BACKGROUND: We've an ASP.NET Core based web app using EF Core developed on top of DI & Generic Repository pattern. So, most of the things are done using interfaces. Now, we've reached master table maintenance module. We don't want to replicate the same service (backed by repository) class for all 10-20 master tables.
So, we've created a _ModelMasterBase class and derived all the master table classes from it. The CRUD for all master tables is the same. So, next we implemented things like MasterRepository<T>, MasterService<T> and their interfaces. Now everything has to use <T> where T is the type of the master table selected on the page to perform CRUD.
Initially, I expected that instance of IMasterService<_ModelMasterBase> can be converted to IMasterService<T>
- again where T could be any child class derived from _ModelMasterBase - But it seems impossible! I've tried operators, casting, and almost everything I could google! Also due to repository pattern everything has to be strongly typed.
Now, we already use the trick to convert child obj to base class obj as per SO Post -
DerivedClass B = new DerivedClass();
BaseClass bc = JsonConvert.DeserializeObject<BaseClass>(JsonConvert.SerializeObject(B));
I know its a bit dirty trick but sometimes its handy to maintain the tradeoff between design and complexity. We use it with precaution. I wish there was something similar in case I wanted to cast MyService<Base> to MyService<Child>
Or you can forget all this and guide me to have a single point CRUD service for all my master tables - replicating the same thing 10-20 times seems irrational. Sorry, I couldn't explain in depth as it'd stretch the post.
Here's a v.basic sample of my code structure and at the end you'll see what we're trying to achieve. Hope it helps.
SOLUTION :
Based on mkArtak's suggestion, I was able to crack it by using
'Covariance' concept (example). Here's my updated code
sample. Now there's a single controller and service layer for all master tables!
Short answer: in the IMasterService definition prefix T with 'out' keyword.
public interface IMasterService<out T>
{
// your existing methods' definitions here
}
It's called Covariance, which is described in MSDN.
Inheritance problems?
This sort of thing smells like you should prefer composition over inheritance. As you're stating you're able to serialize/deserialize your specialized class to your base class, isn't this more like a data transfer object by definition? I wouldn't put logic into these but instead introduce another service that uses the base class logic without inheritance (e.g. passing an instance into the constructor) - that might solve the issue in the first place.
Not a solution
As of your particular question: you might be able to use a contravariant type parameter if this isn't too restrictive (e.g. you can only use the type parameter in parameters not in return types) and you own the interfaces in question. But the compiler only allows me to assign the services the other way around - which makes sense. Maybe you find a solution for this in a covariant manner instead?
using System;
public class Program
{
internal interface IMasterService<in T> {
void DoSomething(T table);
}
internal class BaseClass {}
internal class DerivedClass : BaseClass {}
internal class SpezializedService : IMasterService<BaseClass> {
public void DoSomething(BaseClass table) {}
}
public static void Main()
{
// The compiler isn't happy about the other way around
IMasterService<DerivedClass> baseService = new SpezializedService();
}
}
Hope this helps.
Related
I'm developing a framework where a class inheriting from an abstract class of the framework needs to be able to specify the schema for the options it can accept when it is called to DoStuff().
I started out with an abstract GetOptionsSchema() method like this:
public abstract class Widget
{
public abstract OptionsSchema GetOptionsSchema();
public abstract void DoStuff(Options options);
}
Other developers would then extend on my framework by creating custom Widget types:
public abstract class FooWidget: Widget
{
public overide DoStuff(Options options)
{
//Do some FooWidget stuff
}
public overide OptionsSchema GetOptionsSchema()
{
//Return options for FooWidget
}
}
This works but requires the framework to create an instance of every Widget type to determine options schema they accept, even if it has no need to actually DoStuff() with any of these types.
Ultimately, I'd like to be able to determine the options schema for a specific Widget type directly from a System.Type. I would create a custom OptionsSchema attribute, but constructing these schemas is more complicated then would make sense to do in the constructor of an attribute. It needs to happen in a method.
