How to disable predeployment and postdeployment scripts in DacServices.Deploy() - c#

We have some automated dacpac deployment code which correctly handles both a CreateNewDatabase and straightforward Update database scenarios in C# using Microsoft.SqlServer.Dac
Now in the CreateNewDatabase case we want to be able to run the DacServices.Deploy() with both the Pre and Post Deployment scripts disabled. I.e. they should not be executed in this scenario.
I have tried to find a suitable place in the DacDeployOptions and DacServices objects but cannot find anything that will do this.Ideally
Question 1: I would like something like DacDeployOptions.IgnorePreDeploymentScript = true Is there any means by which I could achieve this at runtime?
As an alternative, some time ago I remember seeing example code which showed how to traverse a dacpac and create a new dacpac in run time. I think this approach would allow me to simply create a new dacpac which I could pass to the Deploy and which would exclude the Pre and Post Deployment scripts. I don't like this solution but it would allow me to achieve what I need.
Question 2: Can anyone point me to some examples for this please?
My code:
var dacService = new DacServices(ConstDefaultConnectionString);
using (var dacPackage = DacPackage.Load(dacPacFilePath))
{
var deployOptions = new DacDeployOptions
{
CreateNewDatabase = true,
IncludeTransactionalScripts = false
};
dacService.Deploy(dacPackage, TestDatabaseName, true, deployOptions);
}
The question is related to: Create LocalDB for testing from Visual Studio SQL project

There are a number of approaches you can take for this, this is a bit of a brain dump (hey the clocks went back last night and I'm not even sure if the current time):
1) create an empty project that references your main project using a same database reference - when you deploy without the scripts deploy the empty one using IncludeCompositeObjects - pre/post deploy scripts are only run from the dacpac you deploy not from any referenced dacpacs but obviously the code and scheme are deployed. This describes it:
https://the.agilesql.club/blog/Ed-Elliott/2016-03-03/Post-Deploy-Scripts-In-Composite-Dacpac-not-deploying
2) use SQLCMD variables to wrap the data setups and pass in the value to the deploy.
3) make your scripts check for whether they should setup data like only insert if the table rowcount is zero
4) for reference data use merge scripts - I'm not clear if the point of this is for reference data or setting up test data
5) Use .net packaging api to remove the pre/post deploy scripts from the dacpac, this shows you how to write the scripts so you should be able to do a GetPart rather than WritePart:
https://github.com/GoEddie/Dir2Dac/blob/master/src/Dir2Dac/DacCreator.cs
On the whole I would guess that there is probably a simpler solution- if this is for testing then maybe make the data setup part of the test setup? If you are unit testing tSQLt helps you avoid all this by using FakeTable.
Hope it helps :)
Ed

Two things to try:
First, doing this type of thing is quite easy if you are using MSBuild since you can tailor a particular Configuration to include one or more pieces of the Project. In your .sqlproj file there is an <ItemGroup> section that should look similar to the following:
<ItemGroup>
<PreDeploy Include="Script.PreDeployment1.sql" />
<PostDeploy Include="Script.PostDeployment1.sql" />
</ItemGroup>
You can simply add a "Condition" that will determine if that ItemGroup is used or not. You can see these "Condition" attributes throughout the .sqlproj file (usually). So the result should look similar to:
<ItemGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<PreDeploy Include="Script.PreDeployment1.sql" />
<PostDeploy Include="Script.PostDeployment1.sql" />
</ItemGroup>
Then you just flip between "Release" or "Debug" in the "Active Configuration" drop-down and the pre and post deploy scripts will be included or excluded accordingly.
The other thought was to somehow reset the pre and post deployment scripts. Since you are loading the DacPac into dacPackage, you will have access to the PreDeploymentScript and PostDeploymentScript properties. I am not able to test, but it might be possible to "erase" what is there (assuming that the streams already point to the stored scripts).

