, 2271.4, 2365.6, 2423.3, 2416.2, 2484.8, 2608.5, 2744.1, 2729.3, 2695, 2826.7, 2958.6, 3115.2, 3192.4, 3187.1, 3248.8, 3166, 3279.1, 3489.9, 3585.2, 3676.5 };
Console.WriteLine(String.Join("\n", acf(y, 17)));
Console.Read();
}
public static double[] acf(double[] series, int maxlag)
{
List<double> acf_values = new List<double>();
float flen = (float)series.Length;
float xbar = ((float)series.Sum()) / flen;
int N = series.Length;
double variance = 0.0;
for (int j = 0; j < N; j++)
{
variance += (series[j] - xbar)*(series[j] - xbar);
}
variance = variance / N;
for (int lag = 0; lag < maxlag + 1; lag++)
{
if (lag == 0)
{
acf_values.Add(1.0);
continue;
}
double autocv = 0.0;
for (int k = 0; k < N - lag; k++)
{
autocv += (series[k] - xbar) * (series[lag + k] - xbar);
}
autocv = autocv / (N - lag);
acf_values.Add(autocv / variance);
}
return acf_values.ToArray();
}
}
I have two problems with this code:
For large arrays (length = 25000), this code takes about 1-2 seconds whereas R's acf function returns in less than 200 ms.
The output does not match R's output exactly.
Any suggestions on where I messed up or any optimizations to the code?
C# R
1 1 1
2 0.945805846 0.925682317
3 0.89060465 0.85270658
4 0.840762283 0.787096604
5 0.806487301 0.737850083
6 0.780259665 0.697253317
7 0.7433111 0.648420319
8 0.690344341 0.587527097
9 0.625632533 0.519141887
10 0.556860982 0.450228026
11 0.488922355 0.38489632
12 0.425406196 0.325843042
13 0.367735169 0.273845337
14 0.299647764 0.216766466
15 0.22344712 0.156888402
16 0.14575994 0.099240809
17 0.072389526 0.047746281
18 -0.003238526 -0.002067146
You might try changing this line:
autocv = autocv / (N - lag);
to this:
autocv = autocv / N;
Either of these is an acceptable divisor for the expected value, and R is clearly using the second one.
To see this without having access to a C# compiler, we can read in the table that you have, and adjust the values by dividing each value in the C# column by N/(N - lag), and see that they agree with the values from R.
N is 47 here, and lag ranges from 0 to 17, so N - lag is 47:30.
After copying the table above into my local clipboard:
cr <- read.table(file='clipboard', comment='', check.names=FALSE)
cr$adj <- cr[[1]]/47*(47:30)
max(abs(cr$R - cr$adj))
## [1] 2.2766e-09
A much closer approximation.
You might do better if you define flen and xbar as type double as floats do not have 9 decimal digits of precision.
The reason that R is so much faster is that acf is implemented as native and non-managed code (either C or FORTRAN).

Average of 3 long integers

I have 3 very large signed integers.
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
I want to calculate their truncated average. Expected average value is long.MaxValue - 1, which is 9223372036854775806.
It is impossible to calculate it as:
long avg = (x + y + z) / 3; // 3074457345618258600
Note: I read all those questions about average of 2 numbers, but I don't see how that technique can be applied to average of 3 numbers.
It would be very easy with the usage of BigInteger, but let's assume I cannot use it.
BigInteger bx = new BigInteger(x);
BigInteger by = new BigInteger(y);
BigInteger bz = new BigInteger(z);
BigInteger bavg = (bx + by + bz) / 3; // 9223372036854775806
If I convert to double, then, of course, I lose precision:
double dx = x;
double dy = y;
double dz = z;
double davg = (dx + dy + dz) / 3; // 9223372036854780000
If I convert to decimal, it works, but also let's assume that I cannot use it.
decimal mx = x;
decimal my = y;
decimal mz = z;
decimal mavg = (mx + my + mz) / 3; // 9223372036854775806
Question: Is there a way to calculate the truncated average of 3 very large integers only with the usage of long type? Don't consider that question as C#-specific, just it is easier for me to provide samples in C#.
