I have several textboxes in my wpf application. The LostFocus-Event of each textbox starts a backgroundworker to send the data to a connected serial port.
private readonly BackgroundWorker online_mode_send_worker = new BackgroundWorker();
online_mode_send_worker.DoWork += online_mode_send_worker_DoWork;
online_mode_send_worker.RunWorkerCompleted += online_mode_send_worker_RunWorkerCompleted;
private void TextBox_LostFocus(object sender, RoutedEventArgs e)
{
online_mode_send_worker.RunWorkerAsync(data);
}
private void online_mode_send_worker_DoWork(object sender, DoWorkEventArgs e)
{
List<object> data = (List<object>)e.Argument;
Port.WriteLine(STARTCHARACTER + XMLSET + XML_TAG_START + data[0] + XML_TAG_STOP + data[1] + ENDCHARACTER);
string received = Port.ReadLine();
}
private void online_mode_send_worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//do some things after worker completed
}
At this point, everything is working fine.
But sometimes I have to send two data-points directly after each other and there I have a problem.
private void TextBox_LostFocus(object sender, RoutedEventArgs e)
{
online_mode_send_worker.RunWorkerAsync(data1);
//wait until backgroundworker has finished
online_mode_send_worker.RunWorkerAsync(data2);
}
The Backgroundworker is still running and I get an exception thrown.
Is it possible to wait after the first online_mode_send_worker.RunWorkerAsync(data) until it has finished and then start the second online_mode_send_worker.RunWorkerAsync(data)?
while(online_mode_send_worker.isBusy); is not working because the main-thread is blocking and the RunWorkerCompleted() is not thrown and so the Backgroundwoker is always busy.
I have found something like this, but Application.DoEvents() is not available in wpf.
while (online_mode_send_worker.IsBusy)
{
Application.DoEvents();
System.Threading.Thread.Sleep(100);
}
Here is a rough idea of what I mentioned in the comments.
public class Messenger {
private readonly BackgroundWorker online_mode_send_worker = new BackgroundWorker();
private readonly ConcurrentQueue<object> messages;
public Messenger() {
messages = new ConcurrentQueue<object>();
online_mode_send_worker.DoWork += online_mode_send_worker_DoWork;
online_mode_send_worker.RunWorkerCompleted += online_mode_send_worker_RunWorkerCompleted;
}
public void SendAsync(object message) {
if (online_mode_send_worker.IsBusy) {
messages.Enqueue(message);
} else {
online_mode_send_worker.RunWorkerAsync(message);
}
}
public Action<object> MessageHandler = delegate { };
private void online_mode_send_worker_DoWork(object sender, DoWorkEventArgs e) {
if (MessageHandler != null)
MessageHandler(e.Argument);
}
private void online_mode_send_worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
object nextMessage = null;
if (messages.Count > 0 && messages.TryDequeue(out nextMessage)) {
online_mode_send_worker.RunWorkerAsync(nextMessage);
}
}
}
You have a queue to hold on to messages that were sent while the background worker was busy and have the worker check the queue for any pending messages when it has completed doing its work.
The messenger can be used like this.
private Messenger messenger = new Messenger();
private void Initialize() { //I would expect this to be in the constructor
messenger.MessageHandler = MessageHandler;
}
private void TextBox_LostFocus(object sender, RoutedEventArgs e)
{
messenger.SendAsync(data);
}
private void MessageHandler(object message)
{
List<object> data = (List<object>)message;
Port.WriteLine(STARTCHARACTER + XMLSET + XML_TAG_START + data[0] + XML_TAG_STOP + data[1] + ENDCHARACTER);
string received = Port.ReadLine();
}
It seems that I missed the serial stuff. So what you want to do is synchronize your asynchronuouscalls:
private void Button_Click(object sender, RoutedEventArgs e)
{
Task.Run(() => mySerialDevice1.WriteData(data1));
Task.Run(() => mySerialDevice1.WriteData(data2));
}
public class SerialDevice
{
public Port Port { get; set; }
public object _LockWriteData = new object();
public void WriteData(string data)
{
lock(_LockWriteData)
{
Port.WriteLine(data);
}
}
}
also see:
https://msdn.microsoft.com/en-us/library/c5kehkcz.aspx
https://msdn.microsoft.com/en-us/library/de0542zz(v=vs.110).aspx
ORIGINAL ANSWER
You can use Task instead of Backgroundworker.
