Related
Currently, I compare it this way (from here):
bool foo<T>(T expected, T actual) {
return EqualityComparer<T>.Default.Equals(expected, actual);
}
It works for basic types but not for IEnumerable<T>. How can I make it work for IEnumerable<T> like SequenceEqual?
EDIT: I tried the version of David L but it doesn't work either with arrays or with lists.
While there is nothing that prevents you from calling SequenceEquals directly, you can certainly wrap that call in helper methods. Note that SequenceEquals will compare index by index. You can also pass it an IEqualityComparer<T> instance if you want to override how the comparison is handled.
bool foo<T>(IEnumerable<T> expected, IEnumerable<T> actual)
{
return expected.SequenceEqual(actual);
}
bool foo<T>(List<T> expected, List<T> actual)
{
return expected.SequenceEqual(actual);
}
bool foo<T>(T[] expected, T[] actual)
{
return expected.SequenceEqual(actual);
}
bool foo<T>(IEnumerable<T> expected, IEnumerable<T> actual,
IEqualityComparer<T> comparer)
{
return expected.SequenceEqual(actual, comparer);
}
Testing with the following returns true as expected:
IEnumerable<int> expected = new List<int> { 1, 2, 3 };
IEnumerable<int> actual = new List<int> { 1, 2, 3 };
List<int> expected2 = new List<int> { 1, 2, 3 };
List<int> actual2 = new List<int> { 1, 2, 3 };
int[] expected3 = new int[] { 1, 2, 3 };
int[] actual3 = new int[] { 1, 2, 3 };
Console.WriteLine(foo(expected, actual));
Console.WriteLine(foo(expected2, actual2));
Console.WriteLine(foo(expected3, actual3));
and returns false for the following:
IEnumerable<int> expected = new List<int> { 1, 2, 3 };
IEnumerable<int> actual = new List<int> { 1, 3, 2 };
The benefit of the above approach is that you get compile-time overloads for each collection type that you want to explicitly support. However, if you want to implicitly support all collection types, you can expand your current boo foo<T> method as follows:
bool foo<T>(T expected, T actual)
{
// check that both T parameters implement IEnumerable
// (meaning they are a collection)
if (expected is IEnumerable expectedEnumerable &&
actual is IEnumerable actualEnumerable)
{
var expectedEnumerator = expectedEnumerable.GetEnumerator();
var actualEnumerator = actualEnumerable.GetEnumerator();
while (true)
{
// Determine if the enumerators have a next element
var hasExpected = expectedEnumerator.MoveNext();
var hasActual = actualEnumerator.MoveNext();
// Either we have no elements or successfully iterated both
if (!hasExpected && !hasActual)
{
return true;
}
// One of the enumerators has a value while the other does not.
if ((hasExpected && !hasActual) || (!hasExpected && hasActual))
{
return false;
}
// check the equality of the two current elements
if (!expectedEnumerator.Current.Equals(actualEnumerator.Current))
{
return false;
}
}
}
// fall back to your original equality comparison because
// one or both parameters do not implement IEnumerable
return EqualityComparer<T>.Default.Equals(expected, actual);
}
This again returns true for the three collection cases I listed above, and false for the following test cases:
IEnumerable<int> expected4 = new List<int> { 1, 2, 3 };
IEnumerable<int> actual4 = new List<int> { 1, 3, 2 };
List<int> expected5 = new List<int> { 1, 2, 3, 4 };
List<int> actual5 = new List<int> { 1, 2, 3 };
int[] expected6 = new int[] { 2, 3 };
int[] actual6 = new int[] { 1, 2, 3 };
Console.WriteLine(foo(expected4, actual4));
Console.WriteLine(foo(expected5, actual5));
Console.WriteLine(foo(expected6, actual6));
I'd like to sort multiple lists (variable number of them) into single list, but keeping the specific order. For example:
List A: { 1,2,3,4,5 }
List B: { 6,7,8 }
List C: { 9,10,11,12 }
Result List: { 1,6,9,2,7,10,3,8,11,4,12,5 }
The only idea I got was to remove the first element from each list and put it into resulting set (and repeat until all lists are empty), but maybe there is a better way that doesn't require to create copy of each list and doesn't affect the original lists as well?