This code will work, but isn't that pretty.
It first divides all three values (it floors the values, so you 'lose' the remainder), and then divides the remainder:
long n = x / 3
+ y / 3
+ z / 3
+ ( x % 3
+ y % 3
+ z % 3
) / 3
Note that the above sample does not always work properly when having one or more negative values.
As discussed with Ulugbek, since the number of comments are exploding below, here is the current BEST solution for both positive and negative values.
Thanks to answers and comments of Ulugbek Umirov, James S, KevinZ, Marc van Leeuwen, gnasher729 this is the current solution:
static long CalculateAverage(long x, long y, long z)
{
return (x % 3 + y % 3 + z % 3 + 6) / 3 - 2
+ x / 3 + y / 3 + z / 3;
}
static long CalculateAverage(params long[] arr)
{
int count = arr.Length;
return (arr.Sum(n => n % count) + count * (count - 1)) / count - (count - 1)
+ arr.Sum(n => n / count);
}
NB - Patrick has already given a great answer. Expanding on this you could do a generic version for any number of integers like so:
long x = long.MaxValue;
long y = long.MaxValue - 1;
long z = long.MaxValue - 2;
long[] arr = { x, y, z };
var avg = arr.Select(i => i / arr.Length).Sum()
+ arr.Select(i => i % arr.Length).Sum() / arr.Length;
Patrick Hofman has posted a great solution. But if needed it can still be implemented in several other ways. Using the algorithm here I have another solution. If implemented carefully it may be faster than the multiple divisions in systems with slow hardware divisors. It can be further optimized by using divide by constants technique from hacker's delight
public class int128_t {
private int H;
private long L;
public int128_t(int h, long l)
{
H = h;
L = l;
}
public int128_t add(int128_t a)
{
int128_t s;
s.L = L + a.L;
s.H = H + a.H + (s.L < a.L);
return b;
}
private int128_t rshift2() // right shift 2
{
int128_t r;
r.H = H >> 2;
r.L = (L >> 2) | ((H & 0x03) << 62);
return r;
}
public int128_t divideby3()
{
int128_t sum = {0, 0}, num = new int128_t(H, L);
while (num.H || num.L > 3)
{
int128_t n_sar2 = num.rshift2();
sum = add(n_sar2, sum);
num = add(n_sar2, new int128_t(0, num.L & 3));
}
if (num.H == 0 && num.L == 3)
{
// sum = add(sum, 1);
sum.L++;
if (sum.L == 0) sum.H++;
}
return sum;
}
};
int128_t t = new int128_t(0, x);
t = t.add(new int128_t(0, y));
t = t.add(new int128_t(0, z));
t = t.divideby3();
long average = t.L;
In C/C++ on 64-bit platforms it's much easier with __int128
int64_t average = ((__int128)x + y + z)/3;
You can calculate the mean of numbers based on the differences between the numbers rather than using the sum.
Let's say x is the max, y is the median, z is the min (as you have). We will call them max, median and min.
