Decrypting Crypto++ RSA cipher text in C# causes exception - c#

I've written 3 functions in C++ using Crypto++ to generate key pairs, encrypt and decrypt a string. Crypto++ side:
//Decode public key
RSA::PublicKey pbKeyDecoded;
StringSource ss2(publicKey, true, new Base64Decoder);
pbKeyDecoded.BERDecode(ss2);
Integer m = Integer((const byte*)plaintext.data(), plaintext.size());
Integer crypted = pbKeyDecoded.ApplyFunction(m);
...
What I do is, generate the key, DER Encode it, and then encode it to Base64. After than, I'm ciphering a plaintext via the public key and save both the private key and the cipher as base64 encoded strings in two separate files.
Now to C#. I'm reading the base64 string, decoding them and load them via AsnParser, which seem to load just fine. Then I call Decrypt. C# side:
AsnKeyParser keyParser = new AsnKeyParser("rsa-public.der");
RSAParameters publicKey = keyParser.ParseRSAPublicKey();
CspParameters csp = new CspParameters;
csp.KeyContainerName = "RSA Test (OK to Delete)";
csp.ProviderType = PROV_RSA_FULL; // 1
csp.KeyNumber = AT_KEYEXCHANGE; // 1
RSACryptoServiceProvider rsp = new RSACryptoServiceProvider(csp);
rsp.PersistKeyInCsp = false;
rsp.ImportParameters(privateKey);
//Causes exception here..
var data = rsp.Decrypt(cipherArr, true);
...
But I'm getting exception error when I try to decrypt it with fOAEP = true: CryptographicException: Error occurred while decoding OAEP padding. If I pass fOAEP = false then I get CryptographicException: The parameter is incorrect.
Why am I getting an exception in C# when attempting to decrypt the Crypto++ cipher text?

... I'm getting exception error when I try to decrypt it: CryptographicException: Error occurred while decoding OAEP padding. That's if I pass true for the fOAEP bool, if I pass false to it I get CryptographicException: The parameter is incorrect.
You are having the same problem as Encrypt and Decrypt a message using raw RSA algorithim in Crypto++? and How to sync Crypto++ RSA with C# RSA crypto service provider? It must be our month for the "Raw RSA" schemes...
On the Crypto++ side of the equation, you are performing raw RSA. You are simply applying the forward function, which is exponentiation, and you are not formatting the message:
//Decode public key
RSA::PublicKey pbKeyDecoded;
StringSource ss2(publicKey, true, new Base64Decoder);
pbKeyDecoded.BERDecode(ss2);
Integer m = Integer((const byte*)plaintext.data(), plaintext.size());
Integer crypted = pbKeyDecoded.ApplyFunction(m);
...
On the C# side of things, you are performing RSA decryption using PKCS #1 with either PKCS #1.5 padding or OAEP padding:
RSACryptoServiceProvider rsp = new RSACryptoServiceProvider(csp);
rsp.PersistKeyInCsp = false;
rsp.ImportParameters(privateKey);
//Causes exception here..
var data = rsp.Decrypt(cipherArr, true);
Its not clear to me if the C# version of your code can perform OAEP padding because its it requires a certain version of the CLR. You may only have PKCS padding available.
I believe you have two choices. First, you can use a standard RSA encryption method in Crypto++. The Crypto++ wiki lists them at RSA Cryptography and RSA Encryption Schemes:
typedef RSAES<PKCS1v15>::Decryptor RSAES_PKCS1v15_Decryptor;
typedef RSAES<PKCS1v15>::Encryptor RSAES_PKCS1v15_Encryptor;
typedef RSAES<OAEP<SHA> >::Decryptor RSAES_OAEP_SHA_Decryptor;
typedef RSAES<OAEP<SHA> >::Encryptor RSAES_OAEP_SHA_Encryptor;
Second, you need to perform Raw RSA in C#. To perform Raw RSA in C#, you will need to get a BigInteger class and apply the inverse function manually.
I would encourage you to use RSA Encryption with OAEP padding. If OAEP is not available, then the second choice would be PKCS padding. Finally, if all you have is Raw RSA, then I would look for another encryption system because Raw RSA is so insecure.

Related

How to decrypt an OpenPGP RSA Encrypted text file in C#?