private void Button_Click(object sender, RoutedEventArgs e)
{
Task.Run(() => OnlineModeSendData(data1));
Task.Run(() => OnlineModeSendData(data2));
}
private void OnlineModeSendData(List<string> data)
{
Port.WriteLine(STARTCHARACTER + XMLSET + XML_TAG_START + data[0]+ XML_TAG_STOP + data[1] + ENDCHARACTER);
string received = Port.ReadLine();
}
I also would like to suggest that you make real objects instead of passing string arrays as arguments.
For Example send BlinkLedRequest:
public class BlinkLedRequest
{
public int LedId{get;set;}
public int DurationInMilliseconds {get;set}
}
and a corresponding method:
public void SendBlinkLed(BlickLedRequest request)
{
....
}
I think your should use RunWorkerCompleted event and add a delegate:
online_mode_send_worker.RunWorkerCompleted += (s, ev) =>
{
if (ev.Error != null)
{
//log Exception
}
//if(conditionToBrake)
// return;
online_mode_send_worker.RunWorkerAsync(data2);
};
online_mode_send_worker.RunWorkerCompleted(data1);
Make sure you put there a condition to avoid infinite loop.
I'd say that if you MUST wait until after the first "job" is done, that what you want is Task.ContinueWith() and change your interface accordingly. The msdn page is good for it IMO, but watch out that you're waiting on the "correct" task object. Hint: it's the return value of ContinueWith() that you should call Wait() on. This is a good pattern to do for launching a Task and then waiting for it later as long as you can keep the Task that is returned so you can wait on it.
For a more generic "I only want one background thread doing things in the order they're added, and I want to wait until they're ALL done and I know when I'm done adding." I would suggest using a BlockingCollection<Action> with only one thread consuming them. An example of how to do that is found in this other answer.
Update:
bw.RunWorkerAsync(data1);
//wait here
bw.RunWorkerAsync(data2);
Is not good aproach, because UI will be blocked on time of waiting. Better:
bw.RunWorkerAsync(new object[] { data1, data2 }); //or new object[] { data1 } if no data2
Original answer:
I advice not to use construction: while (bw.Busy) { ... } (it consumes cpu time), use synchronization objects, for example, ManualResetEvent
BackgroundWorker is great class, but does not support waiting. Just create addition object for waiting:
var bw = new BackgroundWorker();
bw.DoWork += Bw_DoWork;
bw.RunWorkerCompleted += Bw_RunWorkerCompleted;
bool wasError;
ManualResetEvent e = null;
private void TextBox_LostFocus(object sender, RoutedEventArgs e)
{
if (e != null)
return;
wasError = false;
e = new ManualResetEvent(false); //not signaled
bw.RunWorkerAsync(data1);
e.Wait(); //much better than while(bw.Busy())
if (!wasError)
bw.RunWorkerAsync(data2);
e = null;
}
private void Bw_DoWork(object sender, DoWorkEventArgs e)
{
//background work in another thread
}
private void Bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (e.Error != null)
{
//catch exception here
wasError = true;
}
e.Set(); //switch to signaled
}
If you need only call twice you can do this:
bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(bw_RunWorkerCompleted);
void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
online_mode_send_worker.RunWorkerAsync(data2);
}
But if you need to queue commands you need rewrite in another way Using Task.
One Task where inside it you will have a for-loop where you will send your data through serial port sequentially.
https://msdn.microsoft.com/pt-br/library/system.threading.tasks.task(v=vs.110).aspx
Related
So i'm reading a constant serial data stream from my arduino to validate some things in my program. However displaying these lock up the UI thread. So my "solution" is to make a buffer that keeps the serial data and then use a timer to put the data on the UI thread with intervals instead of a constant stream.
