What is the difference between events and action delegates [duplicate] - c#

What are the differences between delegates and an events? Don't both hold references to functions that can be executed?

An Event declaration adds a layer of abstraction and protection on the delegate instance. This protection prevents clients of the delegate from resetting the delegate and its invocation list and only allows adding or removing targets from the invocation list.

To understand the differences you can look at this 2 examples
Example with Delegates (in this case, an Action - that is a kind of delegate that doesn't return a value)
public class Animal
{
public Action Run {get; set;}
public void RaiseEvent()
{
if (Run != null)
{
Run();
}
}
}
To use the delegate, you should do something like this:
Animal animal= new Animal();
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running") ;
animal.RaiseEvent();
This code works well but you could have some weak spots.
For example, if I write this:
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running");
animal.Run = () => Console.WriteLine("I'm sleeping") ;
with the last line of code, I have overridden the previous behaviors just with one missing + (I have used = instead of +=)
Another weak spot is that every class which uses your Animal class can invoke the delegate directly. For example, animal.Run() or animal.Run.Invoke() are valid outside the Animal class.
To avoid these weak spots you can use events in c#.
Your Animal class will change in this way:
public class ArgsSpecial : EventArgs
{
public ArgsSpecial (string val)
{
Operation=val;
}
public string Operation {get; set;}
}
public class Animal
{
// Empty delegate. In this way you are sure that value is always != null
// because no one outside of the class can change it.
public event EventHandler<ArgsSpecial> Run = delegate{}
public void RaiseEvent()
{
Run(this, new ArgsSpecial("Run faster"));
}
}
to call events
Animal animal= new Animal();
animal.Run += (sender, e) => Console.WriteLine("I'm running. My value is {0}", e.Operation);
animal.RaiseEvent();
Differences:
You aren't using a public property but a public field (using events, the compiler protects your fields from unwanted access)
Events can't be assigned directly. In this case, it won't give rise to the previous error that I have showed with overriding the behavior.
No one outside of your class can raise or invoke the event. For example, animal.Run() or animal.Run.Invoke() are invalid outside the Animal class and will produce compiler errors.
Events can be included in an interface declaration, whereas a field cannot
Notes:
EventHandler is declared as the following delegate:
public delegate void EventHandler (object sender, EventArgs e)
it takes a sender (of Object type) and event arguments. The sender is null if it comes from static methods.
This example, which uses EventHandler<ArgsSpecial>, can also be written using EventHandler instead.
Refer here for documentation about EventHandler

In addition to the syntactic and operational properties, there's also a semantical difference.
Delegates are, conceptually, function templates; that is, they express a contract a function must adhere to in order to be considered of the "type" of the delegate.
Events represent ... well, events. They are intended to alert someone when something happens and yes, they adhere to a delegate definition but they're not the same thing.
Even if they were exactly the same thing (syntactically and in the IL code) there will still remain the semantical difference. In general I prefer to have two different names for two different concepts, even if they are implemented in the same way (which doesn't mean I like to have the same code twice).

Here is another good link to refer to.
http://csharpindepth.com/Articles/Chapter2/Events.aspx
Briefly, the take away from the article - Events are encapsulation over delegates.
Quote from article:
Suppose events didn't exist as a concept in C#/.NET. How would another class subscribe to an event? Three options:
A public delegate variable
A delegate variable backed by a property
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
Option 1 is clearly horrible, for all the normal reasons we abhor public variables.
Option 2 is slightly better, but allows subscribers to effectively override each other - it would be all too easy to write someInstance.MyEvent = eventHandler; which would replace any existing event handlers rather than adding a new one. In addition, you still need to write the properties.
Option 3 is basically what events give you, but with a guaranteed convention (generated by the compiler and backed by extra flags in the IL) and a "free" implementation if you're happy with the semantics that field-like events give you. Subscribing to and unsubscribing from events is encapsulated without allowing arbitrary access to the list of event handlers, and languages can make things simpler by providing syntax for both declaration and subscription.

What a great misunderstanding between events and delegates!!! A delegate specifies a TYPE (such as a class, or an interface does), whereas an event is just a kind of MEMBER (such as fields, properties, etc). And, just like any other kind of member an event also has a type. Yet, in the case of an event, the type of the event must be specified by a delegate. For instance, you CANNOT declare an event of a type defined by an interface.
Concluding, we can make the following Observation: the type of an event MUST be defined by a delegate. This is the main relation between an event and a delegate and is described in the section II.18 Defining events of ECMA-335 (CLI) Partitions I to VI:
In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed to the event’s fire method.
However, this fact does NOT imply that an event uses a backing delegate field. In truth, an event may use a backing field of any different data structure type of your choice. If you implement an event explicitly in C#, you are free to choose the way you store the event handlers (note that event handlers are instances of the type of the event, which in turn is mandatorily a delegate type---from the previous Observation). But, you can store those event handlers (which are delegate instances) in a data structure such as a List or a Dictionary or any other else, or even in a backing delegate field. But don’t forget that it is NOT mandatory that you use a delegate field.