I am hoping that this question can be met with some guidance for someone who is beginning to work with encryption/decryption in C#. There are existing examples on the web regarding this, but I am truthfully struggling to put it all into practice for my given situation.
If given a text file that has been encrypted using OpenPGP with RSA, what is the best method to decrypt this in C#?
This is what I am attempting:
Using Kleopatra OpenPGP, I am generating a key pair using 2048bit RSA. This generates a private and public key.
I am then encrypting/signing a text file with a few word in it as a test.
In C#, I want to decrypt this text file.
Current code:
byte[] encryptedData = File.ReadAllBytes("C:\\PGP Encryption\\test.txt.gpg"); // The encrypted text file generated by Kleopatra.
using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
{
//Import the RSA Key information. This needs
//to include the private key information.
RSA.ImportParameters(RSAKeyInfo);
//Decrypt the passed byte array and specify OAEP padding.
decryptedData = RSA.Decrypt(DataToDecrypt, DoOAEPPadding);
}
return decryptedData;
Unfortunately, the RSA.Decrypt() call throws an exception that reads "The data to be decrypted exceeds the maximum for this modulus of 128 bytes."
I also do not believe that my private key is actually being loaded, as I'm not explicitly stating where the key is. But I don't see how the RSAParameters object is supposed to get populated otherwise.
If anyone can point me in the right direction to decrypt a file in this way, thank you in advance for your time and information.
It's looks like you need this library (see Decrypt section) https://github.com/mattosaurus/PgpCore

Error RSA encrypting in C# and decrypting in Go

I am getting an error decrypting a message in go that was encrypted in C# (using corresponding public/private keys)
My client is written in C# and my server is written in Go. I generated a private and public key via go's crypto/rsa package (using rsa.GenerateKey(random Reader, bits int)). I then store the public key file generated where the client can access it and the private key where the server can access it. I encrypt on the client with the following code (using bouncy castle):
public static string Encrypt(string plainText)
{
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);
PemReader pr = new PemReader(
new StringReader(m_publicKey)
);
RsaKeyParameters keys = (RsaKeyParameters)pr.ReadObject();
// PKCS1 OAEP paddings
OaepEncoding eng = new OaepEncoding(new RsaEngine());
eng.Init(true, keys);
int length = plainTextBytes.Length;
int blockSize = eng.GetInputBlockSize();
List<byte> cipherTextBytes = new List<byte>();
for (int chunkPosition = 0; chunkPosition < length; chunkPosition += blockSize)
{
int chunkSize = Math.Min(blockSize, length - chunkPosition);
cipherTextBytes.AddRange(eng.ProcessBlock(
plainTextBytes, chunkPosition, chunkSize
));
}
return Convert.ToBase64String(cipherTextBytes.ToArray());
}
The go server parses this string from the header and uses the private key to decrypt:
func DecryptWithPrivateKey(ciphertext []byte, priv *rsa.PrivateKey) []byte {
hash := sha512.New()
plaintext, err := rsa.DecryptOAEP(hash, rand.Reader, priv, ciphertext, nil)
if err != nil {
fmt.Fprintf(os.Stderr, err.Error())
}
return plaintext
}
The decryption function throws crypto/rsa: decryption error. If I try pasting the cipher text directly into go (rather then sending from the client), the same error occurs.
NOTE: in order to get the public key to load, I needed to change the header from:
-----BEGIN RSA PUBLIC KEY-----
...
to
-----BEGIN PUBLIC KEY-----
...
and the same for the footer. I am assuming this is a formatting issue but not sure how to go about solving.
EDIT: it seems that golang OAEP uses sha256 and bouncy castle uses SHA-1. Go's documentation specifies that the hash for encryption and decryption must be the same. This seems likely to be the issue? If it is, how can I change the hashing algorithm used by either go or C#?
Yes, you need to match the hash. In GoLang you've already set it to SHA-512 if I take a look at your code. Using SHA-256 at minimum should probably be preferred, but using SHA-1 is relatively safe as the MGF1 function doesn't rely on the collision resistance of the underlying hash. It's also the default for most runtimes, I don't know why GoLang decided against that.
Probably the best is to set SHA-512 for both runtimes, so here is the necessary constant for .NET.
Note that the underlying story is even more complex as OAEP uses a hash over a label as well as a hash within MGF1 (mask generation function 1, the only one specified). Both need to be specified in advance and generally the same hash function is used, but sometimes it is not.
The label is generally empty and most runtimes don't even allow setting it, so the hash value over the label is basically a hash-function specific constant that doesn't matter for security. The constant just manages to make things incompatible; "More flexible" isn't always a good thing.