My code:
public partial class ConsoleWindow : Window
{
private SerialPort _serialPort;
private List<string> bufferStrings = new List<string>();
private readonly DispatcherTimer timer = new DispatcherTimer();
public ConsoleWindow(ref SerialPort serialPort)
{
InitializeComponent();
if (serialPort != null)
{
timer.Interval = new TimeSpan(0,0,0,0,80);
timer.Tick += PopQueue;
_serialPort = serialPort;
_serialPort.DataReceived += DataReceived;
timer.Start();
}
}
private void PopQueue(object sender, EventArgs e)
{
var queue = bufferStrings;
foreach (var queueString in queue)
{
AppendText(queueString);
}
bufferStrings.Clear();
}
private void DataReceived(object sender, SerialDataReceivedEventArgs e)
{
if (_serialPort != null)
{
bufferStrings.Add(((SerialPort)sender).ReadLine());
//AppendText(((SerialPort) sender).ReadLine());
}
}
public void AppendText(string text)
{
Application.Current.Dispatcher.Invoke(() =>
{
if (Output.Inlines.Count > 100)
{
Output.Inlines.Remove(Output.Inlines.FirstInline);
}
Output.Inlines.Add(text);
ScrollViewer.ScrollToBottom();
});
}
}
The issue with this is that I get an exception: System.InvalidOperationException: 'Collection was modified; enumeration operation may not execute.'. I know why it happens, but i have no idea how i could do this properly. And no idea of what to google either.
Here are two solutions you can take to prevent the InvalidOperationException:
Copy the buffer to a new list before iterating through its contents. You can do so by calling var queue = bufferStrings.ToList(); Note that you must include using System.Linq; to use ToList().
Make the iteration thread safe by surrounding it with the lock keyword:
private void PopQueue(object sender, EventArgs e)
{
lock(bufferStrings)
{
foreach (var queueString in bufferStrings)
{
AppendText(queueString);
}
bufferStrings.Clear();
}
}
private void DataReceived(object sender, SerialDataReceivedEventArgs e)
{
if (_serialPort != null)
{
lock(bufferStrings)
{
bufferStrings.Add(((SerialPort)sender).ReadLine());
//AppendText(((SerialPort) sender).ReadLine());
}
}
}
The simplest solution is to synchronize the accesses to the bufferStrings queue using a Monitor through the lock construct:
private void PopQueue(object sender, EventArgs e)
{
lock (bufferStrings)
{
foreach (var queueString in bufferStrings)
{
AppendText(queueString);
}
bufferStrings.Clear();
}
}
private void DataReceived(object sender, SerialDataReceivedEventArgs e)
{
if (_serialPort != null)
{
lock (bufferStrings)
{
bufferStrings.Add(((SerialPort)sender).ReadLine());
//AppendText(((SerialPort) sender).ReadLine());
}
}
}
The problem is that while you're iterating over an IEnumerable using foreach, the collection is being changed in another thread.
What you need is a collection that you can concurrently add to and read from.
At the top of the file add
using System.Collections.Concurrent;
Change this:
private List<string> bufferStrings = new List<string>();
to
private ConcurrentQueue<string> bufferStrings = new ConcurrentQueue<string>();
Change
bufferStrings.Add(((SerialPort)sender).ReadLine());
to
bufferStrings.Enqueue(((SerialPort)sender).ReadLine());
Then, you can read from the queue without worrying about whether something else is writing to it:
private void PopQueue(object sender, EventArgs e)
{
while (bufferStrings.TryDequeue(out string dequeued))
AppendText(dequeued);
}
This just keeps trying to take items out the queue until there are no more. TryDequeue returns false when the queue is empty. If you keep adding items while this method is running it will just keep processing them.
ConcurrentQueue
Reactive Extensions provide most of this functionality out of the box.