DACPACs are ZIP files. Use the functionality of the System.IO.Packaging namespace to remove pre- and post-deployment scripts from an existing package.
using System.IO.Packaging;
// [...]
using (var dacPac = Package.Open(dacPacFile))
{
var preDeploy = new Uri("/predeploy.sql", UriKind.Relative);
if (dacPac.PartExists(preDeploy))
{
dacPac.DeletePart(preDeploy);
}
var postDeploy = new Uri("/postdeploy.sql", UriKind.Relative);
if (dacPac.PartExists(postDeploy))
{
dacPac.DeletePart(postDeploy);
}
dacPac.Close();
}
The file is simply overwritten after Close, so consider copying it away first, in case you want the original unchanged.
(this is partly covered by the internet resource linked in item 5) in the accepted answer; however the code shown above is all you need)

Related

Check if a <PackageReference/> tag is added to .csproj file

I have a .csproj file as follows:
If a <PackageReference/> tag is added to this csproj file, the build should fail. How do I do that? Is there any setting or a test I can add?
For example,
On my phone at the moment, however you can do the following or rather follow this (unable to test for you):
In Pre-Build Events (Right click on your project, go to Properties) of the project, add the following command:
CD $(SolutionDir)
CALL CheckProj.ps1
Then on the root of your solution, create a bat file called "CheckProj.ps1"
The contents of your script should be along the lines of:
$xml = new-object System.Xml.XmlDocument;
$xml.LoadXml( (get-content 'MyProject.csproj') );
$node = $xml.SelectNodes('//Project/ItemGroup/PackageReference');
exit $node.Count;
Then on the rebuild of the project, if exit isn't equal to 0, it'll fail the build as 0 is expected to simulate success in a build event, anything higher will end up being marked as an error and should fail the whole build process.
I'm not entirely sure why you'd want to do this, but you could do this in a test fairly easily.
Using XUnit:
[Fact]
public void NoPackageReferences()
{
string myCsproj = File.ReadAllText("path/to/my.csproj");
Assert.DoesNotContain("PackageReference", myCsproj);
}
Now, if you wanted to be more thorough, you could parse the XML... But that's probably overkill for this.

