I have the following situation.
SomeClass has a dependency on IDiagram and Diagram implements that interface. The lifetime of SomeClass is the lifetime of the Application, however the lifetime a Diagram is shorter. Say it could change when a certain button is pressed.
Since I could not find anything satisfying on this problem I came up with the pattern depicted in the Diagram below.
The Observer of the Diagram would be aware that the Diagram can change and set the correct instance when it changes.
The Observer would implement the IDiagram interface by delegating the methods of the current Diagram instance.
SomeFactory would create new Diagrams and RaiseChanged.
SomeClass would not be aware of any of this.
Is enforcing this pattern a good idea, which downsides are there? Is there a better solution to this problem?
Example code with IDependency instead of IDiagram below:
private static void Main(string[] args)
{
var transientDependency = new TransientDependency();
var dependencyObserver = new DependecyObserver(transientDependency);
var dependencyFactory = new Factory(transientDependency);
var someClass = new SomeClass(dependencyObserver);
var someOtherClass = new SomeClass(dependencyObserver);
// Note that someClass can only be used after the dependency has been created, because the Changed event has to be invoked
dependencyFactory.CreateDependency();
}
public class DependecyObserver : IDependency
{
public DependecyObserver(TransientDependency transient)
{
transient.Changed += (s, dependency) => Dependency = dependency;
}
private Dependency Dependency { get; set; }
public void SomeMethod()
{
Dependency.SomeMethod();
}
}
public class Factory
{
private TransientDependency TransientDependency { get; }
public Factory(TransientDependency transientDependency)
{
TransientDependency = transientDependency;
}
public void CreateDependency()
{
TransientDependency.RaiseChanged(new Dependency());
}
}
public class SomeClass
{
public SomeClass(IDependency dependency)
{
dependency.SomeMethod();
}
}
public class TransientDependency : TransientInstance<Dependency> { }
public abstract class TransientInstance<T>
{
public EventHandler<T> Changed;
public void RaiseChanged(T instance)
{
Changed?.Invoke(this, instance);
}
}
public class Dependency : IDependency
{
public void SomeMethod()
{
throw new NotImplementedException();
}
}
public interface IDependency
{
void SomeMethod();
}
Related
I have PhotoBase class
public abstract class PhotoBase
{
public string Path { get; set; }
}
And I have multiple derived classes, for example the path may indicate a location in the file system or an external url.
public class FilePhoto : PhotoBase {}
public class ExternalPhoto : PhotoBase {}
I want to load these photos, I have a PhotoLoader class like below:
public class PhotoLoader
{
public void Load(FilePhoto Photo)
{
// get the photo from file system
}
public void Load(ExternalPhoto Photo)
{
// download the photo from path
}
}
Now I want to load these photos, so I have to do:
public class PhotoImporter
{
private PhotoLoader _photoLoader;
public PhotoImporter(PhotoLoader photoLoader)
{
_photoLoader = photoLoader;
}
public void ImportPhoto(PhotoBase photo)
{
if (photo is FilePhoto)
{
_photoLoader.Load(photo as FilePhoto);
}
if (photo is ExternalPhoto)
{
_photoLoader.Load(photo as ExternalPhoto);
}
}
}
I have several derived classes and I may add more photo types in the future. Is there a more elegant way that I could get rid of if conditions? Using factory pattern?
Another approach would be to have an abstract method Load on PhotoBase, that's then implemented by each subclass:
public abstract class PhotoBase
{
public string Path { get; set; }
public abstract void Load();
}
public class FilePhoto : PhotoBase
{
public override void Load()
{
// load from file system
}
}
public class ExternalPhoto : PhotoBase
{
public override void Load()
{
// load from path
}
}
That way, you can simply call the Load method on a PhotoBase:
public class PhotoImporter
{
public void ImportPhoto(PhotoBase photo)
{
photo.Load();
}
}
The main advantage is that each subclass implements the Load method, and therefore you can add as many subclasses as you want, without worrying about forgetting to implement it.
The main drawback to this implementation is that the Load methods can't depend on other dependencies. So for example, if one day you need to load a photo from a database, you can't pass the DBContext.