I've seen other frameworks solve similar problems by creating a custom attribute that identifies a static method or property by name. For example the TestCaseSource attribute in NUnit.
Here's what this option might look like:
public abstract class Widget
{
public abstract void DoStuff(Options options);
}
[OptionsSchemaSource(nameof(GetOptionsSchema))]
public abstract class FooWidget: Widget
{
public overide DoStuff(Options options)
{
//Do some FooWidget stuff
}
public static OptionSchema GetOptionsSchema()
{
//Return options for FooWidget
}
}
I like how the OptionsSchemaSource attribute makes it possible to get the options schema directly from a System.Type, but this also seem much less discoverable to other developers creating custom Widget types.
With the abstract method another Widget developer knows they must override GetOptionSchema() because their code would not compile otherwise. With the OptionsSchemaSource attribute the best I could do would be to hope people read my documentation and have the framework throw an exception at run-time if it encounters a Widget with out an OptionsSchemaSource attribute.
Is there an alternative/better/recommended approach to this?
You pretty much already know everything of interest to judge what's the best approach.
As already mentioned, you cannot have static interfaces defined on your type, so there is no way you can ensure a new developer is enforced to add the attribute.
So, the two alternatives you identified are the only two I can think of.
Now, let's do a pros and cons and try to sharpen them.
Attribute
You can lessen the pain of ensuring devs put attributes on the classes with meaningful error messages. I would say that you should manage the discovery of the classes based exclusively on Attributes, not in inheritance.
If you manage everything with Attributes, you don't need to inherit from Widget.
This is a pro, because now everyone can inherit if it's desirable, and re-implement if it's preferred.
The con is that the implementation of discoverability will be more complex: you will need to use reflection at start up, get a MethodInfo, check that the method has the correct signature, give proper errors in case and invoke the method unboxing the result as needed.
Think about it: you would like a static method because you don't need to instantiate a single typed Widget instance, but actually instantiating a new Widget could very well be not a big deal.
Abstract class
Well, you enforce an inheritance chain over you developers, which could be ok, necessary or entirely optional (you judge), but you get a self documenting experience.
The apparent con is that at startup you need to instantiate a Widget for every derived type you discover, but that could very well be peanuts compared to assembly scanning and type checking and methodinfo discovery and method calls through reflection.
Ugly? Kind of. Inefficient? Not so much. And it's code that is invisible to your end user.
IMHO
I find quite a good tradeoff, when designing a framework, to put some "ugly" code inside the framework, if it means that every single implementation using the library is going to be even a little bit better.
All in all, if you're designing a library that you want to be flexible and discoverable, you should expect a developer to read at least a quick start guide. If they can read in 5 minutes a single bit of information (either "extend a base class" or "add a single or a couple attributes") and that single bit gives them an direction into discovering every aspect of widget registration, I would be ok: you can't really get much better than this.
My call: I would go the abstract class route with a smallish caveat. I really don't like having an enforced base class. So I would organize discovery at startup based on interface, IWidget, containing the GetOptionsSchema method and everything is needed to use the widget (which could be the DoStuff method, but could very well be something else). At startup you search for implementations of the interface which are not abstract, and you're good to go.
If, and only if, the only bit you really need in advance is a string or other similarly simple type, I would require an additional attribute.
[OptionsSchemaName("http://something")]
public class MyWidget : WidgetBase
{
public overide DoStuff(Options options)
{
//Do some FooWidget stuff
}
public static OptionSchema GetOptionsSchema()
{
//Return options for FooWidget
}
}
Then, your type discovery infrastructure can search for non-abstract IWidgets and throw a meaningful error right at startup like the type MyWidget is lacking an OptionsSchemaName attribute. Every implementation of IWidget must define one. See http://mydocs for information.
Bang! Nailed it!
It's not currently possible to enforce the attribute at compile time; that would've been ideal for your use case. It's also not possible to have an abstract static method, or have a static method specified in an interface; so there is no way to ensure the method is actually there at compile time, except by enforcing an instance method via abstract class or interface (which will require an instance of the type to access).