I suggest using IEnumerator<T> to enumerate lists while they have items:
private static IEnumerable<T> Merge<T>(params IEnumerable<T>[] sources) {
List<IEnumerator<T>> enums = sources
.Select(source => source.GetEnumerator())
.ToList();
try {
while (enums.Any()) {
for (int i = 0; i < enums.Count;)
if (enums[i].MoveNext()) {
yield return enums[i].Current;
i += 1;
}
else {
// exhausted, let's remove enumerator
enums[i].Dispose();
enums.RemoveAt(i);
}
}
}
finally {
foreach (var en in enums)
en.Dispose();
}
}
Test
List<int> A = new List<int>() { 1, 2, 3, 4, 5 };
List<int> B = new List<int>() { 6, 7, 8 };
List<int> C = new List<int>() { 9, 10, 11, 12 };
var result = Merge(A, B, C)
.ToList();
Console.Write(string.Join(", ", result));
The outcome is
1, 6, 9, 2, 7, 10, 3, 8, 11, 4, 12, 5
For more flexible use
public static string MergeArrays(params IList<int>[] items)
{
var result = new List<int>();
for (var i = 0; i < items.Max(x => x.Count); i++)
result.AddRange(from rowList in items where rowList.Count > i select rowList[i]);
return string.Join(",", result);
}
.
var a = new List<int>() { 1, 2, 3, 4, 5 };
var b = new List<int>() { 6, 7, 8 };
var c = new List<int>() { 9, 10, 11, 12, 0, 2, 1 };
var r = MergeArrays(a, b, c);
There is no sense in over complicating this in my opinion, why not use a simple for loop to accomplish what you need?
List<int> list1 = new List<int> { 1, 2, 3, 4, 5 };
List<int> list2 = new List<int> { 6, 7, 8 };
List<int> list3 = new List<int> { 9, 10, 11, 12 };
List<int> resultList = new List<int>();
for (int i = 0; i < list1.Count || i < list2.Count || i < list3.Count; i++)
{
if (i < list1.Count) resultList.Add(list1[i]);
if (i < list2.Count) resultList.Add(list2[i]);
if (i < list3.Count) resultList.Add(list3[i]);
}
Result: 1,6,9,2,7,10,3,8,11,4,12,5
Here's a fairly simple way. It was fun to write up anyway.
No, it isn't the best, but it works and you could expand it to suit your needs of using a List<List<int>> very easily.
//Using arrays for simplicity, you get the idea.
int[] A = { 1, 2, 3, 4, 5 };
int[] B = { 6, 7, 8 };
int[] C = { 9, 10, 11, 12 };
List<int> ResultSet = new List<int>();
//Determine this somehow. I'm doing this for simplicity.
int longest = 5;
for (int i = 0; i < longest; i++)
{
if (i < A.Length)
ResultSet.Add(A[i]);
if (i < B.Length)
ResultSet.Add(B[i]);
if (i < C.Length)
ResultSet.Add(C[i]);
}
//ResultSet contains: { 1, 6, 9, 2, 7, 10, 3, 8, 11, 4, 12, 5 }
As you can see, just pop this out into a method and loop through your lists of lists, properly determining the max length of all lists.
I'd go with:
static void Main(string[] args)
{
var a = new List<int>() { 1, 2, 3, 4, 5 };
var b = new List<int>() { 6, 7, 8 };
var c = new List<int>() { 9, 10, 11, 12 };
var abc = XYZ<int>(new[] { a, b, c }).ToList();
}
static IEnumerable<T> XYZ<T>(IEnumerable<IList<T>> lists)
{
if (lists == null)
throw new ArgumentNullException();
var finished = false;
for (int index = 0; !finished; index++)
{
finished = true;
foreach (var list in lists)
if (list.Count > index) // list != null (prior checking for count)
{
finished = false;
yield return list[index];
}
}
}
I had to use use IList to have indexer and Count. It doesn't creates anything (no enumerators, no lists, etc.), purely yield return.