NOTE: If you have access to C# 5.0 Unleashed, read the "Limitations on Plain Use of Delegates" in Chapter 18 titled "Events" to understand better the differences between the two.
It always helps me to have a simple, concrete example. So here's one for the community. First I show how you can use delegates alone to do what Events do for us. Then I show how the same solution would work with an instance of EventHandler. And then I explain why we DON'T want to do what I explain in the first example. This post was inspired by an article by John Skeet.
Example 1: Using public delegate
Suppose I have a WinForms app with a single drop-down box. The drop-down is bound to an List<Person>. Where Person has properties of Id, Name, NickName, HairColor. On the main form is a custom user control that shows the properties of that person. When someone selects a person in the drop-down the labels in the user control update to show the properties of the person selected.
Here is how that works. We have three files that help us put this together:
Mediator.cs -- static class holds the delegates
Form1.cs -- main form
DetailView.cs -- user control shows all details
Here is the relevant code for each of the classes:
class Mediator
{
public delegate void PersonChangedDelegate(Person p); //delegate type definition
public static PersonChangedDelegate PersonChangedDel; //delegate instance. Detail view will "subscribe" to this.
public static void OnPersonChanged(Person p) //Form1 will call this when the drop-down changes.
{
if (PersonChangedDel != null)
{
PersonChangedDel(p);
}
}
}
Here is our user control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.PersonChangedDel += DetailView_PersonChanged;
}
void DetailView_PersonChanged(Person p)
{
BindData(p);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally we have the following code in our Form1.cs. Here we are Calling OnPersonChanged, which calls any code subscribed to the delegate.
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.OnPersonChanged((Person)comboBox1.SelectedItem); //Call the mediator's OnPersonChanged method. This will in turn call all the methods assigned (i.e. subscribed to) to the delegate -- in this case `DetailView_PersonChanged`.
}
Ok. So that's how you would get this working without using events and just using delegates. We just put a public delegate into a class -- you can make it static or a singleton, or whatever. Great.
BUT, BUT, BUT, we do not want to do what I just described above. Because public fields are bad for many, many reason. So what are our options? As John Skeet describes, here are our options:
A public delegate variable (this is what we just did above. don't do this. i just told you above why it's bad)
Put the delegate into a property with a get/set (problem here is that subscribers could override each other -- so we could subscribe a bunch of methods to the delegate and then we could accidentally say PersonChangedDel = null, wiping out all of the other subscriptions. The other problem that remains here is that since the users have access to the delegate, they can invoke the targets in the invocation list -- we don't want external users having access to when to raise our events.
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
This third option is essentially what an event gives us. When we declare an EventHandler, it gives us access to a delegate -- not publicly, not as a property, but as this thing we call an event that has just add/remove accessors.
Let's see what the same program looks like, but now using an Event instead of the public delegate (I've also changed our Mediator to a singleton):
Example 2: With EventHandler instead of a public delegate
Mediator:
class Mediator
{
private static readonly Mediator _Instance = new Mediator();
private Mediator() { }
public static Mediator GetInstance()
{
return _Instance;
}
public event EventHandler<PersonChangedEventArgs> PersonChanged; //this is just a property we expose to add items to the delegate.
public void OnPersonChanged(object sender, Person p)
{
var personChangedDelegate = PersonChanged as EventHandler<PersonChangedEventArgs>;
if (personChangedDelegate != null)
{
personChangedDelegate(sender, new PersonChangedEventArgs() { Person = p });
}
}
}
Notice that if you F12 on the EventHandler, it will show you the definition is just a generic-ified delegate with the extra "sender" object:
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);
The User Control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.GetInstance().PersonChanged += DetailView_PersonChanged;
}
void DetailView_PersonChanged(object sender, PersonChangedEventArgs e)
{
BindData(e.Person);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally, here's the Form1.cs code:
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.GetInstance().OnPersonChanged(this, (Person)comboBox1.SelectedItem);
}
Because the EventHandler wants and EventArgs as a parameter, I created this class with just a single property in it:
class PersonChangedEventArgs
{
public Person Person { get; set; }
}
Hopefully that shows you a bit about why we have events and how they are different -- but functionally the same -- as delegates.

You can also use events in interface declarations, not so for delegates.

Delegate is a type-safe function pointer. Event is an implementation of publisher-subscriber design pattern using delegate.

An event in .net is a designated combination of an Add method and a Remove method, both of which expect some particular type of delegate. Both C# and vb.net can auto-generate code for the add and remove methods which will define a delegate to hold the event subscriptions, and add/remove the passed in delegagte to/from that subscription delegate. VB.net will also auto-generate code (with the RaiseEvent statement) to invoke the subscription list if and only if it is non-empty; for some reason, C# doesn't generate the latter.
Note that while it is common to manage event subscriptions using a multicast delegate, that is not the only means of doing so. From a public perspective, a would-be event subscriber needs to know how to let an object know it wants to receive events, but it does not need to know what mechanism the publisher will use to raise the events. Note also that while whoever defined the event data structure in .net apparently thought there should be a public means of raising them, neither C# nor vb.net makes use of that feature.

To define about event in simple way:
Event is a REFERENCE to a delegate with two restrictions
Cannot be invoked directly
Cannot be assigned values directly (e.g eventObj = delegateMethod)
Above two are the weak points for delegates and it is addressed in event. Complete code sample to show the difference in fiddler is here https://dotnetfiddle.net/5iR3fB .
Toggle the comment between Event and Delegate and client code that invokes/assign values to delegate to understand the difference
Here is the inline code.
/*
This is working program in Visual Studio. It is not running in fiddler because of infinite loop in code.
This code demonstrates the difference between event and delegate
Event is an delegate reference with two restrictions for increased protection
1. Cannot be invoked directly
2. Cannot assign value to delegate reference directly
Toggle between Event vs Delegate in the code by commenting/un commenting the relevant lines
*/
public class RoomTemperatureController
{
private int _roomTemperature = 25;//Default/Starting room Temperature
private bool _isAirConditionTurnedOn = false;//Default AC is Off
private bool _isHeatTurnedOn = false;//Default Heat is Off
private bool _tempSimulator = false;
public delegate void OnRoomTemperatureChange(int roomTemperature); //OnRoomTemperatureChange is a type of Delegate (Check next line for proof)
// public OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public event OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public RoomTemperatureController()
{
WhenRoomTemperatureChange += InternalRoomTemperatuerHandler;
}
private void InternalRoomTemperatuerHandler(int roomTemp)
{
System.Console.WriteLine("Internal Room Temperature Handler - Mandatory to handle/ Should not be removed by external consumer of ths class: Note, if it is delegate this can be removed, if event cannot be removed");
}
//User cannot directly asign values to delegate (e.g. roomTempControllerObj.OnRoomTemperatureChange = delegateMethod (System will throw error)
public bool TurnRoomTeperatureSimulator
{
set
{
_tempSimulator = value;
if (value)
{
SimulateRoomTemperature(); //Turn on Simulator
}
}
get { return _tempSimulator; }
}
public void TurnAirCondition(bool val)
{
_isAirConditionTurnedOn = val;
_isHeatTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public void TurnHeat(bool val)
{
_isHeatTurnedOn = val;
_isAirConditionTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public async void SimulateRoomTemperature()
{
while (_tempSimulator)
{
if (_isAirConditionTurnedOn)
_roomTemperature--;//Decrease Room Temperature if AC is turned On
if (_isHeatTurnedOn)
_roomTemperature++;//Decrease Room Temperature if AC is turned On
System.Console.WriteLine("Temperature :" + _roomTemperature);
if (WhenRoomTemperatureChange != null)
WhenRoomTemperatureChange(_roomTemperature);
System.Threading.Thread.Sleep(500);//Every second Temperature changes based on AC/Heat Status
}
}
}
public class MySweetHome
{
RoomTemperatureController roomController = null;
public MySweetHome()
{
roomController = new RoomTemperatureController();
roomController.WhenRoomTemperatureChange += TurnHeatOrACBasedOnTemp;
//roomController.WhenRoomTemperatureChange = null; //Setting NULL to delegate reference is possible where as for Event it is not possible.
//roomController.WhenRoomTemperatureChange.DynamicInvoke();//Dynamic Invoke is possible for Delgate and not possible with Event
roomController.SimulateRoomTemperature();
System.Threading.Thread.Sleep(5000);
roomController.TurnAirCondition (true);
roomController.TurnRoomTeperatureSimulator = true;
}
public void TurnHeatOrACBasedOnTemp(int temp)
{
if (temp >= 30)
roomController.TurnAirCondition(true);
if (temp <= 15)
roomController.TurnHeat(true);
}
public static void Main(string []args)
{
MySweetHome home = new MySweetHome();
}
}