Check out Intro to RX, Observable Timer, Replacing Events, ReactiveUI
I have a Windows Form application and managed DLL in one solution. DLL contains some time consuming functions during which I wish to update the Form contents (callback from the DLL to the Form with progess updates). I have the following code:
Form code, where I initialize the DLL and give it a callback function in the Initialize method. I also start a separate Thread to periodicly check the message_queue for new messages from the DLL. The DLL function is also called in a separate Thread (non blocking for the UI).
private LibraryDLL library_dll;
private ConcurrentQueue<string> message_queue;
public MainForm()
{
InitializeComponent();
library_dll = new LibraryDLL();
message_queue = new ConcurrentQueue<string>();
library_dll.Initialize(ProcessMessage);
new Thread(() =>
{
Thread.CurrentThread.IsBackground = true;
string message;
if (message_queue.TryDequeue(out message))
{
PrintMessage(message);
}
}).Start();
}
private void ProcessMessage(string message)
{
message_queue.Enqueue(message);
}
private void PrintMessage(string message)
{
this.Invoke((MethodInvoker)delegate
{
listBox_rows.Items.Add(message);
});
}
private void button_send_Click(object sender, EventArgs e)
{
new Thread(() =>
{
Thread.CurrentThread.IsBackground = true;
library_dll.DoWork();
}).Start();
}
In DLL code, I use the callback method to report progress:
private CallBack callback;
public delegate void CallBack(string message);
public LibraryDLL() { }
public void Initialize(CallBack callback)
{
this.callback = callback;
}
public void DoWork()
{
callback("working...")
Thread.Sleep(500);
callback("working...")
Thread.Sleep(500);
callback("working...")
Thread.Sleep(500);
}
My problem is, that instead of string "working" appearing every 500ms, it appears 3 times after 1500ms (only after the Thread in which the DoWork method is running ends). I also tried the Invalidate()-Update()-Refresh() sequence in the Form's PrintMessage function, but without any effect.
Thanks for the advice!
EDIT1:
I modified the code to use the BackgroundWorker, however, the problem remains (nothing for 1500ms, than all 3 strings at once).
BackgroundWorker bck_worker;
public MainForm()
{
InitializeComponent();
library_dll = new LibraryDLL();
library_dll.Initialize(bck_worker);
bck_worker = new BackgroundWorker();
bck_worker.ProgressChanged += new ProgressChangedEventHandler(bckWorker_ProgressChanged);
bck_worker.WorkerReportsProgress = true;
bck_worker.WorkerSupportsCancellation = true;
}
private void bckWorker_DoWork(object sender, DoWorkEventArgs e)
{
library_dll.DoWork();
}
private void bckWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
PrintMessage((string)e.UserState);
}
private void button_send_Click(object sender, EventArgs e)
{
bck_worker.DoWork += new DoWorkEventHandler(bckWorker_DoWork);
bck_worker.RunWorkerAsync();
}
private void PrintMessage(string message)
{
listBox_rows.Items.Add(message);
}
And the DLL:
private BackgroundWorker bck_worker;
public LibraryDLL() { }
public void Initialize(BackgroundWorker bck_worker)
{
this.bck_worker = bck_worker;
}
public void DoWork()
{
bck_worker.ReportProgress(25, "working...");
Thread.Sleep(500);
bck_worker.ReportProgress(50, "working...");
Thread.Sleep(500);
bck_worker.ReportProgress(75, "working...");
Thread.Sleep(500);
}
EDIT2:
OK, I now tried to add the Invalidate-Update-Refresh sequence at the end of the PrintMessage function and it finaly works (with the BackgroundWorker approach)!