For your problem I create static method, which can merge any collections as you want:
public static class CollectionsHandling
{
/// <summary>
/// Merge collections to one by index
/// </summary>
/// <typeparam name="T">Type of collection elements</typeparam>
/// <param name="collections">Merging Collections</param>
/// <returns>New collection {firsts items, second items...}</returns>
public static IEnumerable<T> Merge<T>(params IEnumerable<T>[] collections)
{
// Max length of sent collections
var maxLength = 0;
// Enumerators of all collections
var enumerators = new List<IEnumerator<T>>();
foreach (var item in collections)
{
maxLength = Math.Max(item.Count(), maxLength);
if(collections.Any())
enumerators.Add(item.GetEnumerator());
}
// Set enumerators to first item
enumerators.ForEach(e => e.MoveNext());
var result = new List<T>();
for (int i = 0; i < maxLength; i++)
{
// Add elements to result collection
enumerators.ForEach(e => result.Add(e.Current));
// Remobve enumerators, in which no longer have elements
enumerators = enumerators.Where(e => e.MoveNext()).ToList();
}
return result;
}
}
Example of using:
static void Main(string[] args)
{
var a = new List<int> { 1, 2, 3, 4, 5 };
var b = new List<int> { 6, 7, 8 };
var c = new List<int> { 9, 10, 11, 12 };
var result= CollectionsHandling.Merge(a, b, c);
}
When you understand how it works, it will be possible to reduce the method of smaller.
Shortest and probably slowest solution
int[] A = { 1, 2, 3, 4, 5 };
int[] B = { 6, 7, 8 };
int[] C = { 9, 10, 11, 12 };
var arrs = new[] { A, B, C };
var merged = Enumerable.Range(0, arrs.Max(a => a.Length))
.Select(x => arrs.Where(a=>a.Length>x).Select(a=>a[x]))
.SelectMany(x=>x)
.ToArray();
upd.
Another way to solve - I just refactored #Sinatr answer.
static IEnumerable<T> XYZ<T>(IEnumerable<IList<T>> lists)
{
if (lists == null)
throw new ArgumentNullException();
var index = 0;
while (lists.Any(l => l.Count > index))
{
foreach (var list in lists)
if (list.Count > index)
yield return list[index];
index++;
}
}
I have some problems. I have 2 list such as:
List<int> firstList = new List<int> { 1, 2, 2, 3, 5};
List<int> secondList = new List<int> { 2, 3, 1 };
⇒ True result is: {1, 3, 0}
I would like to get the first index of numbers in secondList that exists in firstList. I used list.BinarySearch() but the result was {2, 3, 0}.
List<int> firstList = new List<int> { 1, 2, 2, 3, 5};
List<int> secondList = new List<int> { 2, 3, 1 };
var output = secondList.Select(item => firstList.IndexOf(item)); // [1 , 3 , 0]
You can replace the IndexOf with a BinarySearch logic, but BinarySearch returns the first matched element index, so you won't get the lowest number, IndexOf does return the lowest matching index.
The problem is that when the list contains duplicate values as in your case, the BinarySearch method will return the index of any of the matching values (non deterministic).
To get the desired result, you could create and use a custom extension method like this:
public static class ListExtensions
{
public static int BinarySearchFirst<T>(this List<T> source, T item, IComparer<T> comparer = null)
{
if (comparer == null) comparer = Comparer<T>.Default;
int index = source.BinarySearch(item, comparer);
while (index > 0 && comparer.Compare(source[index], source[index - 1]) == 0)
index--;
return index;
}
}
Sample usage:
var result = secondList.Select(x => firstList.BinarySearchFirst(x)).ToList();
// { 1, 3, 0 }
C++ has a standard library function for this called lower_bound().