Proper to way to implement it which will make code easy to maintain is as follows:
public abstract class PhotoBase
{
public string Path { get; set; }
public abstract void Load(); // Have a abtract method
}
public class FilePhoto : PhotoBase {
public override void Load() { // Implement the abtract method
Console.WriteLine("FilePhoto");
}
}
public class ExternalPhoto : PhotoBase {
public override void Load() { // // Implement the abtract method
Console.WriteLine("ExternalPhoto");
}
}
public class PhotoLoader
{
private PhotoBase _PhotoBase;
public PhotoLoader(PhotoBase photoBase) { // Resolved by Dependency Injection
_PhotoBase = photoBase;
}
public void Load()
{
_PhotoBase.Load();
}
}
public class PhotoImporter
{
private PhotoLoader _photoLoader;
public PhotoImporter(PhotoLoader photoLoader) // Resolved by Dependency Injection
{
_photoLoader = photoLoader;
}
public void ImportPhoto()
{
_photoLoader.Load();
}
}
You need to have Dependency Injection define so that specified implementation will get resolved and appropriate 'Load' method will be invoked.
void Main()
{
// Following dependency should be resolved by Dependency Injection
PhotoBase filePhotoBase = new FilePhoto();
PhotoLoader filePhotoLoader = new PhotoLoader(filePhotoBase);
PhotoImporter filePhotoImporter = new PhotoImporter(filePhotoLoader);
PhotoBase externalPhotoBase = new ExternalPhoto();
PhotoLoader externalPhotoLoader = new PhotoLoader(externalPhotoBase);
PhotoImporter externalPhotoImporter = new PhotoImporter(externalPhotoLoader);
filePhotoImporter.ImportPhoto(); // Shows output 'FilePhoto'
externalPhotoImporter.ImportPhoto(); // Shows output 'ExternalPhoto'
}
You can have as much implementation as you want, but you need to have proper instance of PhotoImporter by Dependency Injection. Everything else will work smoothly.
This is how I could do this:
public class PhotoImporter
{
private PhotoLoader _photoLoader;
public PhotoImporter(PhotoLoader photoLoader)
{
_photoLoader = photoLoader;
}
public void ImportPhoto(PhotoBase photo)
{
var childType = photo.GetType();
dynamic childPhoto = Convert.ChangeType(photo, childType);
_photoLoader.Load(childPhoto);
}
}
You can simplify your ImportPhotoby using pattern matching:
public void ImportPhoto(photoBase photo)
{
switch(photo)
{
case FilePhoto filePhoto:
loader.Load(filePhoto);
break;
case ExternalPhoto externalPhoto:
loader.Load(externalPhoto);
break;
}
}
But this is only syntactic sugar and doesn't solve your real problem. What might help is a abstract Load method in your base class:
public abstract class PhotoBase
{
public string Path { get; set; }
public abstract void Load();
}
You have to implement this method in your child classes. If you call the method, the correct implementation will be chosen.
Online demo: https://dotnetfiddle.net/LfkxBQ
i wrote a little example to learn IoC and DI on my own.
I have one simple question:
How would you instantiate the unskilled worker in my example /
How can I swich between the following 2 inject candidates?:
kernal.Bind<IRepair>().To<Employee>();
kernal.Bind<IRepair>().To<UnskilledWorker>()
I'm a little bit confused at the moment...
class Program
{
static void Main(string[] args)
{
IWorkShop instance = GetWorkShop();
instance.StartToRepair();
Console.ReadLine();
}
private static IWorkShop GetWorkShop()
{
Ninject.IKernel kernal = new StandardKernel();
kernal.Bind<IWorkShop>().To<WorkShop>();
kernal.Bind<IRepair>().To<Employee>();
var instance = kernal.Get<IWorkShop>();
return instance;
}
}
public class WorkShop : IWorkShop
{
private IRepair _repair;
public WorkShop(IRepair repair)
{
_repair = repair;
}
public void StartToRepair()
{
_repair.RepairItNow();
}
}
interface IWorkShop
{
void StartToRepair();
}
public class Employee : IRepair
{
public void RepairItNow()
{
Console.WriteLine("Employee starts working.");
}
}
public class UnskilledWorker : IRepair
{
public void RepairItNow()
{
Console.WriteLine("Unskilled worker starts working.");
}
}
public interface IRepair
{
void RepairItNow();
}
}
If you know at compile time then you can use Ninject's contextual bindings: https://github.com/ninject/ninject/wiki/Contextual-Binding.
