C# Method-reference of constructor - c#

In C# I can have references of methods and static methods. Can I also get the reference of a classes constructor?
In Java I can say Supplier<MyClass> createMyClass = MyClass::new (instead of the longer lambda syntax).
In C# I only know the notation Func<MyClass> createMyClass = () => MyClass(). But I think the Java way with the constructor reference is better readable.
And I don't want to make a static CreateMyClass function. I really want the constructor.

No, there's no equivalent of method group conversions for constructors, or properties, indexers or operators.
It's an entirely reasonable idea, but it isn't in C# at the moment. It is, however, tracked as part of a feature request in the C# design repo - so you may want to subscribe to that issue.

Related

use delegate (or other) to do the same thing as lambda operator [duplicate]

I'm new to SO and programming and learning day by day with bits and pieces of tech (C#) jargons.
After Googling for a while, below is what I've researched about methods
A Method is a block of statements, which serves for code reusability
& it also supports overloading with different SIGNATURE....for ex:
drawShape(2pts), drawShape(3pts) etc...
An Anonymous method is one with block of statements, but no
name....(as its premature to ask, in wt situation we come across
anonymous method...any articles, samples ...)
Named method: Here's a link but at the end i didn't get what Named Method actually is...
Can anyone explain what a "Named" method is, and where do we use anonymous method?
A named method is a method you can call by its name (e.g. it is a function that has a name). For example, you have defined a function to add two numbers:
int f(int x, int y)
{
return x+y;
}
You would call this method by its name like so: f(1, 2);.
Anonymous method is a method that is passed as an argument to a function without the need for its name. These methods can be constructed at runtime or evaluated from a lambda expression at compile time.
These methods are often used in LINQ queries, for example:
int maxSmallerThan10 = array.Where(x => x < 10).Max();
The expression x => x < 10 is called a lambda expression and its result is an anonymous function that will be run by the method Where.
If you are a beginner, I would suggest you first read about more basic stuff. Check out the following links:
http://www.completecsharptutorial.com/
http://www.csharp-station.com/tutorial.aspx
http://www.homeandlearn.co.uk/csharp/csharp.html
Let's start from a simple method.
void MyMethod()
{
Console.WriteLine("Inside MyMethod"); //Write to output
}
The above method is a named-method which just writes Inside MyMethod to the output window.
Anonymous methods are some methods used in some special scenarios (when using delegates) where the method definition is usually smaller where you don't specify the name of the method.
For example, (delegate) => { Console.WriteLine("Inside Mymethod");}
Just start writing some simple programs and in the due course, when you use delegates or some advanced concepts, you will yourself learn. :)
Explanation by Analogy
Normally when we tell stories we refer to people by name:
"Freddie"
"Who's Freddie?"
"You know, Freddie, Freddie from Sales - the male guy with the red hair, who burned the building down...?"
In reality nobody cares who the person is, department he works etc. it's not like we'll refer to him every again. We want to be able to say: "Some guy burned down our building". All the other stuff (hair color, name etc.) is irrelevant and/or can be inferred.
What does this have to do with c#?
Typically in c# you would have to define a method if you want to use it: you must tell the compiler (typically):
what it is called,
and what goes into it (parameters + their types),
as well as what should come out (return type),
and whether it is something you can do in the privacy of your home or whether you can do it in public. (scope)
When you do that with methods, you are basically using named methods. But writing them out: that's a lot of effort. Especially if all of that can be inferred and you're never going to use it again.
That's basically where anonymous methods come in. It's like a disposable method - something quick and dirty - it reduces the amount you have to type in. That's basically the purpose of them.
Anonymous methods or anonymous functions, what seems to be the same, basically are delegates. As the link you point out: http://msdn.microsoft.com/en-us/library/bb882516.aspx describes, anonymous methods provide a simplified way to pass method to be executed by another method. Like a callback.
Another way to see it, is think about lambda expressions.
A named by the contrast is any common method.
From MSDN:
A delegate can be associated with a named method. When you instantiate a delegate by using a named method, the method is passed as a parameter. This is called using a named method. Delegates constructed with a named method can encapsulate either a static method or an instance method. Named methods are the only way to instantiate a delegate in earlier versions of C#. However, in a situation where creating a new method is unwanted overhead, C# enables you to instantiate a delegate and immediately specify a code block that the delegate will process when it is called. The block can contain either a lambda expression or an anonymous method.
and
In versions of C# before 2.0, the only way to declare a delegate was to use named methods. C# 2.0 introduced anonymous methods and in C# 3.0 and later, lambda expressions supersede anonymous methods as the preferred way to write inline code. However, the information about anonymous methods in this topic also applies to lambda expressions. There is one case in which an anonymous method provides functionality not found in lambda expressions. Anonymous methods enable you to omit the parameter list. This means that an anonymous method can be converted to delegates with a variety of signatures. This is not possible with lambda expressions. For more information specifically about lambda expressions, see Lambda Expressions (C# Programming Guide). Creating anonymous methods is essentially a way to pass a code block as a delegate parameter. By using anonymous methods, you reduce the coding overhead in instantiating delegates because you do not have to create a separate method.
So in answer to your question about when to use anonymous methods, then MSDN says: in a situation where creating a new method is unwanted overhead.
In my experience it's more down to a question of code reuse and readability.
Links:
http://msdn.microsoft.com/en-us/library/98dc08ac.aspx
http://msdn.microsoft.com/en-us/library/0yw3tz5k.aspx
Hope that helps