Here's a C# implementation. This is useful if you are searching large collections:
public static int LowerBound<T>(IList<T> values, T target, int first, int last)
where T : IComparable<T>
{
int left = first;
int right = last;
while (left < right)
{
int mid = left + (right - left) / 2;
var middle = values[mid];
if (middle.CompareTo(target) < 0)
left = mid + 1;
else
right = mid;
}
return left;
}
That doesn't return -1 for elements that it doesn't find, so to fix that we can wrap it like so:
public static int LowerBoundOrMinusOne<T>(IList<T> values, T target, int first, int last)
where T : IComparable<T>
{
int result = LowerBound(values, target, first, last);
if (result >= last || result < first || values[result].CompareTo(target) != 0)
return -1;
return result;
}
Here is how you use it:
List<int> firstList = new List<int> { 1, 2, 2, 3, 5 };
List<int> secondList = new List<int> { 2, 3, 1 };
List<int> result = secondList
.Select(value => LowerBoundOrMinusOne(firstList, value, 0, firstList.Count))
.ToList();
Console.WriteLine(string.Join(", ", result));
Of course, this is mainly of benefit to large lists because it has an O(Log2(N)) rather than an O(N) complexity.
Iterate through second array and get index of element in first array:
foreach (int item in secondList)
{
Console.WriteLine(firstList.IndexOf(item));
}
If you have a large firstList and so you have to use BinarySearch try amending it: find out the item (which is not guaranteed to be the leftmost one) by BinarySearch, then move to the left while having read the same item:
List<int> firstList = new List<int> { 1, 2, 2, 3, 5 };
List<int> secondList = new List<int> { 2, 3, 1, 123 };
var result = secondList
.Select(item => firstList.BinarySearch(item))
.Select(index => index < 0 ? -1 : Enumerable
.Range(0, index + 1) // we have to scan [0..index] at the worst case
.Select(i => index - i) // scan in reverse
.TakeWhile(i => firstList[index] == firstList[i]) // take while items are the same
.Last()); // finally, we want the last item
Test
// 1, 3, 0, -1
Console.Write(String.Join(", ", result));
I have a list of integer lists, like that:
A -> 10 10 1 1 1
B -> 10 9 9 7 6
...
I would like to sort them based on how many 10s they have, then on how many 9s, 8s, 7s, and so on untile the 1s
So in the example above A should be better than B because even if it has less total points, it has two 10s instead of only 1.
Code should be generic because I don't know how many numbers will be available for each case (sometimes 10, sometimes 5, or even only 3).
I developed something like that:
lists.OrderByDescending(a => a.Where(b => b == 10).Count()).
ThenByDescending(a => a.Where(b => b == 9).Count()).
and so on, but this is not generic...
I hope the question is clear... thank you very much!
You can create query which orders lists by count of 10s, then compose query by adding additional orderings for numbers from 9 to 1:
var query = lists.OrderByDescending(l => l.Count(x => x == 10));
for (int i = 9; i >= 1; i--)
query = query.ThenByDescending(l => l.Count(x => x == i));
For these sample lists:
var lists = new[] {
new[] { 10, 9, 9, 8, 7 },
new[] { 10, 9, 9, 7, 6 },
new[] { 10, 10, 1, 1, 1 }
};
Result will be:
[10, 10, 1, 1, 1]
[10, 9, 9, 8, 7]
[10, 9, 9, 7, 6]
It's simple, but not very efficient. If you need better performance, then consider creating custom comparer. Here is sample with comparer which uses zipped ordered sequences to check if all items in sequences are same, or get first item which is different:
public class CustomComparer : Comparer<IList<int>>
{
public override int Compare(IList<int> x, IList<int> y)
{
var comparisons = x.Zip(y, (a,b) => a.CompareTo(b));
foreach(var comparison in comparisons)
{
if (comparison != 0)
return comparison;
}
return x.Count.CompareTo(y.Count);
}
}
NOTE: If items in lists are not ordered, then you should sort them before zipping:
var comparisons =
x.OrderByDescending(i => i)
.Zip(y.OrderByDescending(i => i), (a,b) => a.CompareTo(b));
It works very simple. Consider two lists:
[10, 9, 9, 8, 7, 5]
[10, 9, 9, 7, 6]
It will create pairs of items in corresponding positions:
{10,10}, {9,9}, {9,9}, {8,7}, {7,6}
Then items in each pair will be compared one by one, until first mismatch will be found:
0, 0, 0, 1 (four comparisons only)
That means first list has more 8s than second one. Usage:
var query = lists.OrderByDescending(i => i, new CustomComparer());
Result is same.