IKernel kernal = new StandardKernel();
kernal.Bind<IWorkShop>().To<WorkShop>();
kernal.Bind<IRepair>().To<Employee>();
kernal.Bind<IRepair>().To<UnskilledWorker>().WhenInjectedInto(typeof(IWorkShop));
var instance = kernal.Get<IWorkShop>();
return instance;
If you need to decide at runtime which dependency to instantiate you are going to have to use a factory pattern.
I have an interface IInterface and it looks something like below -
public interface IInterface
{
void SomeMethod1();
void SomeMethod2();
void SomeMethod3();
.
.
.
}
One of the implementations is something like -
public class Implementation : IInterface
{
private Object obj;
public Implementation(Object obj)
{
this.obj = obj;
// Do Something
}
public void SomeMethod1()
{
lock(obj)
{
// Do Something
}
}
public void SomeMethod2()
{
// Do Something
}
public void SomeMethod3()
{
lock(obj)
{
// Do Something
}
}
.
.
.
}
How to pass a static readonly instance of type Object while registering Implementation class with type IInterface via unity configuration?
My preferred approach is probably to create a factory for creating IInterfaces
public interface IInterface
{
void SomeMethod1();
}
public interface IInterfaceFactory
{
IInterface CreateInterface();
}
public class StandardInterfaceFactory : IInterfaceFactory
{
// Define your static lock object here. Other customers
// can define their own IInterfaceFactory to use a
// different lock object.
private static readonly object lockObject = new object();
public IInterface CreateInterface()
{
return new StandardInterface(lockObject);
}
}
public class StandardInterface : IInterface
{
private readonly object lockObject;
public StandardInterface(object lockObject)
{
this.lockObject = lockObject;
}
public void SomeMethod1()
{
lock (this.lockObject)
{
Console.WriteLine("I've locked on " + lockObject);
}
}
}
Your unity configuration and client code will then look like this.
void Main()
{
IUnityContainer container = new UnityContainer();
// This mapping can be done trivially in XML configuration.
// Left as an exercise for the reader :)
container.RegisterType<IInterfaceFactory, StandardInterfaceFactory>();
IInterfaceFactory factory = container.Resolve<IInterfaceFactory>();
IInterface myInterface = factory.CreateInterface();
myInterface.SomeMethod1();
}
I'm building an API (for a game-engine) which exposes two interfaces called IWindow and IEngineWindow.
The IWindow interface is supposed to be implemented by an API-user and the IEngineWindow interface is used by the engine to interact with the window.
The window object should have a private member of the type List<IWindowControl>.
I could use an abstract class and get rid of the interfaces but then i would have implementation-details in my API which i don't want.
My theoretical solution to the problem is that the API-user implements IWindow in his own class and calls a method (something like GetEngineWindow(typeof(MyWindowClass))) which returns an object which is identical to an instance of MyWindowClass except that it also implements the IEngineWindow interface.
I was planning to use System.Reflection.Emit in the GetEngineWindow() method to dynamically combine MyWindowClass with an internal class which implements the IEngineWindow interface but i quickly realised that this would be a mayor project of it's own.
My question boils down to if there is a simpler solution to remove this kind of implementation-details from an API or if there exists a library (free for commercial use) to do this kind of class-fusing.
In case my question is too abstract, here is a code example of what i want to be able to do:
//API (dll-file)
interface IWindow
{
void BeforeClose();
}
interface IEngineWindow
{
void Show();
}
//Built into engine (written by me)
class Program
{
static void Main(string[] args)
{
object window = CombineClasses(typeof(Testwindow), typeof(EngineWindow));
((IWindow)window).BeforeClose(); //Outputs: Closing...
((IEngineWindow)window).Show(); //Outputs: Showing window...
}
}
class EngineWindow : IEngineWindow
{
public void Show()
{
Console.WriteLine("Showing window...");
}
}
//External assembly (dll-file)
class Testwindow : IWindow
{
public void BeforeClose()
{
Console.WriteLine("Closing...");
}
}
This sounds like you need a wrapper.