C# Opposite of "Anonymous" Function [duplicate]

I'm new to SO and programming and learning day by day with bits and pieces of tech (C#) jargons.
After Googling for a while, below is what I've researched about methods
A Method is a block of statements, which serves for code reusability
& it also supports overloading with different SIGNATURE....for ex:
drawShape(2pts), drawShape(3pts) etc...
An Anonymous method is one with block of statements, but no
name....(as its premature to ask, in wt situation we come across
anonymous method...any articles, samples ...)
Named method: Here's a link but at the end i didn't get what Named Method actually is...
Can anyone explain what a "Named" method is, and where do we use anonymous method?
A named method is a method you can call by its name (e.g. it is a function that has a name). For example, you have defined a function to add two numbers:
int f(int x, int y)
{
return x+y;
}
You would call this method by its name like so: f(1, 2);.
Anonymous method is a method that is passed as an argument to a function without the need for its name. These methods can be constructed at runtime or evaluated from a lambda expression at compile time.
These methods are often used in LINQ queries, for example:
int maxSmallerThan10 = array.Where(x => x < 10).Max();
The expression x => x < 10 is called a lambda expression and its result is an anonymous function that will be run by the method Where.
If you are a beginner, I would suggest you first read about more basic stuff. Check out the following links:
http://www.completecsharptutorial.com/
http://www.csharp-station.com/tutorial.aspx
http://www.homeandlearn.co.uk/csharp/csharp.html
Let's start from a simple method.
void MyMethod()
{
Console.WriteLine("Inside MyMethod"); //Write to output
}
The above method is a named-method which just writes Inside MyMethod to the output window.
Anonymous methods are some methods used in some special scenarios (when using delegates) where the method definition is usually smaller where you don't specify the name of the method.
For example, (delegate) => { Console.WriteLine("Inside Mymethod");}
Just start writing some simple programs and in the due course, when you use delegates or some advanced concepts, you will yourself learn. :)
Explanation by Analogy
Normally when we tell stories we refer to people by name:
"Freddie"
"Who's Freddie?"
"You know, Freddie, Freddie from Sales - the male guy with the red hair, who burned the building down...?"
In reality nobody cares who the person is, department he works etc. it's not like we'll refer to him every again. We want to be able to say: "Some guy burned down our building". All the other stuff (hair color, name etc.) is irrelevant and/or can be inferred.
What does this have to do with c#?
Typically in c# you would have to define a method if you want to use it: you must tell the compiler (typically):
what it is called,
and what goes into it (parameters + their types),
as well as what should come out (return type),
and whether it is something you can do in the privacy of your home or whether you can do it in public. (scope)
When you do that with methods, you are basically using named methods. But writing them out: that's a lot of effort. Especially if all of that can be inferred and you're never going to use it again.
That's basically where anonymous methods come in. It's like a disposable method - something quick and dirty - it reduces the amount you have to type in. That's basically the purpose of them.
Anonymous methods or anonymous functions, what seems to be the same, basically are delegates. As the link you point out: http://msdn.microsoft.com/en-us/library/bb882516.aspx describes, anonymous methods provide a simplified way to pass method to be executed by another method. Like a callback.
Another way to see it, is think about lambda expressions.
A named by the contrast is any common method.
From MSDN:
A delegate can be associated with a named method. When you instantiate a delegate by using a named method, the method is passed as a parameter. This is called using a named method. Delegates constructed with a named method can encapsulate either a static method or an instance method. Named methods are the only way to instantiate a delegate in earlier versions of C#. However, in a situation where creating a new method is unwanted overhead, C# enables you to instantiate a delegate and immediately specify a code block that the delegate will process when it is called. The block can contain either a lambda expression or an anonymous method.
and
In versions of C# before 2.0, the only way to declare a delegate was to use named methods. C# 2.0 introduced anonymous methods and in C# 3.0 and later, lambda expressions supersede anonymous methods as the preferred way to write inline code. However, the information about anonymous methods in this topic also applies to lambda expressions. There is one case in which an anonymous method provides functionality not found in lambda expressions. Anonymous methods enable you to omit the parameter list. This means that an anonymous method can be converted to delegates with a variety of signatures. This is not possible with lambda expressions. For more information specifically about lambda expressions, see Lambda Expressions (C# Programming Guide). Creating anonymous methods is essentially a way to pass a code block as a delegate parameter. By using anonymous methods, you reduce the coding overhead in instantiating delegates because you do not have to create a separate method.
So in answer to your question about when to use anonymous methods, then MSDN says: in a situation where creating a new method is unwanted overhead.
In my experience it's more down to a question of code reuse and readability.
Links:
http://msdn.microsoft.com/en-us/library/98dc08ac.aspx
http://msdn.microsoft.com/en-us/library/0yw3tz5k.aspx
Hope that helps

more advantages or disadvantages to delegate members over classic functions?