Use background worker and workers's report progress to update your UI: background worker doc
In my program I have two methods that takes a while to complete, about few minutes each. While these methods are being executed, I display a Progress Bar in a separate window which shows the progress of each method. My two methods are in a static Utility class. They look like the following:
public static class Utility
{
public static bool TimeConsumingMethodOne(object sender)
{
for (int i = 1; i <= 100; i++)
{
Thread.Sleep(100);
(sender as BackgroundWorker).ReportProgress(i);
}
return true;
}
public static bool TimeConsumingMethodTwo(object sender)
{
for (int i = 1; i <= 100; i++)
{
Thread.Sleep(50);
(sender as BackgroundWorker).ReportProgress(i);
}
return true;
}
}
Reading through similar questions in SO I learned that I should use BackgroundWorker and used the RunWorkerCompleted() to see when the worker completes its work. So in my Main() I used BackgroundWorer() and subscribed to the RunWorkerCompleted() method. My goal here is to run the TimeConsumingMethodOne() first (and display progress while running), then once finished, run TimeConsumingMethodTwo() and show progress again, and when that's completed output the message box (which simulates some other work in my program). My Main() looks like the following:
public partial class MainWindow : Window
{
public enum MethodType
{
One,
Two
}
private BackgroundWorker worker = null;
private AutoResetEvent _resetEventOne = new AutoResetEvent(false);
private AutoResetEvent _resetEventTwo = new AutoResetEvent(false);
private ProgressBarWindow pbWindowOne = null;
private ProgressBarWindow pbWindowTwo = null;
public MainWindow()
{
InitializeComponent();
}
private void btnRun_Click(object sender, RoutedEventArgs e)
{
RunMethodCallers(sender, MethodType.One);
_resetEventOne.WaitOne();
RunMethodCallers(sender, MethodType.Two);
_resetEventTwo.WaitOne();
MessageBox.Show("COMPLETED!");
}
private void RunMethodCallers(object sender, MethodType type)
{
worker = new BackgroundWorker();
worker.WorkerReportsProgress = true;
switch (type)
{
case MethodType.One:
worker.DoWork += MethodOneCaller;
worker.ProgressChanged += worker_ProgressChangedOne;
worker.RunWorkerCompleted += worker_RunWorkerCompletedOne;
break;
case MethodType.Two:
worker.DoWork += MethodTwoCaller;
worker.ProgressChanged += worker_ProgressChangedTwo;
worker.RunWorkerCompleted += worker_RunWorkerCompletedTwo;
break;
}
worker.RunWorkerAsync();
}
private void MethodOneCaller(object sender, DoWorkEventArgs e)
{
Dispatcher.Invoke(() =>
{
pbWindowOne = new ProgressBarWindow("Running Method One");
pbWindowOne.Owner = this;
pbWindowOne.Show();
});
Utility.TimeConsumingMethodOne(sender);
}
private void MethodTwoCaller(object sender, DoWorkEventArgs e)
{
Dispatcher.Invoke(() =>
{
pbWindowTwo = new ProgressBarWindow("Running Method Two");
pbWindowTwo.Owner = this;
pbWindowTwo.Show();
});
Utility.TimeConsumingMethodTwo(sender);
}
private void worker_RunWorkerCompletedOne(object sender, RunWorkerCompletedEventArgs e)
{
_resetEventOne.Set();
}
private void worker_RunWorkerCompletedTwo(object sender, RunWorkerCompletedEventArgs e)
{
_resetEventTwo.Set();
}
private void worker_ProgressChangedOne(object sender, ProgressChangedEventArgs e)
{
pbWindowOne.SetProgressUpdate(e.ProgressPercentage);
}
private void worker_ProgressChangedTwo(object sender, ProgressChangedEventArgs e)
{
pbWindowTwo.SetProgressUpdate(e.ProgressPercentage);
}
}
Now the problem I have is, when I use _resetEventOne.WaitOne(); the UI hangs. If I removed those two waits, both methods run asynchronously and the execution moves on and outputs the MessageBox even before those two methods complete.
What am I doing wrong? How do I get the program to finish my first BackgroundWorker and then move onto the next, and then when that's done, output the MessageBox?
Now the problem I have is, when I use _resetEventOne.WaitOne(); the UI hangs. If I removed those two waits, both methods run asynchronously and the execution moves on and outputs the MessageBox even before those two methods complete.
What am I doing wrong?
When you call WaitOne(), you are blocking the UI thread, causing the UI to hang. If you remove that call, then of course you start both workers at once.