Conditional checker added as per #UlugbekUmirov's comment:
long tmp = median + ((min - median) / 2); //Average of min 2 values
if (median > 0) tmp = median + ((max - median) / 2); //Average of max 2 values
long mean;
if (min > 0) {
mean = min + ((tmp - min) * (2.0 / 3)); //Average of all 3 values
} else if (median > 0) {
mean = min;
while (mean != tmp) {
mean += 2;
tmp--;
}
} else if (max > 0) {
mean = max;
while (mean != tmp) {
mean--;
tmp += 2;
}
} else {
mean = max + ((tmp - max) * (2.0 / 3));
}
Patching Patrick Hofman's solution with supercat's correction, I give you the following:
static Int64 Avg3 ( Int64 x, Int64 y, Int64 z )
{
UInt64 flag = 1ul << 63;
UInt64 x_ = flag ^ (UInt64) x;
UInt64 y_ = flag ^ (UInt64) y;
UInt64 z_ = flag ^ (UInt64) z;
UInt64 quotient = x_ / 3ul + y_ / 3ul + z_ / 3ul
+ ( x_ % 3ul + y_ % 3ul + z_ % 3ul ) / 3ul;
return (Int64) (quotient ^ flag);
}
And the N element case:
static Int64 AvgN ( params Int64 [ ] args )
{
UInt64 length = (UInt64) args.Length;
UInt64 flag = 1ul << 63;
UInt64 quotient_sum = 0;
UInt64 remainder_sum = 0;
foreach ( Int64 item in args )
{
UInt64 uitem = flag ^ (UInt64) item;
quotient_sum += uitem / length;
remainder_sum += uitem % length;
}
return (Int64) ( flag ^ ( quotient_sum + remainder_sum / length ) );
}
This always gives the floor() of the mean, and eliminates every possible edge case.
Because C uses floored division rather than Euclidian division, it may easier to compute a properly-rounded average of three unsigned values than three signed ones. Simply add 0x8000000000000000UL to each number before taking the unsigned average, subtract it after taking the result, and use an unchecked cast back to Int64 to get a signed average.
To compute the unsigned average, compute the sum of the top 32 bits of the three values. Then compute the sum of the bottom 32 bits of the three values, plus the sum from above, plus one [the plus one is to yield a rounded result]. The average will be 0x55555555 times the first sum, plus one third of the second.
Performance on 32-bit processors might be enhanced by producing three "sum" values each of which is 32 bits long, so that the final result is ((0x55555555UL * sumX)<<32) + 0x55555555UL * sumH + sumL/3; it might possibly be further enhanced by replacing sumL/3 with ((sumL * 0x55555556UL) >> 32), though the latter would depend upon the JIT optimizer [it might know how to replace a division by 3 with a multiply, and its code might actually be more efficient than an explicit multiply operation].
If you know you have N values, can you just divide each value by N and sum them together?
long GetAverage(long* arrayVals, int n)
{
long avg = 0;
long rem = 0;
for(int i=0; i<n; ++i)
{
avg += arrayVals[i] / n;
rem += arrayVals[i] % n;
}
return avg + (rem / n);
}
You could use the fact that you can write each of the numbers as y = ax + b, where x is a constant. Each a would be y / x (the integer part of that division). Each b would be y % x (the rest/modulo of that division). If you choose this constant in an intelligent way, for example by choosing the square root of the maximum number as a constant, you can get the average of x numbers without having problems with overflow.
The average of an arbitrary list of numbers can be found by finding:
( ( sum( all A's ) / length ) * constant ) +
( ( sum( all A's ) % length ) * constant / length) +
( ( sum( all B's ) / length )
where % denotes modulo and / denotes the 'whole' part of division.
The program would look something like:
class Program
{
static void Main()
{
List<long> list = new List<long>();
list.Add( long.MaxValue );
list.Add( long.MaxValue - 1 );
list.Add( long.MaxValue - 2 );
long sumA = 0, sumB = 0;
long res1, res2, res3;
//You should calculate the following dynamically
long constant = 1753413056;
foreach (long num in list)
{
sumA += num / constant;
sumB += num % constant;
}
res1 = (sumA / list.Count) * constant;
res2 = ((sumA % list.Count) * constant) / list.Count;
res3 = sumB / list.Count;
Console.WriteLine( res1 + res2 + res3 );
}
}
I also tried it and come up with a faster solution (although only by a factor about 3/4). It uses a single division
public static long avg(long a, long b, long c) {
final long quarterSum = (a>>2) + (b>>2) + (c>>2);
final long lowSum = (a&3) + (b&3) + (c&3);
final long twelfth = quarterSum / 3;
final long quarterRemainder = quarterSum - 3*twelfth;
final long adjustment = smallDiv3(lowSum + 4*quarterRemainder);
return 4*twelfth + adjustment;
}
where smallDiv3 is division by 3 using multipliation and working only for small arguments
private static long smallDiv3(long n) {
assert -30 <= n && n <= 30;
// Constants found rather experimentally.