I'd go with the attribute idea - it's not unreasonable to expect developers to read documentation; even with overriding an abstract method, the developer would need to know how to construct an OptionSchema in the overridden method - back to documentation!
I have some c# code that has been working well for a while now.. and I have to say, whilst I understand the basics of OO principles, there is obviously more than one way to skin a cat (although I hate that phrase!).
So, I have a base abstract class that is acting as a basic data service class as follows (much simplified just for ease of reading):
public abstract class dataservice
{
public enum OutputType : int { XmlTOJson = 0, Xml = 1, Json=2 }
protected object SomeDBcall(string StoredProcedure)
{
// Just assume we are using SQLclient/DB access..
object SomeReturnObjValue = db.ExecuteScalar(cmd);
return SomeReturnObjValue;
{
}
.. so basically I might have a few basic DB retrieve/update/delete calls in the abstract class.. mainly as there are the basis of any DB operation I have in my app.
So now we have a class that implements the base class, say in my case a customer class:
public class Customer : dataservice
{
Public String CustomerDoSomething(string SomeDataEtc)
{
// Ok, so again for simplicity sake, we are going to use the base class to
// call a DB retrieve
object ReturningObj = SomeDBcall("my stored procedure");
return ReturningObj.ToString();
}
}
So I guess my question is this: Is the above method "ok" to use? considering a virtual method could be over-ridden if required, however in this case I only want the base class to use those methods which are protected as the means to call the DB operations.
Any clarity/guidance very appreciated!
Sure, it's "ok", though I see no reason for the base class to be abstract. abstract classes are great for implementing some common logic and leaving the rest up to derived classes to implement. However, you have no abstract/virtual methods, so I don't see the point here.
Perhaps you can let your abstract class be concrete and use it as some kind of helper class which handles the database related stuff you need. As far as the example code shows, there is no need to have multiple database accessing classes, just different parameters.
Overview
Many times, your "development itself will guide you".
Practical answer.
(1) You define a base class "dataservice", and from that class, several other classes will be based upon. You marked as "abstract", thats good. It's not mean to have variables by itself.
Some developers won't mark that class as "abstract", its not obligatory, but, its a not a bad idea, but, its a "good practice", to marked "abstract".
And, other methods will be added, used by the subclasses, maybe overriden, maybe not.
For know, those methods are protected, and anot mean to be used outside the object, but, by other methods. That's ok.
Maybe, later, a method may be required to be used outside the class, and may have to change to public.
(2) You add a subclass "Customer" that is a descendant from "DataService" You add a method that has to be used outside the class, and marked as "public", good.
It's only meant to be used by this class, not the parent class. So, no "virtual" or "override" required. Good.
(3) Your example its very simple. Most things you did, seems fine to me.
Eventually, when you add more code, things may change, example a method in the base class that was private may become public, or you may "rename" or "refactor" a method, like "dosomething", and found out that its better to be in the base class, or maybe not.
Summary
There are other answers, that mention, rules, or concepts. Seems to me that they are OK, but, skip the fact that you are learning to use O.O.P. better. Some people just try to "eat the cake in one wingle big bite", and that's not a good idea.
P.D. "can ur skin ur rabbit", sounds better to me.
Cheers.
You might want to look to the Template pattern to define the interface in the base (abstract or not) class with defined protected virtual hooks that can be overridden in the concrete subclasses. As mentioned by another poster, if you just intend to add DB services to each of your domain areas you might look to encapsulate the basic database service methods into a helper class rather than deriving from the database service.
Thanks #jgauffin for questioning my LSP violation statement. It was not correct and has been removed. There are lots of cases where extending the public interface of the base class by subclasses is warranted. Of course, by doing that one needs to be careful that you have an instance of a Y and not an X or a Z when performing a Y-specific operation A(), assuming that both Y and Z derive from X where Y adds the new public method A() and Z does not.