Running FxCop analyzers from command line

I'm trying to use the new FxCop analyzers, but they're only available as NuGet packages or as VSIX extensions. I'd like to be able to run them directly, either from inside a C# program or from the command line. Anyone have any advice? Even general info on where you can find the executables for NuGet or VSIX would help.
(I know about fxcopcmd.exe, but that's the legacy version, and it works only on built .exes or .dlls. If at all possible, I need something that works before building.)
Answering my own question in case anyone else has to deal with this. I found a solution, but fair warning, it's not pretty.
I took an example C# solution from Github, loaded it up in Visual Studio, and used NuGet to install the FxCop analyzers. This installed the analyzers, and changed the solution's .csproj files to reference them. In my case, I found a copy of the analyzers in C:\users\myname.nuget\packages.
I compared the modified .csproj files to the originals, to see what changes had been made during installation. I recommend anyone following along make this comparison themselves, but in my case, the changes were:
Five Import elements at the top referencing various .props files.
An empty NuGetPackageImportStamp element.
Two new ItemGroups near the bottom, the first containing a single element named "None", the second containing various Analyzer elements referencing .dlls.
A new Target to ensure that the .props files actually existed.
I wrote a C# program that took an arbitrary solution, found all the .csproj files inside, and manually added those new XML elements to them. I skipped the one-element ItemGroup and the Target without any problems.
Ideally you would then (from inside the same C# program) call msbuild on the .sln file, save every output line matching the regex "): warning CA\d\d\d\d: " (i.e. the warnings that FxCop generated), and restore the original .csproj files. I did that all manually. Here's the code for the XML manipulation, though:
static void addAnalyzersToCsProj(string file)
{
string[] packages = new string[]
{
#"C:\users\myname\.nuget\packages\microsoft.codeanalysis.fxcopanalyzers\3.0.0\build\Microsoft.CodeAnalysis.FxCopAnalyzers.props",
#"C:\users\myname\.nuget\packages\microsoft.codeanalysis.versioncheckanalyzer\3.0.0\build\Microsoft.CodeAnalysis.VersionCheckAnalyzer.props",
#"C:\users\myname\.nuget\packages\microsoft.codequality.analyzers\3.0.0\build\Microsoft.CodeQuality.Analyzers.props",
#"C:\users\myname\.nuget\packages\microsoft.netcore.analyzers\3.0.0\build\Microsoft.NetCore.Analyzers.props",
#"C:\users\myname\.nuget\packages\microsoft.netframework.analyzers\3.0.0\build\Microsoft.NetFramework.Analyzers.props",
};
var root = XElement.Load(file);
var ns = "";
for (var i = 0; i < 5; i++)
{
XElement packageImport = new XElement(ns+"Import");
packageImport.SetAttributeValue("Project", packages[i]);
string condition = "Exists('" + packages[i] + "')";
packageImport.SetAttributeValue("Condition", condition);
root.AddFirst(packageImport);
}
var propertyGroup = root.Descendants(ns + "PropertyGroup").First();
var stamp = new XElement(ns+"NuGetPackageImportStamp", "");
propertyGroup.Elements().Last().AddAfterSelf(stamp);
var newGroup = new XElement(ns+"ItemGroup");
// do we need to include the "None Include="packages.config"" thing?
string[] libraries = new string[]
{
#"C:\users\myname\.nuget\packages\microsoft.codeanalysis.versioncheckanalyzer\3.0.0\analyzers\dotnet\cs\Microsoft.CodeAnalysis.VersionCheckAnalyzer.resources.dll",
#"C:\users\myname\.nuget\packages\microsoft.codeanalysis.versioncheckanalyzer\3.0.0\analyzers\dotnet\Microsoft.CodeAnalysis.VersionCheckAnalyzer.dll",
#"C:\users\myname\.nuget\packages\microsoft.codequality.analyzers\3.0.0\analyzers\dotnet\cs\Humanizer.dll",
#"C:\users\myname\.nuget\packages\microsoft.codequality.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.CodeQuality.Analyzers.dll",
#"C:\users\myname\.nuget\packages\microsoft.codequality.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.CodeQuality.CSharp.Analyzers.dll",
#"C:\users\myname\.nuget\packages\microsoft.netcore.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.NetCore.Analyzers.dll",
#"C:\users\myname\.nuget\packages\microsoft.netcore.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.NetCore.CSharp.Analyzers.dll",
#"C:\users\myname\.nuget\packages\microsoft.netframework.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.NetFramework.Analyzers.dll",
#"C:\users\myname\.nuget\packages\microsoft.netframework.analyzers\3.0.0\analyzers\dotnet\cs\Microsoft.NetFramework.CSharp.Analyzers.dll",
};
foreach (string lib in libraries)
{
XElement analyzer = new XElement(ns+"Analyzer");
analyzer.SetAttributeValue("Include", lib);
newGroup.AddFirst(analyzer);
}
Console.WriteLine(root.Elements().Last().ToString());
root.Elements().Last().AddAfterSelf(newGroup);
root.Save(file, SaveOptions.None);
// and do we need to include the error checking target?
}
As far as I can tell, it works, though I have no idea what would happen if you tried to do it on a solution that already has the analyzers installed normally.
Running the FxCop analyzers through msbuild seems inefficient, but I haven't found a better way to do it. They look like they're built to only work within a compiler. I hope I'm wrong, and I would still appreciate any advice on how to run the analyzers automatically without having to build the whole project.

Figure out why Microsoft.Build.Evaluation.Project.Build() returns false

I'm trying to build C# projects using .csproj files.
For this I'm using the following code:
Microsoft.Build.Evaluation.Project project = new Microsoft.Build.EvaluationProject(projectFile);
bool success = project.Build();
But not all projects are build and for some I get false as the result of project.Build().
Any ideas how to understand what is going wrong?
Or maybe anyone can suggest an alternative way to compile projects using .csproj files?
You need to add an ILogger to the Build method as a parameter. I suggest implementing one as the MSDN article suggests. Just copy paste their code, add any missing references and you'll be fine.
Then you can call Build as follows:
Microsoft.Build.Evaluation.Project project = new Microsoft.Build.Evaluation.Project(projectFile);
BasicFileLogger logger = new BasicFileLogger();
logger.Parameters = logFilePath;
logger.Verbosity = LoggerVerbosity.Normal; //Increase it if you don't get enough data
bool success = project.Build(logger);
The example logger will write all data that you would see during a normal build to the file at logFilePath. Based on that you should be able to discern the issue.