class my_class
{
public int add_1(int a, int b) {return a + b;}
public func<int, int, int> add_2 = (a, b) => {return a + b;}
}
add_1 is a function whereas add_2 is a delegate. However in this context delegates can forfill a similar role.
Due to precedent and the design of the language the default choice for C# methods should be functions.
However both approaches have pros and cons so I've produced a list. Are there any more advanteges or disadvantages to either approach?
Advantages to conventional methods.
more conventional
outside users of the function see named parameters - for the add_2 syntax arg_n and a type is generally not enough information.
works better with intellisense - ty Minitech
works with reflection - ty Minitech
works with inheritance - ty Eric Lippert
has a "this" - ty CodeInChaos
lower overheads, speed and memory - ty Minitech and CodeInChaos
don't need to think about public\private in respect to both changing and using the function. - ty CodeInChaos
less dynamic, less is permitted that is not known at compile time - ty CodeInChaos
Advantages to "field of delegate type" methods.
more consistant, not member functions and data members, it's just all just data members.
can outwardly look and behave like a variable.
storing it in a container works well.
multiple classes could use the same function as if it were each ones member function, this would be very generic, concise and have good code reuse.
straightforward to use anywhere, for example as a local function.
presumably works well when passed around with garbage collection.
more dynamic, less must be known at compile time, for example there could be functions that configure the behaviour of objects at run time.
as if encapsulating it's code, can be combined and reworked, msdn.microsoft.com/en-us/library/ms173175%28v=vs.80%29.aspx
outside users of the function see unnamed parameters - sometimes this is helpfull although it would be nice to be able to name them.
can be more compact, in this simple example for example the return could be removed, if there were one parameter the brackets could also be removed.
roll you'r own behaviours like inheritance - ty Eric Lippert
other considerations such as functional, modular, distributed, (code writing, testing or reasoning about code) etc...
Please don't vote to close, thats happened already and it got reopened. It's a valid question even if either you don't think the delegates approach has much practical use given how it conflicts with established coding style or you don't like the advanteges of delegates.
First off, the "high order bit" for me with regards to this design decision would be that I would never do this sort of thing with a public field/method. At the very least I would use a property, and probably not even that.
For private fields, I use this pattern fairly frequently, usually like this:
class C
{
private Func<int, int> ActualFunction = (int y)=>{ ... };
private Func<int, int> Function = ActualFunction.Memoize();
and now I can very easily test the performance characteristics of different memoization strategies without having to change the text of ActualFunction at all.
Another advantage of the "methods are fields of delegate type" strategy is that you can implement code sharing techniques that are different than the ones we've "baked in" to the language. A protected field of delegate type is essentially a virtual method, but more flexible. Derived classes can replace it with whatever they want, and you have emulated a regular virtual method. But you could build custom inheritence mechanisms; if you really like prototype inheritance, for example, you could have a convention that if the field is null, then a method on some prototypical instance is called instead, and so on.
A major disadvantage of the methods-are-fields-of-delegate-type approach is that of course, overloading no longer works. Fields must be unique in name; methods merely must be unique in signature. Also, you don't get generic fields the way that we get generic methods, so method type inference stops working.