For people live in 2020, and want a clean answer...
Definitions:
delegate: defines a function pointer.
event: defines
(1) protected interfaces, and
(2) operations(+=, -=), and
(3) advantage: you don't need to use new keyword anymore.
Regarding the adjective protected:
// eventTest.SomeoneSay = null; // Compile Error.
// eventTest.SomeoneSay = new Say(SayHello); // Compile Error.
Also notice this section from Microsoft: https://learn.microsoft.com/en-us/dotnet/standard/events/#raising-multiple-events
Code Example:
with delegate:
public class DelegateTest
{
public delegate void Say(); // Define a pointer type "void <- ()" named "Say".
private Say say;
public DelegateTest() {
say = new Say(SayHello); // Setup the field, Say say, first.
say += new Say(SayGoodBye);
say.Invoke();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
with event:
public class EventTest
{
public delegate void Say();
public event Say SomeoneSay; // Use the type "Say" to define event, an
// auto-setup-everything-good field for you.
public EventTest() {
SomeoneSay += SayHello;
SomeoneSay += SayGoodBye;
SomeoneSay();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
Reference:
Event vs. Delegate - Explaining the important differences between the Event and Delegate patterns in C# and why they're useful.: https://dzone.com/articles/event-vs-delegate

Related

When to use an event instead of a delegate in C#? [duplicate]