NotImplementedException when decrypting RSA signed hash

I want to verify a private key signed SHA256 hash using the CryptographicEngine in a UWP application. The hash is created externally and is signed with a private RSA key with passphrase. For this example however, I also generate the unsigned hash. Both hashes are then compared at the end to verify that they are the same.
I have created my private and public keys using OSX command line, specified in this blog.
This gave me two .pem files. My public key has the following structure:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3fasaNKpXDf4B4ObQ76X
qOaSRaedFCAHvsW4G0PzxL/...ETC ETC
-----END PUBLIC KEY-----
Here is my C# code to decrypt the hash:
//HASH THE INPUT STRING
var inputText = "stringtohash";
// put the string in a buffer, UTF-8 encoded...
IBuffer input = CryptographicBuffer.ConvertStringToBinary(inputText,
BinaryStringEncoding.Utf8);
// hash it...
var hasher = HashAlgorithmProvider.OpenAlgorithm("SHA256");
IBuffer hashed = hasher.HashData(input);
// format it...
string ourhash = CryptographicBuffer.EncodeToBase64String(hashed);
Debug.WriteLine(ourhash);
//CONVERT EXTERNAL HASH TO BUFFER
IBuffer data = CryptographicBuffer.DecodeFromBase64String("b18fbf9bc0fc7595af646155e18b71e1aeccf01719f9f293c72217d7b95cc2106edb419078c4c5c1c7f7d106b90198a4f26beb49ff4a714db4bface1f94fff193b8126ce05fe13825144a3dde97f55399846b6fd768f1fb152f1ba71bbf5cde8c1a7e58621a493070256e2444db36c346a88e870906529cf13c072ead50b6a01b2e74c7ef8c5d423e8ea25220f524b563ae2c3345b7837f9cd1a357540b1380c86287b9a240cf67f7518f11418352b665b657c5ffb6cbcb6126ec59e360de6304392b78cf4de79b52d73b8292df6a1e643d0c0f0945aae5949b391e2915772c996f03e6d1879192b7edf0f40c01b875e768358aa47a992070f628418ddf06472");
//CONVERT PUBLIC KEY TO BUFFER
IBuffer publickey = CryptographicBuffer.DecodeFromBase64String("MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3fasaNKpXDf4B4ObQ76XqOaSRaedFCAHvsW4G0PzxL / RuAQFz80esZPyyDCps1PAbTKzQ + QblChPo7PJkbsU4HzNN4PIRGh5xum6SRmdvOowrlTUtyxdOkRJoFxmiR / VCea + PUspt26F7PLcK9ao5 + hVzMvPuqdYenqzd01f1t5hQEhFQ9qjB6Es8fpizHd / RSRfZ7n6rVKm9wYfCRLB7GJ7IHhWGuZrx9fjzsbW8eagu06qRhnUuR5oDVjXC8ZeazsRiw50xMuOzkhX9Oo081IYikwCgseJmQhT7vF4lZoyeB4qJpwTCA + glSy1w9N8ZfxyXK8QaT2RsrBrzl0ZCwIDAQAB");
// Open an asymmetric algorithm provider for the specified algorithm.
AsymmetricKeyAlgorithmProvider rsa = AsymmetricKeyAlgorithmProvider.OpenAlgorithm(AsymmetricAlgorithmNames.RsaPkcs1);
// Import Key
CryptographicKey key = rsa.ImportPublicKey(publickey, CryptographicPublicKeyBlobType.X509SubjectPublicKeyInfo);
// Decrypt the Hash using our Key
IBuffer result = CryptographicEngine.Decrypt(key, data, null);
Debug.WriteLine(result.ToString());
//Compare the two hashes
if (data == result) {
//Hash is verified!
}
Unfortunately when reaching the Decrypt method I get a NotImplementedException with error
The method or operation is not implemented
I researched online and I understand what needs to happen in theory but I don't know how to debug this further. What can I try?
Although both called PKCS#1 v1.5 padding, the padding for signature generation and encryption is not identical, see RFC 3447 for more details.
If you look at the RsaPkcs1 property you can see it is aimed at encryption:
Use the string retrieved by this property to set the asymmetric algorithm name when you call the OpenAlgorithm method. The string represents an RSA public key algorithm that uses PKCS1 to pad the plaintext. No hash algorithm is used.
As I don't see any option for "raw RSA", i.e. RSA without padding, it seems you are only able to verify your signature. However, RSA decryption expects an RSA private key. It's very likely that you get the error because of this: if you try and decrypt with a public key it will fail.
If you want to precompute the hash you can use VerifySignatureWithHashInput.
For other functionality you may have to use e.g. the C# lightweight API of Bouncy Castle. In the end you don't need platform provided cryptography to verify a signature.