Checking Visual Studio projects for consistency

You have a large Visual Studio Solution with dozens of project files in it. How would you verify that all the projects follow certain rules in their property settings, and enforce these rules if a new project is added. For example check that all projects have:
TargetFrameworkVersion = "v4.5"
Platform = "AnyCPU"
WarningLevel = 4
TreatWarningsAsErrors = true
OutputPath = $(SolutionDir)bin
SignAssembly = true
AssemblyName = $(ProjectFolderName)
I know two methods myself that I will add in an answer below, but I was wondering how people go about doing this type of project test. I'm especially interested to learn about available solutions such as libraries or build tasks for this rather than having to have to invent something new or write it from scratch.
*.sln files are plain text and easily parsable, and *.*proj files are xml.
You can add a dummy project with a prebuild step that parses the sln to retrieve all of the project files, validate their settings, print a report, and fail the build if necessary.
Also, you should check this post to ensure the prebuild step is always executed. Essentially, you specify a blank output in the custom build step to force a rebuild.
The following list identifies the key file types that are automatically added to VSS when a solution is added to source control by using the Visual Studio .NET integrated development environment (IDE):
Solution files (.sln). The key items maintained within these files include a list of constituent projects, dependency information, build configuration details, and source control provider details.
Project files (.csproj or *.vbproj). The key items maintained within these files include assembly build settings, referenced assemblies (by name and path), and a file inventory.
Application configuration files. These are configuration files based on Extensible Markup Language (XML) used to control various aspects of your project's run time behavior.
Use a Single Solution Model Whenever Possible an
Also see : https://msdn.microsoft.com/en-us/library/ee817677.aspx,
https://msdn.microsoft.com/en-us/library/ee817675.aspx
AND For CONTINUOUS INTEGRATION :
there are many tools available like MSBuild, Jenkins, Apache's Continuum, Cruise Control (CC), and Hudson(plugin can be extended to c#)
This is what I have myself:
One way to do this is to create an MSBuild target with error conditions:
<Error Condition="'$(TreatWarningsAsErrors)'!='true'" Text="Invalid project setting" />
I like this approach because it is integrated with MSBuild and gives you early errors, however, you have to modify every project to import it in them or get all your team members to use a special command prompt with environment variables that will inject custom pre-build steps into your projects during the build, which is a pain.
The second approach I know is to use some library like VSUnitTest which provides an API to project properties that you can test against. VSUnitTest is currently not open source and unlisted from the NuGet service.
You could write some code to open the the solution as a text file to identify all of the csproj files referenced, in turn opening each of these as xml files, and then writing unit tests to ensure specific nodes of the project match what you expect.
It's a quick and dirty solution, but works for CI and gives you the flexibility to ignore nodes you don't care about. It actually sounds kinda useful. I have a solution with 35 projects I'd like to scan too.
Let's try something completely different: you could ensure that they are consistent by construction by generating them from a template or by using a build generation tool such as CMake. This might be simpler than attempting to make them consistent after the fact.
In our work we use a powershell script that checks project settings and modified them if they are incorrect. For example, we remove Debug configuration this way, disable C++ optimization and SSE2 support. We run it manually, but definitely it is possible to run it automatically, e.g. as pre\post build step.
Below the example:
`function Prepare-Solution {
param (
[string]$SolutionFolder
)
$files = gci -Recurse -Path $SolutionFolder -file *.vcxproj | select - ExpandProperty fullname
$files | %{