Let your internal class take an IWindow instance in its constructor
store it in a private field
implement both interfaces
and forward all IWindow members to the internal instance
Update: if you consider CastleWindsor a simpler approach, here it is (using xUnit for tests):
namespace Mixins
{
using System;
using Castle.DynamicProxy;
using Xunit;
public interface IA
{
void Do();
}
public interface IB
{
void Something();
}
public class A : IA
{
public void Do()
{
throw new NotImplementedException("A");
}
}
public class B : IB
{
public void Something()
{
throw new NotImplementedException("B");
}
}
public class Blender
{
[Fact]
public void Mix()
{
var options = new ProxyGenerationOptions();
// the instances for A and B would be the user provided and yours
options.AddMixinInstance(new A());
options.AddMixinInstance(new B());
var proxy = new ProxyGenerator().CreateClassProxy<object>(options);
Assert.IsAssignableFrom<IA>(proxy);
Assert.IsAssignableFrom<IB>(proxy);
try
{
((IA)proxy).Do();
}
catch (NotImplementedException ex)
{
if (ex.Message != "A")
{
throw;
}
}
try
{
((IB)proxy).Something();
}
catch (NotImplementedException ex)
{
if (ex.Message != "B")
{
throw;
}
}
}
}
}
I am the author of NCop - A composite-aspect framework that can help you achieve your goal.
NCop wiki
You basically need to create a new composite type interface that will implement both of your window interfaces and mark it as a composite using the TransientComposite attribute.
[TransientComposite]
public interface ICompositeWindow : IWindow, IEngineWindow
{
}
Order NCop to match between interfaces and implementations using Mixins attribute.
[TransientComposite]
[Mixins(typeof(EngineWindow), typeof(Testwindow))]
public interface ICompositeWindow : IWindow, IEngineWindow
{
}
create a CompositeContainer that will emit the new type.
class Program
{
static void Main(string[] args) {
ICompositeWindow window = null;
var container = new CompositeContainer();
container.Configure();
window = container.Resolve<ICompositeWindow>();
window.Show();
window.BeforeClose();
}
}
your final code should be:
using System;
using NCop.Composite.Framework;
using NCop.Mixins.Framework;
using NCop.Composite.Runtime;
namespace NCop.Samples
{
[TransientComposite]
[Mixins(typeof(EngineWindow), typeof(Testwindow))]
public interface ICompositeWindow : IWindow, IEngineWindow
{
}
public interface IWindow
{
void BeforeClose();
}
public interface IEngineWindow
{
void Show();
}
public class EngineWindow : IEngineWindow
{
public void Show() {
Console.WriteLine("Showing window...");
}
}
public class Testwindow : IWindow
{
public void BeforeClose() {
Console.WriteLine("Closing...");
}
}
class Program
{
static void Main(string[] args) {
ICompositeWindow window = null;
var container = new CompositeContainer();
container.Configure();
window = container.Resolve<ICompositeWindow>();
window.Show();
window.BeforeClose();
}
}
}
I'm new to dependency injection. I got a doubt while reading about Ninject.
In Ninject wiki I saw an basic example for Dependency Injection. From that my doubt arises.
This is the link.
class Samurai
{
readonly IWeapon weapon;
public Samurai(IWeapon weapon)
{
this.weapon = weapon;
}
public void Attack(string target)
{
this.weapon.Hit(target);
}
}
class Shuriken : IWeapon
{
public void Hit(string target)
{
Console.WriteLine("Pierced {0}'s armor", target);
}
}
class Program
{
public static void Main()
{
var warrior1 = new Samurai(new Shuriken());
var warrior2 = new Samurai(new Sword());
warrior1.Attack("the evildoers");
warrior2.Attack("the evildoers");
}
}
Below is the statement mentioned in that link.
"When classes are tightly coupled, they cannot be interchanged without altering their implementation. In order to avoid tightly coupling classes, we can use interfaces to provide a level of indirection."
If I want to create new class called Dress and inject to Samurai class. That time also I need to rewrite Samurai class know like below
class Samurai
{
readonly IWeapon weapon;
readonly IDress dress
public Samurai(IWeapon weapon, IDress dress)
{
this.weapon = weapon;
this.dress = dress;
}
public void Attack(string target)
{
this.weapon.Hit(target);
}
public void Wear(){
}
}
Or else do I have any other option???
It's not really clear what your question has to do with dependency injection or IoC, but your other option to altering the definition of of Samurai is to extend it into a new class, e.g.
public ClothedSamurai : Samurai
{
readonly IDress dress;
public ClothedSamurai(IWeapon weapon, IDress dress) : base(weapon)
{
this.dress = dress;
}
public void Wear()
{
//whatever this does
}
}