There are several different ways to approach your question. One is to stick as closely to your current implementation, and just fix the barest minimum to get it to work. Doing that, what you'll need to do is perform the actual next statement in the RunWorkerCompleted handler, instead of using an event to wait for the handler to execute.
That looks like this:
public partial class MainWindow : Window
{
public enum MethodType
{
One,
Two
}
private BackgroundWorker worker = null;
private ProgressBarWindow pbWindowOne = null;
private ProgressBarWindow pbWindowTwo = null;
public MainWindow()
{
InitializeComponent();
}
private void btnRun_Click(object sender, RoutedEventArgs e)
{
RunMethodCallers(sender, MethodType.One);
}
private void RunMethodCallers(object sender, MethodType type)
{
worker = new BackgroundWorker();
worker.WorkerReportsProgress = true;
switch (type)
{
case MethodType.One:
worker.DoWork += MethodOneCaller;
worker.ProgressChanged += worker_ProgressChangedOne;
worker.RunWorkerCompleted += worker_RunWorkerCompletedOne;
break;
case MethodType.Two:
worker.DoWork += MethodTwoCaller;
worker.ProgressChanged += worker_ProgressChangedTwo;
worker.RunWorkerCompleted += worker_RunWorkerCompletedTwo;
break;
}
worker.RunWorkerAsync();
}
private void MethodOneCaller(object sender, DoWorkEventArgs e)
{
Dispatcher.Invoke(() =>
{
pbWindowOne = new ProgressBarWindow("Running Method One");
pbWindowOne.Owner = this;
pbWindowOne.Show();
});
Utility.TimeConsumingMethodOne(sender);
}
private void MethodTwoCaller(object sender, DoWorkEventArgs e)
{
Dispatcher.Invoke(() =>
{
pbWindowTwo = new ProgressBarWindow("Running Method Two");
pbWindowTwo.Owner = this;
pbWindowTwo.Show();
});
Utility.TimeConsumingMethodTwo(sender);
}
private void worker_RunWorkerCompletedOne(object sender, RunWorkerCompletedEventArgs e)
{
RunMethodCallers(sender, MethodType.Two);
}
private void worker_RunWorkerCompletedTwo(object sender, RunWorkerCompletedEventArgs e)
{
MessageBox.Show("COMPLETED!");
}
private void worker_ProgressChangedOne(object sender, ProgressChangedEventArgs e)
{
pbWindowOne.SetProgressUpdate(e.ProgressPercentage);
}
private void worker_ProgressChangedTwo(object sender, ProgressChangedEventArgs e)
{
pbWindowTwo.SetProgressUpdate(e.ProgressPercentage);
}
}
That said, BackgroundWorker has been made obsolete by the newer task-based API with async and await. With some small changes to your code, it can be adapted to use that newer idiom:
public partial class MainWindow : Window
{
public enum MethodType
{
One,
Two
}
private ProgressBarWindow pbWindowOne = null;
private ProgressBarWindow pbWindowTwo = null;
public MainWindow()
{
InitializeComponent();
}
private async void btnRun_Click(object sender, RoutedEventArgs e)
{
await RunMethodCallers(sender, MethodType.One);
await RunMethodCallers(sender, MethodType.Two);
MessageBox.Show("COMPLETED!");
}
private async Task RunMethodCallers(object sender, MethodType type)
{
IProgress<int> progress;
switch (type)
{
case MethodType.One:
progress = new Progress<int>(i => pbWindowOne.SetProgressUpdate(i));
await Task.Run(() => MethodOneCaller(progress));
break;
case MethodType.Two:
progress = new Progress<int>(i => pbWindowTwo.SetProgressUpdate(i));
await Task.Run(() => MethodTwoCaller(progress));
break;
}
}
private void MethodOneCaller(IProgress<int> progress)
{
Dispatcher.Invoke(() =>
{
pbWindowOne = new ProgressBarWindow("Running Method One");
pbWindowOne.Owner = this;
pbWindowOne.Show();
});
Utility.TimeConsumingMethodOne(progress);
}
private void MethodTwoCaller(IProgress<int> progress)
{
Dispatcher.Invoke(() =>
{
pbWindowTwo = new ProgressBarWindow("Running Method Two");
pbWindowTwo.Owner = this;
pbWindowTwo.Show();
});
Utility.TimeConsumingMethodTwo(progress);
}
}
To do the above does require a small adjustment to the Utility class as well:
static class Utility
{
public static bool TimeConsumingMethodOne(IProgress<int> progress)
{
for (int i = 1; i <= 100; i++)
{
Thread.Sleep(100);
progress.Report(i);
}
return true;
}
public static bool TimeConsumingMethodTwo(IProgress<int> progress)
{
for (int i = 1; i <= 100; i++)
{
Thread.Sleep(50);
progress.Report(i);
}
return true;
}
}
That is, the Progress<T> class takes the place of the BackgroundWorker.ProgressChanged event and ReportProgress() method.