What are the differences between delegates and an events? Don't both hold references to functions that can be executed?
An Event declaration adds a layer of abstraction and protection on the delegate instance. This protection prevents clients of the delegate from resetting the delegate and its invocation list and only allows adding or removing targets from the invocation list.
To understand the differences you can look at this 2 examples
Example with Delegates (in this case, an Action - that is a kind of delegate that doesn't return a value)
public class Animal
{
public Action Run {get; set;}
public void RaiseEvent()
{
if (Run != null)
{
Run();
}
}
}
To use the delegate, you should do something like this:
Animal animal= new Animal();
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running") ;
animal.RaiseEvent();
This code works well but you could have some weak spots.
For example, if I write this:
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running");
animal.Run = () => Console.WriteLine("I'm sleeping") ;
with the last line of code, I have overridden the previous behaviors just with one missing + (I have used = instead of +=)
Another weak spot is that every class which uses your Animal class can invoke the delegate directly. For example, animal.Run() or animal.Run.Invoke() are valid outside the Animal class.
To avoid these weak spots you can use events in c#.
Your Animal class will change in this way:
public class ArgsSpecial : EventArgs
{
public ArgsSpecial (string val)
{
Operation=val;
}
public string Operation {get; set;}
}
public class Animal
{
// Empty delegate. In this way you are sure that value is always != null
// because no one outside of the class can change it.
public event EventHandler<ArgsSpecial> Run = delegate{}
public void RaiseEvent()
{
Run(this, new ArgsSpecial("Run faster"));
}
}
to call events
Animal animal= new Animal();
animal.Run += (sender, e) => Console.WriteLine("I'm running. My value is {0}", e.Operation);
animal.RaiseEvent();
Differences:
You aren't using a public property but a public field (using events, the compiler protects your fields from unwanted access)
Events can't be assigned directly. In this case, it won't give rise to the previous error that I have showed with overriding the behavior.
No one outside of your class can raise or invoke the event. For example, animal.Run() or animal.Run.Invoke() are invalid outside the Animal class and will produce compiler errors.
Events can be included in an interface declaration, whereas a field cannot
Notes:
EventHandler is declared as the following delegate:
public delegate void EventHandler (object sender, EventArgs e)
it takes a sender (of Object type) and event arguments. The sender is null if it comes from static methods.
This example, which uses EventHandler<ArgsSpecial>, can also be written using EventHandler instead.
Refer here for documentation about EventHandler
In addition to the syntactic and operational properties, there's also a semantical difference.
Delegates are, conceptually, function templates; that is, they express a contract a function must adhere to in order to be considered of the "type" of the delegate.
Events represent ... well, events. They are intended to alert someone when something happens and yes, they adhere to a delegate definition but they're not the same thing.
Even if they were exactly the same thing (syntactically and in the IL code) there will still remain the semantical difference. In general I prefer to have two different names for two different concepts, even if they are implemented in the same way (which doesn't mean I like to have the same code twice).
Here is another good link to refer to.
http://csharpindepth.com/Articles/Chapter2/Events.aspx
Briefly, the take away from the article - Events are encapsulation over delegates.
Quote from article:
Suppose events didn't exist as a concept in C#/.NET. How would another class subscribe to an event? Three options:
A public delegate variable
A delegate variable backed by a property
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
Option 1 is clearly horrible, for all the normal reasons we abhor public variables.
Option 2 is slightly better, but allows subscribers to effectively override each other - it would be all too easy to write someInstance.MyEvent = eventHandler; which would replace any existing event handlers rather than adding a new one. In addition, you still need to write the properties.
Option 3 is basically what events give you, but with a guaranteed convention (generated by the compiler and backed by extra flags in the IL) and a "free" implementation if you're happy with the semantics that field-like events give you. Subscribing to and unsubscribing from events is encapsulated without allowing arbitrary access to the list of event handlers, and languages can make things simpler by providing syntax for both declaration and subscription.
What a great misunderstanding between events and delegates!!! A delegate specifies a TYPE (such as a class, or an interface does), whereas an event is just a kind of MEMBER (such as fields, properties, etc). And, just like any other kind of member an event also has a type. Yet, in the case of an event, the type of the event must be specified by a delegate. For instance, you CANNOT declare an event of a type defined by an interface.
Concluding, we can make the following Observation: the type of an event MUST be defined by a delegate. This is the main relation between an event and a delegate and is described in the section II.18 Defining events of ECMA-335 (CLI) Partitions I to VI:
In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed to the event’s fire method.
However, this fact does NOT imply that an event uses a backing delegate field. In truth, an event may use a backing field of any different data structure type of your choice. If you implement an event explicitly in C#, you are free to choose the way you store the event handlers (note that event handlers are instances of the type of the event, which in turn is mandatorily a delegate type---from the previous Observation). But, you can store those event handlers (which are delegate instances) in a data structure such as a List or a Dictionary or any other else, or even in a backing delegate field. But don’t forget that it is NOT mandatory that you use a delegate field.
NOTE: If you have access to C# 5.0 Unleashed, read the "Limitations on Plain Use of Delegates" in Chapter 18 titled "Events" to understand better the differences between the two.
It always helps me to have a simple, concrete example. So here's one for the community. First I show how you can use delegates alone to do what Events do for us. Then I show how the same solution would work with an instance of EventHandler. And then I explain why we DON'T want to do what I explain in the first example. This post was inspired by an article by John Skeet.
Example 1: Using public delegate
Suppose I have a WinForms app with a single drop-down box. The drop-down is bound to an List<Person>. Where Person has properties of Id, Name, NickName, HairColor. On the main form is a custom user control that shows the properties of that person. When someone selects a person in the drop-down the labels in the user control update to show the properties of the person selected.
Here is how that works. We have three files that help us put this together:
Mediator.cs -- static class holds the delegates
Form1.cs -- main form
DetailView.cs -- user control shows all details
Here is the relevant code for each of the classes:
class Mediator
{
public delegate void PersonChangedDelegate(Person p); //delegate type definition
public static PersonChangedDelegate PersonChangedDel; //delegate instance. Detail view will "subscribe" to this.
public static void OnPersonChanged(Person p) //Form1 will call this when the drop-down changes.
{
if (PersonChangedDel != null)
{
PersonChangedDel(p);
}
}
}
Here is our user control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.PersonChangedDel += DetailView_PersonChanged;
}
void DetailView_PersonChanged(Person p)
{
BindData(p);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally we have the following code in our Form1.cs. Here we are Calling OnPersonChanged, which calls any code subscribed to the delegate.
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.OnPersonChanged((Person)comboBox1.SelectedItem); //Call the mediator's OnPersonChanged method. This will in turn call all the methods assigned (i.e. subscribed to) to the delegate -- in this case `DetailView_PersonChanged`.
}
Ok. So that's how you would get this working without using events and just using delegates. We just put a public delegate into a class -- you can make it static or a singleton, or whatever. Great.
BUT, BUT, BUT, we do not want to do what I just described above. Because public fields are bad for many, many reason. So what are our options? As John Skeet describes, here are our options:
A public delegate variable (this is what we just did above. don't do this. i just told you above why it's bad)
Put the delegate into a property with a get/set (problem here is that subscribers could override each other -- so we could subscribe a bunch of methods to the delegate and then we could accidentally say PersonChangedDel = null, wiping out all of the other subscriptions. The other problem that remains here is that since the users have access to the delegate, they can invoke the targets in the invocation list -- we don't want external users having access to when to raise our events.
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
This third option is essentially what an event gives us. When we declare an EventHandler, it gives us access to a delegate -- not publicly, not as a property, but as this thing we call an event that has just add/remove accessors.
Let's see what the same program looks like, but now using an Event instead of the public delegate (I've also changed our Mediator to a singleton):
Example 2: With EventHandler instead of a public delegate
Mediator:
class Mediator
{
private static readonly Mediator _Instance = new Mediator();
private Mediator() { }
public static Mediator GetInstance()
{
return _Instance;
}
public event EventHandler<PersonChangedEventArgs> PersonChanged; //this is just a property we expose to add items to the delegate.
public void OnPersonChanged(object sender, Person p)
{
var personChangedDelegate = PersonChanged as EventHandler<PersonChangedEventArgs>;
if (personChangedDelegate != null)
{
personChangedDelegate(sender, new PersonChangedEventArgs() { Person = p });
}
}
}
Notice that if you F12 on the EventHandler, it will show you the definition is just a generic-ified delegate with the extra "sender" object:
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);
The User Control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.GetInstance().PersonChanged += DetailView_PersonChanged;
}
void DetailView_PersonChanged(object sender, PersonChangedEventArgs e)
{
BindData(e.Person);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally, here's the Form1.cs code:
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.GetInstance().OnPersonChanged(this, (Person)comboBox1.SelectedItem);
}
Because the EventHandler wants and EventArgs as a parameter, I created this class with just a single property in it:
class PersonChangedEventArgs
{
public Person Person { get; set; }
}
Hopefully that shows you a bit about why we have events and how they are different -- but functionally the same -- as delegates.
You can also use events in interface declarations, not so for delegates.
Delegate is a type-safe function pointer. Event is an implementation of publisher-subscriber design pattern using delegate.
An event in .net is a designated combination of an Add method and a Remove method, both of which expect some particular type of delegate. Both C# and vb.net can auto-generate code for the add and remove methods which will define a delegate to hold the event subscriptions, and add/remove the passed in delegagte to/from that subscription delegate. VB.net will also auto-generate code (with the RaiseEvent statement) to invoke the subscription list if and only if it is non-empty; for some reason, C# doesn't generate the latter.
Note that while it is common to manage event subscriptions using a multicast delegate, that is not the only means of doing so. From a public perspective, a would-be event subscriber needs to know how to let an object know it wants to receive events, but it does not need to know what mechanism the publisher will use to raise the events. Note also that while whoever defined the event data structure in .net apparently thought there should be a public means of raising them, neither C# nor vb.net makes use of that feature.
To define about event in simple way:
Event is a REFERENCE to a delegate with two restrictions
Cannot be invoked directly
Cannot be assigned values directly (e.g eventObj = delegateMethod)
Above two are the weak points for delegates and it is addressed in event. Complete code sample to show the difference in fiddler is here https://dotnetfiddle.net/5iR3fB .
Toggle the comment between Event and Delegate and client code that invokes/assign values to delegate to understand the difference
Here is the inline code.
/*
This is working program in Visual Studio. It is not running in fiddler because of infinite loop in code.
This code demonstrates the difference between event and delegate
Event is an delegate reference with two restrictions for increased protection
1. Cannot be invoked directly
2. Cannot assign value to delegate reference directly
Toggle between Event vs Delegate in the code by commenting/un commenting the relevant lines
*/
public class RoomTemperatureController
{
private int _roomTemperature = 25;//Default/Starting room Temperature
private bool _isAirConditionTurnedOn = false;//Default AC is Off
private bool _isHeatTurnedOn = false;//Default Heat is Off
private bool _tempSimulator = false;
public delegate void OnRoomTemperatureChange(int roomTemperature); //OnRoomTemperatureChange is a type of Delegate (Check next line for proof)
// public OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public event OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public RoomTemperatureController()
{
WhenRoomTemperatureChange += InternalRoomTemperatuerHandler;
}
private void InternalRoomTemperatuerHandler(int roomTemp)
{
System.Console.WriteLine("Internal Room Temperature Handler - Mandatory to handle/ Should not be removed by external consumer of ths class: Note, if it is delegate this can be removed, if event cannot be removed");
}
//User cannot directly asign values to delegate (e.g. roomTempControllerObj.OnRoomTemperatureChange = delegateMethod (System will throw error)
public bool TurnRoomTeperatureSimulator
{
set
{
_tempSimulator = value;
if (value)
{
SimulateRoomTemperature(); //Turn on Simulator
}
}
get { return _tempSimulator; }
}
public void TurnAirCondition(bool val)
{
_isAirConditionTurnedOn = val;
_isHeatTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public void TurnHeat(bool val)
{
_isHeatTurnedOn = val;
_isAirConditionTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public async void SimulateRoomTemperature()
{
while (_tempSimulator)
{
if (_isAirConditionTurnedOn)
_roomTemperature--;//Decrease Room Temperature if AC is turned On
if (_isHeatTurnedOn)
_roomTemperature++;//Decrease Room Temperature if AC is turned On
System.Console.WriteLine("Temperature :" + _roomTemperature);
if (WhenRoomTemperatureChange != null)
WhenRoomTemperatureChange(_roomTemperature);
System.Threading.Thread.Sleep(500);//Every second Temperature changes based on AC/Heat Status
}
}
}
public class MySweetHome
{
RoomTemperatureController roomController = null;
public MySweetHome()
{
roomController = new RoomTemperatureController();
roomController.WhenRoomTemperatureChange += TurnHeatOrACBasedOnTemp;
//roomController.WhenRoomTemperatureChange = null; //Setting NULL to delegate reference is possible where as for Event it is not possible.
//roomController.WhenRoomTemperatureChange.DynamicInvoke();//Dynamic Invoke is possible for Delgate and not possible with Event
roomController.SimulateRoomTemperature();
System.Threading.Thread.Sleep(5000);
roomController.TurnAirCondition (true);
roomController.TurnRoomTeperatureSimulator = true;
}
public void TurnHeatOrACBasedOnTemp(int temp)
{
if (temp >= 30)
roomController.TurnAirCondition(true);
if (temp <= 15)
roomController.TurnHeat(true);
}
public static void Main(string []args)
{
MySweetHome home = new MySweetHome();
}
}
For people live in 2020, and want a clean answer...
Definitions:
delegate: defines a function pointer.
event: defines
(1) protected interfaces, and
(2) operations(+=, -=), and
(3) advantage: you don't need to use new keyword anymore.
Regarding the adjective protected:
// eventTest.SomeoneSay = null; // Compile Error.
// eventTest.SomeoneSay = new Say(SayHello); // Compile Error.
Also notice this section from Microsoft: https://learn.microsoft.com/en-us/dotnet/standard/events/#raising-multiple-events
Code Example:
with delegate:
public class DelegateTest
{
public delegate void Say(); // Define a pointer type "void <- ()" named "Say".
private Say say;
public DelegateTest() {
say = new Say(SayHello); // Setup the field, Say say, first.
say += new Say(SayGoodBye);
say.Invoke();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
with event:
public class EventTest
{
public delegate void Say();
public event Say SomeoneSay; // Use the type "Say" to define event, an
// auto-setup-everything-good field for you.
public EventTest() {
SomeoneSay += SayHello;
SomeoneSay += SayGoodBye;
SomeoneSay();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
Reference:
Event vs. Delegate - Explaining the important differences between the Event and Delegate patterns in C# and why they're useful.: https://dzone.com/articles/event-vs-delegate