The second one, in my opinion, offers absolutely no advantage over the first one. It's much less readable, is probably less efficient (given that Invoke has to be implied) and isn't more concise at all. What's more, if you ever use reflection it won't show up as being a method so if you do that to replace your methods in every class, you might break something that seems like it should work. In Visual Studio, the IntelliSense won't include a description of the method since you can't put XML comments on delegates (at least, not in the same way you would put them on normal methods) and you don't know what they point to anyway, unless it's readonly (but what if the constructor changed it?) and it will show up as a field, not a method, which is confusing.
The only time you should really use lambdas is in methods where closures are required, or when it's offers a significant convenience advantage. Otherwise, you're just decreasing readability (basically the readability of my first paragraph versus the current one) and breaking compatibility with previous versions of C#.
Why you should avoid delegates as methods by default, and what are alternatives:
Learning curve
Using delegates this way will surprise a lot of people. Not everyone can wrap their head around delegates, or why you'd want to swap out functions. There seems to be a learning curve. Once you get past it, delegates seem simple.
Perf and reliability
There's a performance loss to invoking delegates in this manner. This is another reason I would default to traditional method declaration unless it enabled something special in my pattern.
There's also an execution safety issue. Public fields are nullable. If you're passed an instance of a class with a public field you'll have to check that it isn't null before using it. This hurts perf and is kind of lame.
You can work around this by changing all public fields to properties (which is a rule in all .Net coding standards anyhow). Then in the setter throw an ArgumentNullException if someone tries to assign null.
Program design
Even if you can deal with all of this, allowing methods to be mutable at all goes against a lot of the design for static OO and functional programming languages.
In static OO types are always static, and dynamic behavior is enabled through polymorphism. You can know the exact behavior of a type based on its run time type. This is very helpful in debugging an existing program. Allowing your types to be modified at run time harms this.
In both static OO and function programming paradigms, limiting and isolating side-effects is quite helpful, and using fully immutable structures is one of the primary ways to do this. The only point of exposing methods as delegates is to create mutable structures, which has the exact opposite effect.
Alternatives
If you really wanted to go so far as to always use delegates to replace methods, you should be using a language like IronPython or something else built on top of the DLR. Those languages will be tooled and tuned for the paradigm you're trying to implement. Users and maintainers of your code won't be surprised.
That being said, there are uses that justify using delegates as a substitute for methods. You shouldn't consider this option unless you have a compelling reason to do so that overrides these performance, confusion, reliability, and design issues. You should only do so if you're getting something in return.
Uses
For private members, Eric Lippert's answer describes a good use: (Memoization).
You can use it to implement a Strategy Pattern in a function-based manner rather than requiring a class hierarchy. Again, I'd use private members for this...
...Example code:
public class Context
{
private Func<int, int, int> executeStrategy;
public Context(Func<int, int, int> executeStrategy) {
this.executeStrategy = executeStrategy;
}
public int ExecuteStrategy(int a, int b) {
return executeStrategy(a, b);
}
}
I have found a particular case where I think public delegate properties are warrented: To implement a Template Method Pattern with instances instead of derived classes...