An example of the Template pattern in the OP's context would allow better encapsulation of custom functionality within subclasses without extending the public interface. However, this only works if there is not external influence exerted on the subclass instance, such as the OP's SomeDataEtc parameter. This works best when the instance is immutable.
public abstract class DataService
{
protected object myWidget = new Widget();
public object SomeDataBaseCall(string storedProcedure)
{
DoSomeCustomThing();
//do db stuff
object SomeReturnObjValue = db.ExecuteScalar(storedProcedure);
return SomeReturnObjValue;
}
protected void DoSomeCustomThing() {}
}
public class Customer : DataService
{
override protected void DoSomeCustomThing()
{
// do your custom thing here
}
}
Additionally, in the OP's example, it would seem prudent to use delegation within the derived class's new public method to call the base class's SomeDBCall method to execute the stored procedure. If you are redundantly coding the db access methods then there is no benefit to the proposed inheritance.
As was also mentioned elsewhere, you might be better off altogether by using composition rather than inheritance for the data service functionality.
No. Guess your following data access object pattern (DAO). Either way your Customer is not your data access class. It uses a class for data access. What I mean is that your DAO should favor composition over inheritance.
Something like:
public class Customer : IDataAccessObject
{
public Customer()
{
_dataAccess = new DataAccess();
}
public string CustomerDoSomething(string SomeDataEtc)
{
object ReturningObj = _dataAccess.SomeDBcall("my stored procedure");
return ReturningObj.ToString();
}
}
Why? Your objects get's a single responsibility which means that it's easier to extend and refactor them.
You can read up about SOLID which is some fundamental programming principles.
Since you are a .NET developer I also recommend that you embrace the naming guidelines.
I'm doing some internal domain-specific library development at the moment, and incidentally the stuff i'm trying to model mimicks "class" and "object" relations fairly well. So objects of my C# class MyClass should sort of act like a domain specific class for objects of my C# class MyObject who play the part of object or instance. Now I would like the code in MyObject to access methods of MyClass, which should not be accessible to other classes/code in the project. Any ideas how to enforce this, asside from documenting it at hoping my fellow developers will respect this.
I hope I made my question clear enough, otherwise let me know.
Best regards!
You could always split MyClass and MyObject up into another project, and define MyClass and/or MyObject as an internal class. That way it can only be accessed by other objects in that assembly.
See: http://msdn.microsoft.com/en-us/library/7c5ka91b(VS.80).aspx
The standard approach here is to declare the members internal and make sure MyClass and MyObject are part of the same assembly. That assembly should contain little else.
Additional: This is the tool that was designed for this purpose. Other languages have other means to fine-tune accessibility (C++: friend) but in .NET a simpler model was chosen.
And you don't have to take the 'nothing else' so strictly, the 2 classes could share an assembly with other related classes. you would then have to verify the no-access rule(s) manually inside that library.
I'd suggest a private nested class. That way, even if your fellow devs are writing code in the same namespace, they'll never be able to access the class.
Once the class declaration is fully enclosed within another class declaration, the class is considered nested and can only be accessed through the containing class.
Pehaps your MyObject should descend from MyClass and declare the methods in MyClas as protected.
If you don't want your consumers to invoke certain implementation specific methods you could try abstracting to interfaces or abstract base classes. That way the consumer will only 'see' the properties and methods you want them to see.
You do not have to use inheritance to provide shared functionality and you do not have to rely on member accesibility to prevent others from using methods you'd rather not expose.
For example:
public interface IDomainSpecific
{
void DoStuff();
}
public interface IDomainService
{
void HelpMeDoStuff();
}
public class DomainObject1 : IDomainSpecific
{
private readonly IDomainService _service;
public DomainObject1( IDomainService service )
{
_service = service;
}
public DoStuff()
{
// Do domain specific stuff here
// and use the service to help
_service.HelpMeDoStuff();
}
}
This uses classic constructor injection and works best when you already use dependency injection in your application, though it works perfectly well with factories as well.