Additional functionality Events provide over delegate

As I understand an Event is a way for a class to allow clients to give it delegates to methods that should be called when the event occurs. When the event occurs, the delegate(s) given to it by its clients are invoked.
But as demonstrated in following code above said functionality can also be achieved by delegate only i.e. without using delegate.
class Program
{
static void Main(string[] args)
{
ListWithChangedEvent lwce = new ListWithChangedEvent();
lwce.delegateVariable = DelegateTestMethod;
lwce.Add("test");
Console.ReadLine();
}
public static void DelegateTestMethod(object sender, object e)
{
}
}
public delegate void ChangedEventHandler(object sender, object e);
public class ListWithChangedEvent : System.Collections.ArrayList
{
public override int Add(object value)
{
int result = base.Add(value);
if (delegateVariable != null)
delegateVariable(this, "");
return result;
}
public ChangedEventHandler delegateVariable;
}
So, I was wondering what additional functionality does Events provide?
So, I was wondering what additional functionality does Events provide?
Events provide two distinctly different advantages over exposing a public delegate:
You're making the intent very clear. A delegate is typically exposed publically for a very different purpose than an "event" - by using an event, you're very clearly saying "this is something that will get raised at a specific point". Exposing a delegate typically has a different meaning - most often a delegate in a public API is a required input for that API - ie: something that is used directly by the method, not an optional notification mechanism triggered by the method.
Events, technically, are not necessarily just a delegate. An event actually has the option of allowing custom add and remove accessors, which allow you to manually determine what happens when a subscriber subscribes or unsubscribes from the event. For example, many implementations of ICommand.CanExecuteChanged actually don't include their own delegate at all - but silently route to the CommandManager's RequerySuggested event.
Your example allows for a single delegate to be called. The event is a collection of delegates, meaning you can += and -= your heart away (even during event invocation).
event is just the access approach to the handler.
it wont allow you to do myHandler=myFunc;
only using += ( from outer class)
it was made that if another dumb use your code - so he wont destroy your chain by using = so you allow him only += or -=

Assigning pointer to event for use later

This is abit difficult to word, so I am going to rely mostly on code.
BTW if you can word the question in a better light please dont hesitate giving your 2c!
class CustomEventArgs : EventArgs
{
public delegate void CustomEventHandler( Object sender, CustomEventArgs args );
public int data;
public CustomEventArgs (int _data)
{
data = _data;
}
}
This is the event that we will be using in this example.
class EventGenerator
{
public event CustomEventArgs.CustomEventHandler WeOccasion;
public EventGenerator ()
{
Task.Factory.StartNew( () =>
{
var index = 1;
// just loop and generate events every now and then
while (true)
{
Thread.Sleep( 1000 );
WeOccasion( this, new CustomEventArgs (++index));
}
});
}
}
This class just loops through firing off CustomEventHandler events.
class EventActivity
{
// EventActivity has an event of the same type as EventGenerator's
public event CustomEventArgs.CustomEventHandler WeOccasion;
// this is the part I cant seem to get right
public event CustomEventArgs.CustomEventHandler Source ( get; set; }
public bool Active {
set
{
if (value)
{
Source += DoWork;
}
else
{
Source -= DoWork;
}
}
}
private void DoWork( Object sender, CustomEventArgs frame);
}
Here is where I really need help. I want almost a pointer to an event in an another class of type CustomEventHandler that I can later assign event handlers to when I activate the activity.
Here is a usage example wrapped in a class;
class EventAssigner
{
EventGenerator Generator;
EventActivity DoSomeThing1;
EventActivity DoSomeThing2;
public EventAssigner ()
{
// init
Generator = new EventGenerator();
DoSomeThing1 = new EventActivity();
DoSomeThing2 = new EventActivity();
// assign sources
DoSomeThing1.Source = Generator.WeOccasion;
DoSomeThing2.Source = DoSomeThing1.WeOccasion;
// activate the first activity
DoSomeThing1.Active = true;
}
public void Activate2()
{
// activate the second activity
DoSomeThing2.Active = true;
}
public void Deactivate2()
{
// deactivate the second activity
DoSomeThing2.Active = false;
}
}
Obiously this code doesnt work, and I suppose thats what I am asking. Can you get this design pattern to work?
What you're asking to do isn't really possible with .NET events, and probably isn't as desirable as you might think. A bit of background should help explain why:
Properties have a basic pattern with get and set operations. These are invoked by accessing the property (for a get) and an assignment to the property (for a set):
var x = instance.Prop1; // access
instance.Prop1 = x; // assignment
When you access an event from outside the class (i.e. instance.Event) you are given the "public" face, which, like properties, has two operations: add handler and remove handler. These are invoked using the += and -= operators.
instance.Event += this.Handler; // add
instance.Event -= this.Handler; // remove
The important thing to notice that it doesn't have a "get" operation - there is no way to get a reference to the event outside the class; you can only modify the handlers registered.
When you access an event from within a class, you are given the "private" face, which is essentially a special collection of delegates (function pointers) to the registered event handlers. When you invoke the delegate, you're actually asking the framework to iterate through the registered event handlers and invoke those.
if(this.Event != null)
{
this.Event.Invoke(e, args); // raise event
}
This separation of public face and private face is what allows you have a nice simple event keyword which magically gives you an event. It is also what stops you passing a reference to the event around.
To pass the event into registration methods, you have to pass the object the event is attached to. If you have multiple classes which implement the same event and you want to register them all in the same way, you should have them implement an interface with the event (yes, events can be on interfaces) and write your method to accept the interface as an argument.
If I'm reading you correct, you want the line
DoSomeThing1.Source = Generator.WeOccasion;
to save the pointer to the WeOccasion event, so that you can add the DoWork call to it later, right?
I don't think that is possible with "normal" code, as the event is not a value, but rather like a property. Consider the following analogous code:
myProp = aPerson.Name; // attempt to save the name property for later
myProp = "Fred"; // intent is to set aPerson.Name = "Fred"
If you want this to work I'd suggest using reflection to find the event, and add to it using the EventInfo.AddEventHandler method (http://msdn.microsoft.com/en-us/library/system.reflection.eventinfo.addeventhandler.aspx)