...This is particularly useful in automated integration tests where you have a lot of setup/tear down. In such cases it often makes sense to keep state in a class designed to encapsulate the pattern rather than rely on the unit test fixture. This way you can easily support sharing the skeleton of the test suite between fixtures, without relying on (sometimes shoddy) test fixture inheritance. It also might be more amenable to parallelization, depending on the implementation of your tests.
var test = new MyFancyUITest
{
// I usually name these things in a more test specific manner...
Setup = () => { /* ... */ },
TearDown = () => { /* ... */ },
};
test.Execute();
Intellisense Support
outside users of the function see unnamed parameters - sometimes this is helpfull although it would be nice to be able to name them.
Use a named delegate - I believe this will get you at least some Intellisense for the parameters (probably just the names, less likely XML docs - please correct me if I'm wrong):
public class MyClass
{
public delegate int DoSomethingImpl(int foo, int bizBar);
public DoSomethingImpl DoSomething = (x, y) => { return x + y; }
}
I'd avoid delegate properties/fields as method replacements for public methods. For private methods it's a tool, but not one I use very often.
instance delegate fields have a per instance memory cost. Probably a premature optimization for most classes, but still something to keep in mind.
Your code uses a public mutable field, which can be changed at any time. That hurts encapsulation.
If you use the field initializer syntax, you can't access this. So field initializer syntax is mainly useful for static methods.
Makes static analysis much harder, since the implementation of that method isn't known at compile-time.
There are some cases where delegate properties/fields might be useful:
Handlers of some sort. Especially if multi-casting (and thus the event subscription pattern) doesn't make much sense
Assigning something that can't be easily described by a simple method body. Such as a memoized function.
The delegate is runtime generated or at least its value is only decided at runtime
Using a closure over local variables is an alternative to using a method and private fields. I strongly dislike classes with lots of fields, especially if some of these fields are only used by two methods or less. In these situations, using a delegate in a field can be preferable to conventional methods
class MyClassConventional {
int? someValue; // When Mark() is called, remember the value so that we can do something with it in Process(). Not used in any other method.
int X;
void Mark() {
someValue = X;
}
void Process() {
// Do something with someValue.Value
}
}
class MyClassClosure {
int X;
Action Process = null;
void Mark() {
int someValue = X;
Process = () => { // Do something with someValue };
}
}
This question presents a false dichotomy - between functions, and a delegate with an equivalent signature. The main difference is that one of the two you should only use if there are no other choices. Use this in your day to day work, and it will be thrown out of any code review.
The benefits that have been mentioned are far outweighed by the fact that there is almost never a reason to write code that is so obscure; especially when this code makes it look like you don't know how to program C#.
I urge anyone reading this to ignore any of the benefits which have been stated, since they are all overwhelmed by the fact that this is the kind of code that demonstrates that you do not know how to program in C#.
The only exception to that rule is if you have a need for one of the benefits, and that need can't be satisfied in any other way. In that case, you'll need to write more comment than code to explain why you have a good reason to do it. Be prepared to answer as clearly as Eric Lippert did. You'd better be able to explain as well as Eric does that you can't accomplish your requirements and write understandable code at the same time.