The point is to keep responsibilities crystal clear. There's no chance of anybody invoking anything they shouldn't because the 'DomainObject' never knows what concrete type implements the shared service. The shared service is not exposed on the domain object either. The added bonus is testability and the possibility of swapping the service with another implementation without ever needing to touch the DomainObject.
I am still having trouble understanding what interfaces are good for. I read a few tutorials and I still don't know what they really are for other then "they make your classes keep promises" and "they help with multiple inheritance".
Thats about it. I still don't know when I would even use an interface in a real work example or even when to identify when to use it.
From my limited knowledge of interfaces they can help because if something implements it then you can just pass the interface in allowing to pass in like different classes without worrying about it not being the right parameter.
But I never know what the real point of this since they usually stop short at this point from showing what the code would do after it passes the interface and if they sort of do it it seems like they don't do anything useful that I could look at and go "wow they would help in a real world example".
So what I guess I am saying is I am trying to find a real world example where I can see interfaces in action.
I also don't understand that you can do like a reference to an object like this:
ICalculator myInterface = new JustSomeClass();
So now if I would go myInterface dot and intellisense would pull up I would only see the interface methods and not the other methods in JustSomeClass. So I don't see a point to this yet.
Also I started to do unit testing where they seem to love to use interfaces but I still don't understand why.
Like for instance this example:
public AuthenticationController(IFormsAuthentication formsAuth)
{
FormsAuth = formsAuth ?? new FormsAuthenticationWrapper();
}
public class FormsAuthenticationWrapper : IFormsAuthentication
{
public void SetAuthCookie(string userName, bool createPersistentCookie)
{
FormsAuthentication.SetAuthCookie(userName, createPersistentCookie);
}
public void SignOut()
{
FormsAuthentication.SignOut();
}
}
public IFormsAuthentication FormsAuth
{
get;
set;
}
Like why bother making this interface? Why not just make FormsAuthenticationWrapper with the methods in it and call it a day? Why First make an interface then have the Wrapper implement the interface and then finally write the methods?
Then I don't get what the statement is really saying.
Like I now know that the statement is saying this
FormsAuth = formsAuth ?? new FormsAuthenticationWrapper();
if formsAuth is null then make a new FormsAuthenticationWrapper and then assign it to the property that is an Interface.
I guess it goes back to the whole point of why the reference thing. Especially in this case since all the methods are exactly the same. The Wrapper does not have any new methods that the interface does not have and I am not sure but when you do this the methods are filled right(ie they have a body) they don't get converted to stubs because that would really seem pointless to me(it it would be converted back to an interface).
Then in the testing file they have:
var formsAuthenticationMock = new Mock<AuthenticationController.IFormsAuthentication>();
So they just pass in the FormsAuthentication what I am guessing makes all the fake stubs. I am guessing the wrapper class is used when the program is actually running since it has real methods that do something(like sign a person out).
But looking at new Mock(from moq) it accepts a class or an interface. Why not just again made the wrapper class put those methods in and then in the new Mock call that?
Would that not just make the stubs for you?
Ok, I had a hard time understanding too at first, so don't worry about it.
Think about this, if you have a class, that lets say is a video game character.
public class Character
{
}
Now say I want to have the Character have a weapon. I could use an interface to determin the methods required by a weapon:
interface IWeapon
{
public Use();
}
So lets give the Character a weapon:
public class Character
{
IWeapon weapon;
public void GiveWeapon(IWeapon weapon)
{
this.weapon = weapon;
}
public void UseWeapon()
{
weapon.Use();
}
}
Now we can create weapons that use the IWeapon interface and we can give them to any character class and that class can use the item.
public class Gun : IWeapon
{
public void Use()
{
Console.Writeline("Weapon Fired");
}
}
Then you can stick it together:
Character bob = new character();
Gun pistol = new Gun();
bob.GiveWeapon(pistol);
bob.UseWeapon();
Now this is a general example, but it gives a lot of power. You can read about this more if you look up the Strategy Pattern.