In C# why can't I pass another class' EventHandler reference and how can I get around it?

If I have ClassA that has a public event, SomeEvent, and ClassC that has method, addListener, that accepts an EventHandler reference, why can't ClassB have a line that says c.addListener(ref a.SomeEvent)? If I try I get a compiler error that says: "The event 'ClassA.SomeEvent' can only appear on the left hand side of += or -= (except when used from within the type 'ClassA').
Why does this restriction exist? And how can I get around it while staying reasonably close to my structure?
I'm a C# newbie; any help would be appreciated. Thanks!
class ClassA {
public event EventHandler SomeEvent;
}
ClassB{
public ClassB() {
ClassA a = new ClassA();
ClassC c = new ClassC();
c.addListener(ref a.SomeEvent); //Compile error
}
}
class ClassC {
public void addListener(ref EventHandler handler) {
handler += onEvent;
}
private void onEvent(object sender, EventArgs e) {
//do stuff
}
}
Outside of the class, you only have access to the add and remove accessors - that is the point of an event you can neither see other subscribers, nor change them (for example, setting the event to null). It would be better to handle the event normally, and cause whatever consequences you need.
Imagine you could do what you suggest. For example, suppose you subscribe to a button click, and some other code uses that info to hook you into a "tick" event - you're code isn't going to work as it expected to = bug.
To make that explict; an event isn't an EventHandler, in the same way that a property isn't an int - the event/property defines accessor methods.
Re your scenario, either make OnEvent public and use a.SomeEvent += c.OnEvent;, or have some similar method and use an anon-method:
a.SomeEvent += delegate { c.DoSomethingCool(); };
The event keyword creates an accessor for a private delegate object. The exact same thing a property does, it restricts access to a private field. Your code snippet fails with a similar kind of error when you use a property instead of an event:
class ClassA {
public int Property { get; set; }
}
class ClassB {
public ClassB() {
ClassA a = new ClassA();
ClassC c = new ClassC();
c.setValue(ref a.Property); // CS0206
}
}
class ClassC {
public void setValue(ref int value) {
value = 42;
}
}
It is easier to see now, there is no way for the compiler to ensure that the setValue() method uses the property setter. Nor could it know that the "value" argument is a property with a setter or a plain field.
It is less clear for an event because there is so much syntax sugar at work. This declaration
public event EventHandler SomeEvent;
actually generates this code:
private EventHandler _SomeEvent;
public event SomeEvent {
add { _SomeEvent += new EventHandler(value); }
remove { _SomeEvent -= new EventHandler(value); }
}
The add and remove accessors are equivalent to the get and set accessors of a property, they prevent code from messing with the private _SomeEvent field. By convention, the add accessor is invoked when you use +=, remove is invoked with -=. Compare this with the earlier example I gave for a property. Same problem, you can't use the ref keyword and ClassC.addListener() would have no way to know that the handler is actually an event instead of a delegate object. If the compiler would pass _SomeEvent instead, the point of using the accessors is lost.
You can restructure the code to solve this problem:
class ClassC {
public EventHandler getListener() {
return new EventHandler(onEvent);
}
private void onEvent(object sender, EventArgs e) { }
}
...
a.SomeEvent += c.getListener();
One final note: the symmetry between an event and a property is a bit lost, the C# compiler automatically generates the add/remove accessors if you don't write them explicitly. It doesn't do this for a property. It would have made automatic properties a lot easier:
property int Property;
But that would have required adding a new keyword to the language, something the C# team really dislikes. Other languages like VB.NET and C++/CLI do have that keyword.
How can I get around it while staying reasonably close to my structure?
Use a.SomeEvent += handler instead.
Why does this restriction exist?
See Marc Gravell's answer.

What are the differences between delegates and events?