use Func<> (or Action<>) or create own delegate?

Which one is better in, say, parameter type in a method (not related to LINQ).
Apparently Func is better since it's simpler, more descriptive, and if everyone is using this everything will become compatible (good).
However I notice Microsoft uses its own delegate at some libraries, for example event handlers. So, what are the advantages and drawbacks of either of them? when should I use it?
Edits:
Apparently Func<> was only available in 3.5, so this can possible be the main reason that I saw non-Func delegates. Any other reason to not use Func? (example: this is from .NET4)
The same question also applies for Action<>
Func<> is useful when it's very clear what they're used for, and the number of inputs is small.
When the number of inputs is larger, or there could be some ambiguity over the intent - then using a delegate with named arguments makes things clearer.
They are for all purposes the same, except when the method has an Expression parameter. Those need to be defined as a 'lambda' and not delegate. This would be very problematic when dealing with IQueryable and getting the IEnumerable invoked/resolved instead (eg LINQ2SQL).
Func<> and Action<> are preferable if they are actually appropriate in your case.
Runtime creates instances of every type used in your program, and if you use Func once it means that the instance of type was created. In case of custom delegate things go in different way and new types will be created even though they are essentially similar to existing.
However sometimes custom delegates make code clearer.
However I notice Microsoft uses its own delegate at some libraries, for example event handlers. So, what are the advantages and drawbacks of either of them? when should I use it?
Some of this is historic: APIs defined before C#3/.NET3 when Action<> and Func<> were added. For events EventHandler<T> is a better choice for events because it enforces the right convention.
You can always create a class which holds the n number of input as class properties and pass the object of the class a single input in the func<> delegate

What is the practical use of "dynamic" variable in C# 4.0?

What is their use if when you call the method, it might not exist?
Does that mean that you would be able to dynamically create a method on a dynamic object?
What are the practical use of this?
You won't really be able to dynamically create the method - but you can get an implementation of IDynamicMetaObject (often by extending DynamicObject) to respond as if the method existed.
Uses:
Programming against COM objects with a weak API (e.g. office)
Calling into dynamic languages such as Ruby/Python
Potentially making "explorable" objects - imagine an XPath-like query but via a method/property calls e.g. document.RootElement.Person[5].Name["Attribute"]
No doubt many more we have yet to think of :)
First of all, you can't use it now. It's part of C#4, which will be released sometime in the future.
Basically, it's for an object, whose properties won't be known until runtime. Perhaps it comes from a COM object. Perhaps it's a "define on the fly object" as you describe (although I don't think there's a facility to create those yet or planned).
It's rather like a System.Object, except that you are allowed to call methods that the compiler doesn't know about, and that the runtime figures out how to call.
The two biggies I can think of are duck typing and the ability to use C# as a scripting language in applications, similar to javascript and Python. That last one makes me tear up a little.
Think of it as a simplified form of Reflection. Instead of this:
object value = GetSomeObject();
Method method = value.GetType().GetMethod("DoSomething");
method.Invoke(value, new object[] { 1, 2, 3 });
You get this:
IDynamicObject value = GetSomeObject();
value.DoSomething(1, 2, 3);
I see several dynamic ORM frameworks being written. Or heck write one yourself.
I agree with Jon Skeet, you might see some interesting ways of exploring objects.
Maybe with selectors like jQuery.
Calling COM and calling Dynamic Languages.
I'm looking forward to seeing if there is a way to do a Ruby-like missing_method.

Categories

Resources