Interfaces define contracts.
In the example you provide, the ?? operator just provides a default value if you pass null to the constructor and doesn't really have anything to do with interfaces.
What is more relevant is that you might use an actual FormsAuthenticationWrapper object, but you can also implement your own IFormsAuthentication type that has nothing to do with the wrapper class at all. The interface tells you what methods and properties you need to implement to fulfill the contract, and allows the compiler to verify that your object really does honor that contract (to some extent - it's simple to honor a contract in name, but not in spirit), and so you don't have to use the pre-built FormsAuthenticationWrapper if you don't want to. You can build a different class that works completely differently but still honors the required contract.
In this respect interfaces are much like normal inheritance, with one important difference. In C# a class can only inherit from one type but can implement many interfaces. So interfaces allow you to fulfill multiple contracts in one class. An object can be an IFormsAuthentication object and also be something else, like IEnumerable.
Interfaces are even more useful when you look at it from the other direction: they allow you to treat many different types as if they were all the same. A good example of this is with the various collections classes. Take this code sample:
void OutputValues(string[] values)
{
foreach (string value in values)
{
Console.Writeline(value);
}
}
This accepts an array and outputs it to the console. Now apply this simple change to use an interface:
void OutputValues(IEnumerable<string> values)
{
foreach (string value in values)
{
Console.Writeline(value);
}
}
This code still takes an array and outputs it to the console. But it also takes a List<string> or anything else you care to give it that implements IEnumerable<string>. So we've taken an interface and used it to make a simple block of code much more powerful.
Another good example is the ASP.Net membership provider. You tell ASP.Net that you honor the membership contract by implementing the required interfaces. Now you can easily customize the built-in ASP.Net authentication to use any source, and all thanks to interfaces. The data providers in the System.Data namespace work in a similar fashion.
One final note: when I see an interface with a "default" wrapper implementation like that, I consider it a bit of an anit-pattern, or at least a code smell. It indicates to me that maybe the interface is too complicated, and you either need to split it apart or consider using some combination of composition + events + delegates rather than derivation to accomplish the same thing.
Perhaps the best way to get a good understanding of interfaces is to use an example from the .NET framework.
Consider the following function:
void printValues(IEnumerable sequence)
{
foreach (var value in sequence)
Console.WriteLine(value);
}
Now I could have written this function to accept a List<T>, object[], or any other type of concrete sequence. But since I have written this function to accept a parameter of type IEnumerable that means that I can pass any concrete type into this function that implements the IEnumerable interface.
The reason this is desirable is that by using the interface type your function is more flexible than it would otherwise be. Also you are increasing the utility of this function as many different callers will be able to make use of it without requiring modification.
By using an interface type you are able to declare the type of your parameter as a contract of what you need from whatever concrete type is passed in. In my example I don't care what type you pass me, I just care that I can iterate it.
All of the answers here have been helpful and I doubt I can add anything new to the mix but in reading the answers here, two of the concepts mentioned in two different answers really meshed well in my head so I will compose my understanding here in the hopes that it might help you.
A class has methods and properties and each of the methods and properties of a class has a signature and a body
public int Add(int x, int y)
{
return x + y;
}
The signature of the Add method is everything before the first curly brace character
public int Add(int x, int y)
The purpose of the method signature is to assign a name to a method and also to describe it's protection level (public, protected, internal, private and / or virtual) which defines where a method can be accessed from in code
The signature also defines the type of the value returned by the method, the Add method above returns an int, and the arguments a method expects to have passed to it by callers
Methods are generally considered to be something an object can do, the example above implies that the class the method is defined in works with numbers
The method body describes precisly (in code) how it is that an object performs the action described by the method name. In the example above the add method works by applying the addition operator to it's parameters and returing the result.
One of the primary differences between an interface and a class in terms of language syntax is that an interface can only define the signature of a methd, never the method body.