What are the differences between delegates and an events? Don't both hold references to functions that can be executed?
An Event declaration adds a layer of abstraction and protection on the delegate instance. This protection prevents clients of the delegate from resetting the delegate and its invocation list and only allows adding or removing targets from the invocation list.
To understand the differences you can look at this 2 examples
Example with Delegates (in this case, an Action - that is a kind of delegate that doesn't return a value)
public class Animal
{
public Action Run {get; set;}
public void RaiseEvent()
{
if (Run != null)
{
Run();
}
}
}
To use the delegate, you should do something like this:
Animal animal= new Animal();
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running") ;
animal.RaiseEvent();
This code works well but you could have some weak spots.
For example, if I write this:
animal.Run += () => Console.WriteLine("I'm running");
animal.Run += () => Console.WriteLine("I'm still running");
animal.Run = () => Console.WriteLine("I'm sleeping") ;
with the last line of code, I have overridden the previous behaviors just with one missing + (I have used = instead of +=)
Another weak spot is that every class which uses your Animal class can invoke the delegate directly. For example, animal.Run() or animal.Run.Invoke() are valid outside the Animal class.
To avoid these weak spots you can use events in c#.
Your Animal class will change in this way:
public class ArgsSpecial : EventArgs
{
public ArgsSpecial (string val)
{
Operation=val;
}
public string Operation {get; set;}
}
public class Animal
{
// Empty delegate. In this way you are sure that value is always != null
// because no one outside of the class can change it.
public event EventHandler<ArgsSpecial> Run = delegate{}
public void RaiseEvent()
{
Run(this, new ArgsSpecial("Run faster"));
}
}
to call events
Animal animal= new Animal();
animal.Run += (sender, e) => Console.WriteLine("I'm running. My value is {0}", e.Operation);
animal.RaiseEvent();
Differences:
You aren't using a public property but a public field (using events, the compiler protects your fields from unwanted access)
Events can't be assigned directly. In this case, it won't give rise to the previous error that I have showed with overriding the behavior.
No one outside of your class can raise or invoke the event. For example, animal.Run() or animal.Run.Invoke() are invalid outside the Animal class and will produce compiler errors.
Events can be included in an interface declaration, whereas a field cannot
Notes:
EventHandler is declared as the following delegate:
public delegate void EventHandler (object sender, EventArgs e)
it takes a sender (of Object type) and event arguments. The sender is null if it comes from static methods.
This example, which uses EventHandler<ArgsSpecial>, can also be written using EventHandler instead.
Refer here for documentation about EventHandler
In addition to the syntactic and operational properties, there's also a semantical difference.
Delegates are, conceptually, function templates; that is, they express a contract a function must adhere to in order to be considered of the "type" of the delegate.
Events represent ... well, events. They are intended to alert someone when something happens and yes, they adhere to a delegate definition but they're not the same thing.
Even if they were exactly the same thing (syntactically and in the IL code) there will still remain the semantical difference. In general I prefer to have two different names for two different concepts, even if they are implemented in the same way (which doesn't mean I like to have the same code twice).
Here is another good link to refer to.
http://csharpindepth.com/Articles/Chapter2/Events.aspx
Briefly, the take away from the article - Events are encapsulation over delegates.
Quote from article:
Suppose events didn't exist as a concept in C#/.NET. How would another class subscribe to an event? Three options:
A public delegate variable
A delegate variable backed by a property
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
Option 1 is clearly horrible, for all the normal reasons we abhor public variables.
Option 2 is slightly better, but allows subscribers to effectively override each other - it would be all too easy to write someInstance.MyEvent = eventHandler; which would replace any existing event handlers rather than adding a new one. In addition, you still need to write the properties.
Option 3 is basically what events give you, but with a guaranteed convention (generated by the compiler and backed by extra flags in the IL) and a "free" implementation if you're happy with the semantics that field-like events give you. Subscribing to and unsubscribing from events is encapsulated without allowing arbitrary access to the list of event handlers, and languages can make things simpler by providing syntax for both declaration and subscription.
What a great misunderstanding between events and delegates!!! A delegate specifies a TYPE (such as a class, or an interface does), whereas an event is just a kind of MEMBER (such as fields, properties, etc). And, just like any other kind of member an event also has a type. Yet, in the case of an event, the type of the event must be specified by a delegate. For instance, you CANNOT declare an event of a type defined by an interface.
Concluding, we can make the following Observation: the type of an event MUST be defined by a delegate. This is the main relation between an event and a delegate and is described in the section II.18 Defining events of ECMA-335 (CLI) Partitions I to VI:
In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed to the event’s fire method.
However, this fact does NOT imply that an event uses a backing delegate field. In truth, an event may use a backing field of any different data structure type of your choice. If you implement an event explicitly in C#, you are free to choose the way you store the event handlers (note that event handlers are instances of the type of the event, which in turn is mandatorily a delegate type---from the previous Observation). But, you can store those event handlers (which are delegate instances) in a data structure such as a List or a Dictionary or any other else, or even in a backing delegate field. But don’t forget that it is NOT mandatory that you use a delegate field.
NOTE: If you have access to C# 5.0 Unleashed, read the "Limitations on Plain Use of Delegates" in Chapter 18 titled "Events" to understand better the differences between the two.
It always helps me to have a simple, concrete example. So here's one for the community. First I show how you can use delegates alone to do what Events do for us. Then I show how the same solution would work with an instance of EventHandler. And then I explain why we DON'T want to do what I explain in the first example. This post was inspired by an article by John Skeet.
Example 1: Using public delegate
Suppose I have a WinForms app with a single drop-down box. The drop-down is bound to an List<Person>. Where Person has properties of Id, Name, NickName, HairColor. On the main form is a custom user control that shows the properties of that person. When someone selects a person in the drop-down the labels in the user control update to show the properties of the person selected.
Here is how that works. We have three files that help us put this together:
Mediator.cs -- static class holds the delegates
Form1.cs -- main form
DetailView.cs -- user control shows all details
Here is the relevant code for each of the classes:
class Mediator
{
public delegate void PersonChangedDelegate(Person p); //delegate type definition
public static PersonChangedDelegate PersonChangedDel; //delegate instance. Detail view will "subscribe" to this.
public static void OnPersonChanged(Person p) //Form1 will call this when the drop-down changes.
{
if (PersonChangedDel != null)
{
PersonChangedDel(p);
}
}
}
Here is our user control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.PersonChangedDel += DetailView_PersonChanged;
}
void DetailView_PersonChanged(Person p)
{
BindData(p);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally we have the following code in our Form1.cs. Here we are Calling OnPersonChanged, which calls any code subscribed to the delegate.
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.OnPersonChanged((Person)comboBox1.SelectedItem); //Call the mediator's OnPersonChanged method. This will in turn call all the methods assigned (i.e. subscribed to) to the delegate -- in this case `DetailView_PersonChanged`.
}
Ok. So that's how you would get this working without using events and just using delegates. We just put a public delegate into a class -- you can make it static or a singleton, or whatever. Great.
BUT, BUT, BUT, we do not want to do what I just described above. Because public fields are bad for many, many reason. So what are our options? As John Skeet describes, here are our options:
A public delegate variable (this is what we just did above. don't do this. i just told you above why it's bad)