$file = $_
[xml]$xml = get-content $file
#Deleting Debug configurations...
$xml.Project.ItemGroup.ProjectConfiguration | ?{$_.Configuration -eq "Debug"} | %{$_.ParentNode.RemoveChild($_)} | Out-Null
$xml.SelectNodes("//*[contains(#Condition,'Debug')]") |%{$_.ParentNode.RemoveChild($_)} | Out-Null
if($xml.Project.ItemDefinitionGroup.ClCompile) {
$xml.Project.ItemDefinitionGroup.ClCompile | %{
#Disable SSE2
if (-not($_.EnableEnhancedInstructionSet)){
$_.AppendChild($xml.CreateElement("EnableEnhancedInstructionSet", $xml.DocumentElement.NamespaceURI)) | Out-Null
}
if($_.ParentNode.Condition.Contains("Win32")){
$_.EnableEnhancedInstructionSet = "StreamingSIMDExtensions"
}
elseif($_.ParentNode.Condition.Contains("x64")) {
$_.EnableEnhancedInstructionSet = "NotSet"
} else {
Write-Host "Neither x86 nor x64 config. Very strange!!"
}
#Disable Optimization
if (-not($_.Optimization)){
$_.AppendChild($xml.CreateElement("Optimization", $xml.DocumentElement.NamespaceURI)) | Out-Null
}
$_.Optimization = "Disabled"
}
}
$xml.Save($file);
} }`
A file is an assembly if and only if it is managed, and contains an assembly entry in its metadata. For more information on assemblies and metadata, see the topic Assembly Manifest.
How to manually determine if a file is an assembly
Start the Ildasm.exe (IL Disassembler).
Load the file you wish to test.
If ILDASM reports that the file is not a portable executable (PE) file, then it is not an assembly. For more information, see the topic How to: View Assembly Contents.
How to programmatically determine if a file is an assembly
Call the GetAssemblyName method, passing the full file path and name of the file you are testing.
If a BadImageFormatException exception is thrown, the file is not an assembly.
This example tests a DLL to see if it is an assembly.
class TestAssembly
{
static void Main()
{
try
{
System.Reflection.AssemblyName testAssembly = System.Reflection.AssemblyName.GetAssemblyName(#"C:\Windows\Microsoft.NET\Framework\v3.5\System.Net.dll");
System.Console.WriteLine("Yes, the file is an assembly.");
}
catch (System.IO.FileNotFoundException)
{
System.Console.WriteLine("The file cannot be found.");
}
catch (System.BadImageFormatException)
{
System.Console.WriteLine("The file is not an assembly.");
}
catch (System.IO.FileLoadException)
{
System.Console.WriteLine("The assembly has already been loaded.");
}
}
}
// Output (with .NET Framework 3.5 installed):
// Yes, the file is an assembly.
Framework is the highest installed version, SP is the service pack for that version.
RegistryKey installed_versions = Registry.LocalMachine.OpenSubKey(#"SOFTWARE\Microsoft\NET Framework Setup\NDP");
string[] version_names = installed_versions.GetSubKeyNames();
//version names start with 'v', eg, 'v3.5' which needs to be trimmed off before conversion
double Framework = Convert.ToDouble(version_names[version_names.Length - 1].Remove(0, 1), CultureInfo.InvariantCulture);
int SP = Convert.ToInt32(installed_versions.OpenSubKey(version_names[version_names.Length - 1]).GetValue("SP", 0));
For .Net 4.5
using System;
using Microsoft.Win32;
...
private static void Get45or451FromRegistry()
{
using (RegistryKey ndpKey = RegistryKey.OpenBaseKey(RegistryHive.LocalMachine, RegistryView.Registry32).OpenSubKey("SOFTWARE\\Microsoft\\NET Framework Setup\\NDP\\v4\\Full\\")) {
int releaseKey = Convert.ToInt32(ndpKey.GetValue("Release"));
if (true) {
Console.WriteLine("Version: " + CheckFor45DotVersion(releaseKey));
}
}
}
...
// Checking the version using >= will enable forward compatibility,
// however you should always compile your code on newer versions of
// the framework to ensure your app works the same.
private static string CheckFor45DotVersion(int releaseKey)
{
if (releaseKey >= 393273) {
return "4.6 RC or later";
}
if ((releaseKey >= 379893)) {
return "4.5.2 or later";
}
if ((releaseKey >= 378675)) {
return "4.5.1 or later";
}
if ((releaseKey >= 378389)) {
return "4.5 or later";
}
// This line should never execute. A non-null release key should mean
// that 4.5 or later is installed.
return "No 4.5 or later version detected";
}
For similar purposes we use custom MSBuild fragments with common properties that we want to share between the projects, like this (build.common.props file):