Put another way, an interface can describe in a the actions (methods) of a class, but it must never describe how an action is to be performed.
Now that you hopefully have a better understanding of what an interface is, we can move on to the second and third parts of your question when, and why would we use an interface in a real program.
One of the main times interfaces are used in a program is when one wants to perform an action, without wanting to know, or be tied to the specifics of how those actions are performed.
That is a very abstract concept to grapsp so perhaps an example might help to firm things up in your mind
Imagine you are the author of a very popular web browser that millions of people use every day and you have thousands of feature requests from people, some big, some little, some good and some like "bring back <maquee> and <blink> support".
Because you only have a relitivly small number of developers, and an even smaller number of hours in the day, you can't possibly implement every requested feature yourself, but you still want to satisfy your customers
So you decide to allow users to develop their own plugins, so they can <blink 'till the cows come home.
To implement this you might come up with a plugin class that looks like:
public class Plugin
{
public void Run (PluginHost browser)
{
//do stuff here....
}
}
But how could you reasonably implement that method? You can't possibly know precisly how every poossible future plugin is going to work
One possible way around this is to define Plugin as an interface and have the browser refer to each plugin using that, like this:
public interface IPlugin
{
void Run(PluginHost browser);
}
public class PluginHost
{
public void RunPlugins (IPlugin[] plugins)
{
foreach plugin in plugins
{
plugin.Run(this);
}
}
}
Note that as discussed earlier the IPlugin interface describes the Run method but does not specify how Run does it's job because this is specific to each plugin, we don't want the plugin host concerned with the specifics of each individual plugin.
To demonstrate the "can-be-a" aspect of the relationship between a class and an interface I will write a plugin for the plugin host below that implements the <blink> tag.
public class BlinkPlugin: IPlugin
{
private void MakeTextBlink(string text)
{
//code to make text blink.
}
public void Run(PluginHost browser)
{
MakeTextBlink(browser.CurrentPage.ParsedHtml);
}
}
From this perspective you can see that the plugin is defined in a class named BlinkPlugin but because it also implements the IPlugin interface it can also be refered to as an IPlugin object,as the PluginHost class above does, because it doesn't know or care what type the class actually is, just that it can be an IPlugin
I hope this has helped, I really didnt intend it to be quite this long.
I'll give you an example below but let me start with one of your statements. "I don't know how to identify when to use one". to put it on edge. You don't need to identify when to use it but when not to use it. Any parameter (at least to public methods), any (public) property (and personally I would actually extend the list to and anything else) should be declared as something of an interface not a specific class. The only time I would ever declare something of a specific type would be when there was no suitable interface.
I'd go
IEnumerable<T> sequence;
when ever I can and hardly ever (the only case I can think off is if I really needed the ForEach method)
List<T> sequence;
and now an example. Let's say you are building a sytem that can compare prices on cars and computers. Each is displayed in a list.
The car prices are datamined from a set of websites and the computer prices from a set of services.
a solution could be:
create one web page, say with a datagrid and Dependency Injection of a IDataRetriever
(where IDataRetriver is some interface making data fetching available with out you having to know where the data came from (DB,XML,web services or ...) or how they were fetched (data mined, SQL Quering in house data or read from file).
Since the two scenarios we have have nothing but the usage in common a super class will make little sense. but the page using our two classes (one for cars and one for computers) needs to perform the exact same operations in both cases to make that possible we need to tell the page (compiler) which operations are possible. We do that by means of an interface and then the two classes implement that interfcae.
using dependency injection has nothing to do with when or how to use interfaces but the reason why I included it is another common scenario where interfaces makes you life easier. Testing. if you use injection and interfaces you can easily substitute a production class for a testing class when testing. (This again could be to switch data stores or to enforce an error that might be very hard to produce in release code, say a race condition)
We use interfaces (or abstract base classes) to allow polymorphism, which is a very central concept in object-oriented programming. It allows us to compose behavior in very flexible ways. If you haven't already, you should read Design Patterns - it contains numerous examples of using interfaces.