Put the delegate into a property with a get/set (problem here is that subscribers could override each other -- so we could subscribe a bunch of methods to the delegate and then we could accidentally say PersonChangedDel = null, wiping out all of the other subscriptions. The other problem that remains here is that since the users have access to the delegate, they can invoke the targets in the invocation list -- we don't want external users having access to when to raise our events.
A delegate variable with AddXXXHandler and RemoveXXXHandler methods
This third option is essentially what an event gives us. When we declare an EventHandler, it gives us access to a delegate -- not publicly, not as a property, but as this thing we call an event that has just add/remove accessors.
Let's see what the same program looks like, but now using an Event instead of the public delegate (I've also changed our Mediator to a singleton):
Example 2: With EventHandler instead of a public delegate
Mediator:
class Mediator
{
private static readonly Mediator _Instance = new Mediator();
private Mediator() { }
public static Mediator GetInstance()
{
return _Instance;
}
public event EventHandler<PersonChangedEventArgs> PersonChanged; //this is just a property we expose to add items to the delegate.
public void OnPersonChanged(object sender, Person p)
{
var personChangedDelegate = PersonChanged as EventHandler<PersonChangedEventArgs>;
if (personChangedDelegate != null)
{
personChangedDelegate(sender, new PersonChangedEventArgs() { Person = p });
}
}
}
Notice that if you F12 on the EventHandler, it will show you the definition is just a generic-ified delegate with the extra "sender" object:
public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);
The User Control:
public partial class DetailView : UserControl
{
public DetailView()
{
InitializeComponent();
Mediator.GetInstance().PersonChanged += DetailView_PersonChanged;
}
void DetailView_PersonChanged(object sender, PersonChangedEventArgs e)
{
BindData(e.Person);
}
public void BindData(Person p)
{
lblPersonHairColor.Text = p.HairColor;
lblPersonId.Text = p.IdPerson.ToString();
lblPersonName.Text = p.Name;
lblPersonNickName.Text = p.NickName;
}
}
Finally, here's the Form1.cs code:
private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
Mediator.GetInstance().OnPersonChanged(this, (Person)comboBox1.SelectedItem);
}
Because the EventHandler wants and EventArgs as a parameter, I created this class with just a single property in it:
class PersonChangedEventArgs
{
public Person Person { get; set; }
}
Hopefully that shows you a bit about why we have events and how they are different -- but functionally the same -- as delegates.
You can also use events in interface declarations, not so for delegates.
Delegate is a type-safe function pointer. Event is an implementation of publisher-subscriber design pattern using delegate.
An event in .net is a designated combination of an Add method and a Remove method, both of which expect some particular type of delegate. Both C# and vb.net can auto-generate code for the add and remove methods which will define a delegate to hold the event subscriptions, and add/remove the passed in delegagte to/from that subscription delegate. VB.net will also auto-generate code (with the RaiseEvent statement) to invoke the subscription list if and only if it is non-empty; for some reason, C# doesn't generate the latter.
Note that while it is common to manage event subscriptions using a multicast delegate, that is not the only means of doing so. From a public perspective, a would-be event subscriber needs to know how to let an object know it wants to receive events, but it does not need to know what mechanism the publisher will use to raise the events. Note also that while whoever defined the event data structure in .net apparently thought there should be a public means of raising them, neither C# nor vb.net makes use of that feature.
To define about event in simple way:
Event is a REFERENCE to a delegate with two restrictions
Cannot be invoked directly
Cannot be assigned values directly (e.g eventObj = delegateMethod)
Above two are the weak points for delegates and it is addressed in event. Complete code sample to show the difference in fiddler is here https://dotnetfiddle.net/5iR3fB .
Toggle the comment between Event and Delegate and client code that invokes/assign values to delegate to understand the difference
Here is the inline code.
/*
This is working program in Visual Studio. It is not running in fiddler because of infinite loop in code.
This code demonstrates the difference between event and delegate
Event is an delegate reference with two restrictions for increased protection
1. Cannot be invoked directly
2. Cannot assign value to delegate reference directly
Toggle between Event vs Delegate in the code by commenting/un commenting the relevant lines
*/
public class RoomTemperatureController
{
private int _roomTemperature = 25;//Default/Starting room Temperature
private bool _isAirConditionTurnedOn = false;//Default AC is Off
private bool _isHeatTurnedOn = false;//Default Heat is Off
private bool _tempSimulator = false;
public delegate void OnRoomTemperatureChange(int roomTemperature); //OnRoomTemperatureChange is a type of Delegate (Check next line for proof)
// public OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public event OnRoomTemperatureChange WhenRoomTemperatureChange;// { get; set; }//Exposing the delegate to outside world, cannot directly expose the delegate (line above),
public RoomTemperatureController()
{
WhenRoomTemperatureChange += InternalRoomTemperatuerHandler;
}
private void InternalRoomTemperatuerHandler(int roomTemp)
{
System.Console.WriteLine("Internal Room Temperature Handler - Mandatory to handle/ Should not be removed by external consumer of ths class: Note, if it is delegate this can be removed, if event cannot be removed");
}
//User cannot directly asign values to delegate (e.g. roomTempControllerObj.OnRoomTemperatureChange = delegateMethod (System will throw error)
public bool TurnRoomTeperatureSimulator
{
set
{
_tempSimulator = value;
if (value)
{
SimulateRoomTemperature(); //Turn on Simulator
}
}
get { return _tempSimulator; }
}
public void TurnAirCondition(bool val)
{
_isAirConditionTurnedOn = val;
_isHeatTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public void TurnHeat(bool val)
{
_isHeatTurnedOn = val;
_isAirConditionTurnedOn = !val;//Binary switch If Heat is ON - AC will turned off automatically (binary)
System.Console.WriteLine("Aircondition :" + _isAirConditionTurnedOn);
System.Console.WriteLine("Heat :" + _isHeatTurnedOn);
}
public async void SimulateRoomTemperature()
{
while (_tempSimulator)
{
if (_isAirConditionTurnedOn)
_roomTemperature--;//Decrease Room Temperature if AC is turned On
if (_isHeatTurnedOn)
_roomTemperature++;//Decrease Room Temperature if AC is turned On
System.Console.WriteLine("Temperature :" + _roomTemperature);
if (WhenRoomTemperatureChange != null)
WhenRoomTemperatureChange(_roomTemperature);
System.Threading.Thread.Sleep(500);//Every second Temperature changes based on AC/Heat Status
}
}
}
public class MySweetHome
{
RoomTemperatureController roomController = null;
public MySweetHome()
{
roomController = new RoomTemperatureController();
roomController.WhenRoomTemperatureChange += TurnHeatOrACBasedOnTemp;
//roomController.WhenRoomTemperatureChange = null; //Setting NULL to delegate reference is possible where as for Event it is not possible.
//roomController.WhenRoomTemperatureChange.DynamicInvoke();//Dynamic Invoke is possible for Delgate and not possible with Event
roomController.SimulateRoomTemperature();
System.Threading.Thread.Sleep(5000);
roomController.TurnAirCondition (true);
roomController.TurnRoomTeperatureSimulator = true;
}
public void TurnHeatOrACBasedOnTemp(int temp)
{
if (temp >= 30)
roomController.TurnAirCondition(true);
if (temp <= 15)
roomController.TurnHeat(true);
}
public static void Main(string []args)
{
MySweetHome home = new MySweetHome();
}
}
For people live in 2020, and want a clean answer...
Definitions:
delegate: defines a function pointer.
event: defines
(1) protected interfaces, and
(2) operations(+=, -=), and
(3) advantage: you don't need to use new keyword anymore.
Regarding the adjective protected:
// eventTest.SomeoneSay = null; // Compile Error.
// eventTest.SomeoneSay = new Say(SayHello); // Compile Error.
Also notice this section from Microsoft: https://learn.microsoft.com/en-us/dotnet/standard/events/#raising-multiple-events
Code Example:
with delegate:
public class DelegateTest
{
public delegate void Say(); // Define a pointer type "void <- ()" named "Say".
private Say say;
public DelegateTest() {
say = new Say(SayHello); // Setup the field, Say say, first.
say += new Say(SayGoodBye);
say.Invoke();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
with event:
public class EventTest
{
public delegate void Say();
public event Say SomeoneSay; // Use the type "Say" to define event, an
// auto-setup-everything-good field for you.
public EventTest() {
SomeoneSay += SayHello;
SomeoneSay += SayGoodBye;
SomeoneSay();
}
public void SayHello() { /* display "Hello World!" to your GUI. */ }
public void SayGoodBye() { /* display "Good bye!" to your GUI. */ }
}
Reference:
Event vs. Delegate - Explaining the important differences between the Event and Delegate patterns in C# and why they're useful.: https://dzone.com/articles/event-vs-delegate

Categories

Resources