Note that with the above, the code has gotten significantly shorter, simpler, and is written in a more direct way (i.e. related statements are with each other in the same method now).
The example you gave is necessarily simplified. That's perfectly fine, but it does mean that it's not known here what the Thread.Sleep() method represents. In fact, in many cases, this sort of thing can be refactored further such that only the long-running work is done asynchronously. This can sometimes simplify the progress-reporting even further, because it can be done after await-ing each individual asynchronously-executed work component.
For example, let's suppose the work in the loop is either inherently asynchronous or is costly enough that it's reasonable to use Task.Run() to execute each loop iteration. For the purpose of the same, that can be represented using Task.Delay():
static class Utility
{
public static async Task<bool> TimeConsumingMethodOne(Action<int> progress)
{
for (int i = 1; i <= 100; i++)
{
await Task.Delay(100);
progress(i);
}
return true;
}
public static async Task<bool> TimeConsumingMethodTwo(Action<int> progress)
{
for (int i = 1; i <= 100; i++)
{
await Task.Delay(50);
progress(i);
}
return true;
}
}
In the above, I also don't use Progress<T>. Just a simple Action<int> delegate for the caller to use however they want.
And with that change, your window code gets even simpler:
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();
}
private async void btnRun_Click(object sender, RoutedEventArgs e)
{
await MethodOneCaller();
await MethodTwoCaller();
MessageBox.Show("COMPLETED!");
}
private async Task MethodOneCaller()
{
ProgressBarWindow pbWindowOne =
new ProgressBarWindow("Running Method One") { Owner = this };
pbWindowOne.Show();
await Utility.TimeConsumingMethodOne(i => pbWindowOne.SetProgressUpdate(i));
}
private async Task MethodTwoCaller()
{
ProgressBarWindow pbWindowTwo =
new ProgressBarWindow("Running Method Two") { Owner = this };
pbWindowTwo.Show();
await Utility.TimeConsumingMethodTwo(i => pbWindowTwo.SetProgressUpdate(i));
}
}
Granted, I took the opportunity to remove the MethodType enum and just call the methods directly, which shortened the code even more. But even if all you did was avoid the use of Dispatcher.Invoke(), that still simplifies the code a lot.
In addition to all that, if you were using data binding to represent the progress state instead of setting the value directly, WPF would handle the cross-thread invocation implicitly for you, so that the Progress<T> class isn't even required even if you can't refactor the Utility class code for it itself to be async.
But, those are minor refinements compared to moving away from BackgroundWorker. I recommend doing that, but whether you invest time in those further refinements is less important.
An option i prefer is to have those 2 methods in a different thread and use a while loop to check if thread is still running and if it is use Task.Delay()
EG.
private async void BlahBahBlahAsync()
{
Thread testThread = new Thread(delegate () { });
newThread = new Thread(delegate ()
{
Timeconsuming();
});
newThread.Start();
while (testThread.IsAlive)
{
await Task.Delay(50);
}
}
private void Timeconsuming()
{
// stuff that takes a while
}
I have an application that takes a Wireshark capture file and feeds it (all the containing packets) into a network adapter.