In relation to Test Doubles (such as Mock objects), we use interfaces to be able to remove functionality that we currently don't want to test, or that can't work from within a unit testing framework.
Particularly when working with web development, a lot of the services that we rely on (such as the HTTP Context) isn't available when the code executes outside of the web context, but if we hide that functionality behind an interface, we can replace it with something else during testing.
The way I understood it was:
Derivation is 'is-a' relationship e.g., A Dog is an Animal, A Cow is an Animal but an interface is never derived, it is implemented.
So, interface is a 'can-be' relationship e.g., A Dog can be a Spy Dog, A Dog can be a Circus Dog etc. But to achieve this, a dog has to learn some specific things. Which in OO terminology means that your class has to able to do some specific things (contract as they call it) if it implements an interface. e.g., if your class implements IEnumerable, it clearly means that your class has (must have) such a functionality that it's objects can be Enumerated.
So, in essence, through Interface Implementation a Class exposes a functionality to its users that it can do something and it is NOT inheritance.
With almost everything written about interfaces, let me have a shot.
In simple terms, interface is something which will relate two or more , otherwise, non related classes.
Interfaces define contract which ensures that any two or more classes, even if not completely related, happens to implement a common interface, will contain a common set of operations.
Combined with the support of polymorphism , one can use interfaces to write cleaner and dynamic code.
eg.
Interface livingBeings
-- speak() // says anybody who IS a livingBeing need to define how they speak
class dog implements livingBeings
--speak(){bark;} // implementation of speak as a dog
class bird implements livingBeings
--speak(){chirp;}// implementation of speak as a bird
ICalculator myInterface = new JustSomeClass();
JustSomeClass myObject = (JustSomeClass) myInterface;
Now you have both "interfaces" to work with on the object.
I am pretty new to this too, but I like to think of interfaces as buttons on a remote control. When using the ICalculator interface, you only have access to the buttons (functionality) intended by the interface designer. When using the JustSomeClass object reference, you have another set of buttons. But they both point to the same object.
There are many reasons to do this. The one that has been most useful to me is communication between co-workers. If they can agree on an interface (buttons which will be pushed), then one developer can work on implementing the button's functionality and another can write code that uses the buttons.
Hope this helps.
I have several classes that conceptually belong to one tier. They have no common properties which is why they have no need to inherit from some base class.
I also have a few methods that deal with these classes. Some of them are templates of the following style:
public SomeClass
{
public void SomeMethod<T> (T argument) where T : BaseClass
{
/* Do something */
}
}
So I'm using this WHERE keyword just to secure the code (from myself I suppose), so that I don't by mistake feed to this method something else.
Naturally I made those other classes derive from BaseClass which is empty and has no other purpose (at least for now) than to group other classes.
This is probably not that good approach but anyway I'm using it.
Is there a better way to do this?
EDIT: After consideration I decided not to go with that approach and just removed that base class. Good enough without it. I cannot make the code absolutely perfect anyway, and the less unneeded thing there are the better.
Use a marker (empty) interface instead of a base class:
public void SomeMethod<T> (T argument) where T : ISomeInterface
+1 on Jeff's answer. Tagging ("marker") interfaces are common in both C# and Java frameworks. They let you assign a common type to "class A" so that another class ("class B") can be ignorant of class A's concrete type.
As with anything this flexible, it's easy to misuse, but in your case it definitely fills the bill.
Perhaps a more concrete example would provide a little more perspective. As it stands, I'd say you should not group classes in this way.
Your SomeMethod() method obviously does not reference any of the properties of the argument (or if it does, it also must be casting the argument to different type(s)); What is the reason for securing the code "from yourself"? What would happen if you were to call the method passing in an object that was not approved?
If the argument constraint is absolutely necessary, I would recommend as Grybyx did, use an Interface. That'll save you from issues with multiple inheritance.