The following comparer
public class Comparer : IComparer<IEnumerable<int>>
{
public int Compare(IEnumerable<int> a, IEnumerable<int> b)
{
var aOrdered = a.OrderByDescending(i => i).Concat(new[] { int.MinValue });
var bOrdered = b.OrderByDescending(i => i).Concat(new[] { int.MinValue });
return a.Zip(b, (i, j) => i.CompareTo(j)).FirstOrDefault(c => c != 0);
}
}
lets you order you lists of lists like so
var result = lists.OrderByDescending(i => i, new Comparer());
without iterating through each list ten times counting individual elements.
This compares the lists and returns conventional comparison result - 1, 0, or -1 is returned depending on whether one value is greater than, equal to, or less than the other.
static int CompareLists(List<int> a, List<int> b)
{
var grpA = a.GroupBy(p => p).ToDictionary(k=>k.Key,v=>v.Count());
var grpB = b.GroupBy(p => p).ToDictionary(k=>k.Key,v=>v.Count());
for (int i = 10; i >= 0; i--)
{
int countA = grpA.ContainsKey(i) ? grpA[i] : 0;
int countB = grpB.ContainsKey(i) ? grpB[i] : 0;
int comparison = countA.CompareTo(countB);
if (comparison != 0)
return comparison;
}
return 0;
}
First we convert the lists into dictionary of number->amount of occurences.
Then we iterate through numbers from 10 to 0 and compare the number of occurences. If the result is 0, then we go to another number.
If you have List<List<int>> to sort, just use list.Sort(CompareLists) as in:
List<int> d = new List<int> { 10, 6, 6 };
List<int> b = new List<int> { 10, 9, 9 };
List<int> a = new List<int> { 10, 10, 1, 1, 1 };
List<int> c = new List<int> { 10, 7, 7 };
List<int> e = new List<int> { 9, 3, 7 };
List<int> f = new List<int> { 9, 9, 7 };
List<List<int>> list = new List<List<int>>() { a, b, c, d, e, f };
list.Sort(CompareLists);
I'm looking for a way to prevent repeating items in a list but still preserve the order.
For example
1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4
should become
1, 2, 3, 4, 1, 2, 3, 4
I've done it quite inelegantly using a for loop, checking the next item as follows
public static List<T> RemoveSequencialRepeats<T>(List<T> input)
{
var result = new List<T>();
for (int index = 0; index < input.Count; index++)
{
if (index == input.Count - 1)
{
result.Add(input[index]);
}
else if (!input[index].Equals(input[index + 1]))
{
result.Add(input[index]);
}
}
return result;
}
Is there a more elegant way to do this, preferably with LINQ?
You can create extension method:
public static IEnumerable<T> RemoveSequentialRepeats<T>(
this IEnumerable<T> source)
{
using (var iterator = source.GetEnumerator())
{
var comparer = EqualityComparer<T>.Default;
if (!iterator.MoveNext())
yield break;
var current = iterator.Current;
yield return current;
while (iterator.MoveNext())
{
if (comparer.Equals(iterator.Current, current))
continue;
current = iterator.Current;
yield return current;
}
}
}
Usage:
var result = items.RemoveSequentialRepeats().ToList();
You can also use pure LINQ:
List<int> list = new List<int>{1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4};
var result = list.Where((x, i) => i == 0 || x != list[i - 1]);
If you really really hate the world, pure LINQ:
var nmbs = new int[] { 1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4, 5 };
var res = nmbs
.Take(1)
.Concat(
nmbs.Skip(1)
.Zip(nmbs, (p, q) => new { prev = q, curr = p })
.Where(p => p.prev != p.curr)
.Select(p => p.curr));
But note that you'll need to enumerate (at least partially) the enumerable 3 times (the Take, the "left" part of Zip, the first parameters of Zip). This method is slower than building a yield method or doing it directly.