return (64/3*n + 10) >> 6;
}
Here is the whole code including a test and a benchmark, the results are not that impressive.
This function computes the result in two divisions. It should generalize nicely to other divisors and word sizes.
It works by computing the double-word addition result, then working out the division.
Int64 average(Int64 a, Int64 b, Int64 c) {
// constants: 0x10000000000000000 div/mod 3
const Int64 hdiv3 = UInt64(-3) / 3 + 1;
const Int64 hmod3 = UInt64(-3) % 3;
// compute the signed double-word addition result in hi:lo
UInt64 lo = a; Int64 hi = a>=0 ? 0 : -1;
lo += b; hi += b>=0 ? lo<b : -(lo>=UInt64(b));
lo += c; hi += c>=0 ? lo<c : -(lo>=UInt64(c));
// divide, do a correction when high/low modulos add up
return hi>=0 ? lo/3 + hi*hdiv3 + (lo%3 + hi*hmod3)/3
: lo/3+1 + hi*hdiv3 + Int64(lo%3-3 + hi*hmod3)/3;
}
Math
(x + y + z) / 3 = x/3 + y/3 + z/3
(a[1] + a[2] + .. + a[k]) / k = a[1]/k + a[2]/k + .. + a[k]/k
Code
long calculateAverage (long a [])
{
double average = 0;
foreach (long x in a)
average += (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
return Convert.ToInt64(Math.Round(average));
}
long calculateAverage_Safe (long a [])
{
double average = 0;
double b = 0;
foreach (long x in a)
{
b = (Convert.ToDouble(x)/Convert.ToDouble(a.Length));
if (b >= (Convert.ToDouble(long.MaxValue)-average))
throw new OverflowException ();
average += b;
}
return Convert.ToInt64(Math.Round(average));
}
Try this:
long n = Array.ConvertAll(new[]{x,y,z},v=>v/3).Sum()
+ (Array.ConvertAll(new[]{x,y,z},v=>v%3).Sum() / 3);

Can Math.Round in C# be used for whole integer values?

I have integer 363 for example.
Any method to make it 360 or 365?
This is a hack, but it works:
var rounded = Math.Round(363 / 5f) * 5;
There's nothing built-in, you're just going to have to code the logic yourself. Here's one such method. (Going down is clearer, but going up is manageable.)
int number = 363;
int roundedDown = number - number % 5;
int roundedUp = number + (number % 5 > 0 ? (5 - number % 5) : 0);
Edit for negative numbers, the logic almost gets reversed.
static int RoundUpToFive(int number)
{
if (number >= 0)
return number + (number % 5 > 0 ? (5 - number % 5) : 0);
else
return number - (number % 5);
}
static int RoundDownToFive(int number)
{
if (number >= 0)
return number - number % 5;
else
return number + (number % 5 < 0 ? (-5 - number % 5) : 0);
}
Here's what I usually do, which is a combination of the two ideas:
static int RoundDown(int x, int n) {
return x / n * n;
}
static int Round(int x, int n) {
return (x + n / 2) / n * n;
}
static int RoundUp(int x, int n) {
return (x + n - 1) / n * n;
}
(That assumes positive numbers; Extending it to negatives is straight-forward.)
[edit]
According to LLVM, the Round function can also be written like this:
int Round(int x, int n) {
int z = (x + n / 2);
return z - (z % n);
}
Which you may find more elegant.

Categories

Resources