Generate AES Key and Encode it to Base 64 String

I need to generate an AES key and send it to the server.
Creating the key doesn't seem to be a problem:
var aesProvider = SymmetricKeyAlgorithmProvider.OpenAlgorithm(SymmetricAlgorithmNames.AesEcbPkcs7);
var aesKey = aesProvider.CreateSymmetricKey(CryptographicBuffer.GenerateRandom(16));
However, exporting the AES key to a base64 encoded string seemes impossible;
I've tried exporting it using the Export/ExportPublic methods on the key object, but they all throw NotImplemented exception:
aesKey.ExportPublicKey(); not implemented
aesKey.ExportPublicKey(CryptographicPublicKeyBlobType.BCryptPublicKey);
aesKey.ExportPublicKey(CryptographicPublicKeyBlobType.Capi1PublicKey);
aesKey.Export();
aesKey.Export(CryptographicPrivateKeyBlobType.BCryptPrivateKey);
aesKey.Export(CryptographicPrivateKeyBlobType.Pkcs1RsaPrivateKey);
aesKey.Export(CryptographicPrivateKeyBlobType.Pkcs8RawPrivateKeyInfo);
aesKey.Export(CryptographicPrivateKeyBlobType.Capi1PrivateKey);

Converting a byte array to a X.509 certificate

I'm trying to port a piece of Java code into .NET that takes a Base64 encoded string, converts it to a byte array, and then uses it to make a X.509 certificate to get the modulus & exponent for RSA encryption.
This is the Java code I'm trying to convert:
byte[] externalPublicKey = Base64.decode("base 64 encoded string");
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
EncodedKeySpec publicKeySpec = new X509EncodedKeySpec(externalPublicKey);
Key publicKey = keyFactory.generatePublic(publicKeySpec);
RSAPublicKey pbrtk = (java.security.interfaces.RSAPublicKey) publicKey;
BigInteger modulus = pbrtk.getModulus();
BigInteger pubExp = pbrtk.getPublicExponent();
I've been trying to figure out the best way to convert this into .NET. So far, I've come up with this:
byte[] bytes = Convert.FromBase64String("base 64 encoded string");
X509Certificate2 x509 = new X509Certificate2(bytes);
RSA rsa = (RSA)x509.PrivateKey;
RSAParameters rsaParams = rsa.ExportParameters(false);
byte[] modulus = rsaParams.Modulus;
byte[] exponent = rsaParams.Exponent;
Which to me looks like it should work, but it throws a CryptographicException when I use the base 64 encoded string from the Java code to generate the X509 certificate. The exact message I receive is:
Cannot find the requested object.
Is Java's X.509 implementation just incompatible with .NET's, or am I doing something wrong in my conversion from Java to .NET?
Or is there simply no conversion from Java to .NET in this case?
It seems your base64-encoded data does not represent an X.509 certificate:
[The X509EncodedKeySpec class] represents the ASN.1 encoding of a public key
Export the whole X.509 certificate in Java, or try to find an equivalent of the X509EncodedKeySpec class in the .NET framework.
I have encountered a similar issue, and in my case it boiled down to an 'endian' problem.
The solution was simply to reverse the byte array (Array.Reverse in .NET)
I don't have the 2 IDEs in front of me to show a proof, but if you get stuck, give it a try!

Categories

Resources