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<TargetFrameworkVersion>v2.0</TargetFrameworkVersion>
<PlatformToolset>v90</PlatformToolset>
<OutputPath>$(SolutionDir)..\bin\$(PlatformPath)\$(Configuration)\</OutputPath>
<!-- whatever you need here -->
</PropertyGroup>
</Project>
And then we just include this fragment to real VS projects we want to apply these properties to:
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="12.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CommonProps>$(SolutionDir)..\Build\build.common.props</CommonProps>
</PropertyGroup>
<Import Project="$(CommonProps)" />
<!-- the rest of the project -->
</Project>
We handle a lot of things using this approach:
common properties, as you mentioned
static analysis (FxCop, StyleCop)
digital sign of assemblies
etc.
The only disadvantage that you need to include these MSBuild fragments into each project file, but once you do that, you have all the benefits of modular build system that is easy to manage and update.
You could go the search & replace Regex way with a handwritten C#, Script, powershell or similar. But it has the following problems:
Difficult to read (Read your pretty regex in three or more months)
Difficult to enhance(New regex for new search/replace/check feature)
Easy to break (a new release/format of ms build project or a not forecast tag may not work)
Harder to test (you must check that no unintended match occurs)
Difficult to maintain (because of the above)
and the following advantages:
Not doing any extra validation which (may) let it work on any kind of project (mono or visual).
Doesn't care about \r :)
The best could be to use the Microsoft.Build.Evaluation
and build a C# tool which does all your testing/checking/fix and so on.
I've done a command line tool that use a sourcefile list (used by Mono) and update sources of csproj and another which dumps on console the csproj content. It was easy to do, pretty straightforward and easy to test also.
However, it may fail (as I've experienced it) on projects modified by "non" Ms tool (like Mono Studio) or because of missing \r....
Anyway, you can always handle it with an exception catch and a good message.
Here a sample by using Microsoft.Build.dll (don't use Microsof.Build.Engine as it is obsolete):
using System;
using Microsoft.Build.Evaluation;
internal class Program
{
private static void Main(string[] args)
{
var project = new Project("PathToYourProject.csproj");
Console.WriteLine(project.GetProperty("TargetFrameworkVersion", true, string.Empty));
Console.WriteLine(project.GetProperty("Platform", true, string.Empty));
Console.WriteLine(project.GetProperty("WarningLevel", true, string.Empty));
Console.WriteLine(project.GetProperty("TreatWarningsAsErrors", true, "false"));
Console.WriteLine(project.GetProperty("OutputPath", false, string.Empty));
Console.WriteLine(project.GetProperty("SignAssembly", true, "false"));
Console.WriteLine(project.GetProperty("AssemblyName", false, string.Empty));
Console.ReadLine();
}
}
public static class ProjectExtensions
{
public static string GetProperty(this Project project, string propertyName, bool afterEvaluation, string defaultValue)
{
var property = project.GetProperty(propertyName);
if (property != null)
{
if (afterEvaluation)
return property.EvaluatedValue;
return property.UnevaluatedValue;
}
return defaultValue;
}
}
I also faced this issue and created a small solution that creates a csv file with details to identifies the inconsistences. You can look at it in this url
https://github.com/gdlmanuv/VSProjectConsistencyChecker

Adding Project reference programmatically

Basically, after read a couple links, i tried the above code:
foreach (EnvDTE.Project proj in soln.Projects)
{
if (proj.Name == "BLL")
{
VSLangProj.VSProject vsproj = (VSLangProj.VSProject)proj.Object;
vsproj.References.Add(#"C:\Teste\DAL\bin\Debug\DAL.dll");
}
}
All paths, project names, are hard-coded on purpouse, since im still testing how to achieve it.
Though it would act like if i did
Project folder -> References -> Add reference -> Pick one, manually (compile time)
but after loading the solution, BLL project didnt contain any PERMANENT reference to DAL project.
I think that you forget to save modified project , you have to invoke Save at the end

Categories

Resources