Explanation:
You take the first number (.Take(1))
You take all the numbers from the second (.Skip(1)) and pair it with all the numbers (.Zip(nmbs). We will call curr the numbers from the first "collection" and prev the numbers from the second "collection" ((p, q) => new { prev = q, curr = p })). You then take only the numbers that are different from the previous number (.Where(p => p.prev != p.curr)) and from these you take the curr value and discard the prev value (.Select(p => p.curr))
You concat these two collections (.Concat()
you could write simple LINQ :
var l = new int[] { 1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4 };
var k = new Nullable<int>();
var nl = l.Where(x => { var res = x != k; k = x; return res; }).ToArray();
int[8] { 1, 2, 3, 4, 1, 2, 3, 4 }
or pythonic (well, my best try) way:
l.Zip(l.Skip(1), (x, y) => new[] { x, y })
.Where(z => z[0] != z[1]).Select(a => a[0])
.Concat(new[] { l[l.Length - 1] }).ToArray()
int[8] { 1, 2, 3, 4, 1, 2, 3, 4 }
the simplest one (edit: haven't seen that it already suggested by King King)
l.Where((x, i) => i == l.Length - 1 || x != l[i + 1]).ToArray()
int[8] { 1, 2, 3, 4, 1, 2, 3, 4 }
If you want LINQ statement that do not rely on captured value of result inside the call you'll need some construct with aggregate as it is the only method that carries value along with operation. I.e. based on Zaheer Ahmed's code:
array.Aggregate(new List<string>(),
(items, element) =>
{
if (items.Count == 0 || items.Last() != element)
{
items.Add(element);
}
return items;
});
Or you can even try to build list without if:
array.Aggregate(Enumerable.Empty<string>(),
(items, element) => items.Concat(
Enumerable.Repeat(element,
items.Count() == 0 || items.Last() != element ? 1:0 ))
);
Note to get reasonable performance of above samples with Aggregate you'd need to also carry last value (Last will have to iterate whole sequence on each step), but code that carries 3 values {IsEmpty, LastValue, Sequence} in a Tuple is very strange looking. These samples are here for entertaining purposes only.
One more option is to Zip array with itself shifted by 1 and return elements that are not equal...
More practical option is to build iterator that filters values:
IEnumerable<string> NonRepeated(IEnumerable<string> values)
{
string last = null;
bool lastSet = false;
foreach(var element in values)
{
if (!lastSet || last != element)
{
yield return element;
}
last = element;
lastSet = true;
}
}
check if last of new list and current item is not same then add to new list:
List<string> results = new List<string>();
results.Add(array.First());
foreach (var element in array)
{
if(results[results.Length - 1] != element)
results.Add(element);
}
or using LINQ:
List<int> arr=new List<int>(){1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4 };
List<int> result = new List<int>() { arr.First() };
arr.Select(x =>
{
if (result[result.Length - 1] != x) result.Add(x);
return x;
}).ToList();
Do have proper validation for null object.
Try this:
class Program
{
static void Main(string[] args)
{
var input = "1, 2, 3, 4, 4, 4, 1, 1, 2, 3, 4, 4 ";
var list = input.Split(',').Select(i => i.Trim());
var result = list
.Select((s, i) =>
(s != list.Skip(i + 1).FirstOrDefault()) ? s : null)
.Where(s => s != null)
.ToList();
}
}
Here the code you need :
public static List<int> RemoveSequencialRepeats(List<int> input)
{
var result = new List<int>();
result.Add(input.First());
result.AddRange(input.Where(p_element => result.Last() != p_element);
return result;
}
The LINQ magic is:
result.Add(input.First());
result.AddRange(input.Where(p_element => result.Last() != p_element);
Or you can create extension method like this:
public static class Program
{
static void Main(string[] args)
{
List<int> numList=new List<int>(){1,2,2,2,4,5,3,2};
numList = numList.RemoveSequentialRepeats();
}
public static List<T> RemoveSequentialRepeats<T>(this List<T> p_input)
{
var result = new List<T> { p_input.First() };
result.AddRange(p_input.Where(p_element => !result.Last().Equals(p_element)));
return result;
}
}
If you feel like referencing an F# project you can write
let rec dedupe = function
| x::y::rest when x = y -> x::dedupe rest
| x::rest -> x::dedupe rest
| _ -> []