Currently my application is a big mess - countless global variables & every task opened within a seperate BackgroundWorker instance etc...
To clarify - the purpose of using BackgroundWorkers here (more specifically the DoWork, RunWorkerCompleted events and the WorkerReportsProgress property) is to prevent the packet feeding operations from freezing my UI. To stop an operation, I need access to these workes - for now, global variables are used to achieve this.
So the question is - should I place my BackgroundWorker objects inside a Singleton-type class and then call this object when necessary?
From a technical point of view is possible, after all the singleton pattern is a design pattern that restricts the instantiation of a class to one object
you can try something like this
public class BackWorkerSingleton
{
private BackgroundWorker _backgroundWorker;
private static readonly object myLock = new object();
private static BackWorkerSingleton _backWorkerSingleton = new BackWorkerSingleton();
public delegate void ReportProgressEventHandler(object sender,MyEventsArgs e);
public event ReportProgressEventHandler ReportProgress = delegate{ };
private BackWorkerSingleton()
{
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += new DoWorkEventHandler(_backgroundWorker_DoWork);
_backgroundWorker.ProgressChanged += new ProgressChangedEventHandler(_backgroundWorker_ProgressChanged);
}
void _backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
this.ReportProgress( this, new MyEventsArgs(){Progress = e.ProgressPercentage});
}
void _backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
// do your work here
}
public void StartTheJob()
{
_backgroundWorker.RunWorkerAsync();
}
public static BackWorkerSingleton Worker
{
get
{
lock (myLock)
{
if (_backWorkerSingleton == null)
{
_backWorkerSingleton = new BackWorkerSingleton();
}
}
return _backWorkerSingleton;
}
}
}
class MyEventsArgs:EventArgs
{
public int Progress { get; set; }
}
and here the report progress
private void Form1_Load(object sender, EventArgs e)
{
BackWorkerSingleton.Worker.ReportProgress += new BackWorkerSingleton.ReportProgressEventHandler(Worker_ReportProgress);
}
void Worker_ReportProgress(object sender, MyEventsArgs e)
{
}
and call it like this
BackWorkerSingleton.Worker.StartJob()
my aim is that in the function "Dummy" i can change the controls like labels etc of the form from which the thread is initiating..how to do it..please don't suggest completely different strategies or making a worker class etc...modify this if you can
Thread pt= new Thread(new ParameterizedThreadStart(Dummy2));
private void button1_Click(object sender, EventArgs e)
{
pt = new Thread(new ParameterizedThreadStart(Dummy2));
pt.IsBackground = true;
pt.Start( this );
}
public static void Dummy(........)
{
/*
what i want to do here is to access the controls on my form form where the
tread was initiated and change them directly
*/
}
private void button2_Click(object sender, EventArgs e)
{
if (t.IsAlive)
label1.Text = "Running";
else
label1.Text = "Dead";
}
private void button3_Click(object sender, EventArgs e)
{
pt.Abort();
}
}
}
what i plan is that i could do this in the "Dummy" function
Dummy( object p)
{
p.label1.Text = " New Text " ;
}
You could do this, supposing you're passing an instance of the form to the thread method using the t.Start(...) method:
private void Form_Shown(object sender)
{
Thread t = new Thread(new ParameterizedThreadStart(Dummy));
t.Start(this);
}
....
private static void Dummy(object state)
{
MyForm f = (MyForm)state;
f.Invoke((MethodInvoker)delegate()
{
f.label1.Text = " New Text ";
});
}
EDIT
Added thread start code for clarity.
You can't do this. You can only access a UI control on the same thread that created it.
See the System.Windows.Forms.Control.Invoke Method and the Control.InvokeRequired property.
Can use something like this:
private void UpdateText(string text)
{
// Check for cross thread violation, and deal with it if necessary
if (InvokeRequired)
{
Invoke(new Action<string>(UpdateText), new[] {text});
return;
}
// What the update of the UI
label.Text = text;
}
public static void Dummy(........)
{
UpdateText("New text");
}