I am writing a dice-based game in C#. I want all of my game-logic to be pure, so I have devised a dice-roll generator like this:
public static IEnumerable<int> CreateDiceStream(int seed)
{
var random = new Random(seed);
while (true)
{
yield return 1 + random.Next(5);
}
}
Now I can use this in my game logic:
var playerRolls = players.Zip(diceRolls, (player, roll) => Tuple.Create(player, roll));
The problem is that the next time I take from diceRolls I want to skip the rolls that I have already taken:
var secondPlayerRolls = players.Zip(
diceRolls.Skip(playerRolls.Count()),
(player, roll) => Tuple.Create(player, roll));
This is already quite ugly and error prone. It doesn't scale well as the code becomes more complex.
It also means that I have to be careful when using a dice roll sequence between functions:
var x = DoSomeGameLogic(diceRolls);
var nextRoll = diceRolls.Skip(x.NumberOfDiceRollsUsed).First();
Is there a good design pattern that I should be using here?
Note that it is important that my functions remain pure due to syncronisation and play-back requirements.
This question is not about correctly initializing System.Random. Please read what I have written, and leave a comment if it is unclear.
That's a very nice puzzle.
Since manipulating diceRolls's state is out of the question (otherwise, we'd have those sync and replaying issues you mentioned), we need an operation which returns both (a) the values to be consumed and (b) a new diceRolls enumerable which starts after the consumed items.
My suggestion would be to use the return value for (a) and an out parameter for (b):
static IEnumerable<int> Consume(this IEnumerable<int> rolls, int count, out IEnumerable<int> remainder)
{
remainder = rolls.Skip(count);
return rolls.Take(count);
}
Usage:
var firstRolls = diceRolls.Consume(players.Count(), out diceRolls);
var secondRolls = diceRolls.Consume(players.Count(), out diceRolls);
DoSomeGameLogic would use Consume internally and return the remaining rolls. Thus, it would need to be called as follows:
var x = DoSomeGameLogic(diceRolls, out diceRolls);
// or
var x = DoSomeGameLogic(ref diceRolls);
// or
x = DoSomeGameLogic(diceRolls);
diceRolls = x.RemainingDiceRolls;
The "classic" way to implement pure random generators is to use a specialized form of a state monad (more explanation here), which wraps the carrying around of the current state of the generator. So, instead of implementing (note that my C# is quite rusty, so please consider this as pseudocode):
Int Next() {
nextState, nextValue = NextRandom(globalState);
globalState = nextState;
return nextValue;
}
you define something like this:
class Random<T> {
private Func<Int, Tuple<Int, T>> transition;
private Tuple<Int, Int> NextRandom(Int state) { ... whatever, see below ... }
public static Random<A> Unit<A>(A a) {
return new Random<A>(s => Tuple(s, a));
}
public static Random<Int> GetRandom() {
return new Random<Int>(s => nextRandom(s));
}
public Random<U> SelectMany(Func<T, Random<U>> f) {
return new Random(s => {
nextS, a = this.transition(s);
return f(a).transition(nextS);
}
}
public T Run(Int seed) {
return this.transition(seed);
}
}
Which should be usable with LINQ, if I did everything right:
// player1 = bla, player2 = blub, ...
Random<Tuple<Player, Int>> playerOneRoll = from roll in GetRandom()
select Tuple(player1, roll);
Random<Tuple<Player, Int>> playerTwoRoll = from roll in GetRandom()
select Tuple(player2, roll);
Random<List<Tuple<Player, Int>>> randomRolls = from t1 in playerOneRoll
from t2 in playerTwoRoll
select List(t1, t2);
var actualRolls = randomRolls.Run(234324);
etc., possibly using some combinators. The trick here is to represent the whole "random action" parametrized by the current input state; but this is also the problem, since you'd need a good implementation of NextRandom.
It would be nice if you could just reuse the internals of the .NET Random implementation, but as it seems, you cannot access its internal state. However, I'm sure there are enough sufficiently good PRNG state functions around on the internet (this one looks good; you might have to change the state type).
Another disadvantage of monads is that once you start working in them (ie, construct things in Random), you need to "carry that though" the whole control flow, up to the top level, at which you should call Run once and for all. This is something one needs to get use to, and is more tedious in C# than functional languages optimized for such things.
Related
I'm trying to port some AS3 code to C#(.NET) the majority of it has been done (90%) however I have run into a few problems in terms of Functions in Functions and functions being defined as Functions (I hope i'm understanding it correctly). I have done a lot of searching and the main thing that comes up is delegates and lambda's however trying to implement them is proving difficult for me to do. Seen as quiet a few sections are the same in layout ill just post a generic example of the AS3 code and hopefully can then apply any solution to the rest.
Here is the AS3 code:
static public function makeRadial(seed:int):Function {
var islandRandom:PM_PRNG = new PM_PRNG();
islandRandom.seed = seed;
var bumps:int = islandRandom.nextIntRange(1, 6);
var startAngle:Number = islandRandom.nextDoubleRange(0, 2*Math.PI);
var dipAngle:Number = islandRandom.nextDoubleRange(0, 2*Math.PI);
var dipWidth:Number = islandRandom.nextDoubleRange(0.2, 0.7);
function inside(q:Point):Boolean {
var angle:Number = Math.atan2(q.y, q.x);
var length:Number = 0.5 * (Math.max(Math.abs(q.x), Math.abs(q.y)) + q.length);
var r1:Number = 0.5 + 0.40*Math.sin(startAngle + bumps*angle + Math.cos((bumps+3)*angle));
var r2:Number = 0.7 - 0.20*Math.sin(startAngle + bumps*angle - Math.sin((bumps+2)*angle));
if (Math.abs(angle - dipAngle) < dipWidth
|| Math.abs(angle - dipAngle + 2*Math.PI) < dipWidth
|| Math.abs(angle - dipAngle - 2*Math.PI) < dipWidth) {
r1 = r2 = 0.2;
}
return (length < r1 || (length > r1*ISLAND_FACTOR && length < r2));
}
return inside;
}
In the AS3 code I don't understand the reasoning behind the ":Function" in the main function "static public function makeShape(seed:int):Function". I did search about it but was unable to find an example or explanation perhaps i'm not typing the correct meaning for it.
If anyone could help me with this problem by giving an example or pointing me closer in the direction I need to go I would be very grateful.
Thanks for your time.
The most direct translation would be to return a delegate. In this case, the generic Func<Point, bool> delegate would be sufficient. It's pretty easy to create these in C# using lambda expressions:
static public Func<Point, bool> makeShape(int seed) {
// initialization here
Func<Point, bool> inside = (Point q) => {
// some math here
return (myCondition);
}
return inside;
}
Although you can define your own delegate type if you prefer:
public delegate bool ShapeTester(Point point);
static public ShapeTester makeShape(int seed) {
// initialization here
ShapeTester inside = (Point q) => {
// some math here
return (myCondition);
}
return inside;
}
Another approach, but one which would require quite a bit more effort in refactoring, would be to encapsulate all the logic of what makes up 'shape' into a distinct type, for example:
public class Shape
{
public Shape(int seed)
{
// initialization here
}
public bool Test(Point q)
{
// some math here
return (myCondition);
}
}
And then return an instance of this type from your makeShape method:
static public Shape makeShape(int seed) {
return new Shape(seed);
}
And elsewhere you'd need to call the test method on the resulting object. Depending the specific you're developing, you may make more since if Shape is actually be an interface (IShape) or a struct. But in any case, using this approach, traditional OOP design principles (inheritance, polymorphism, etc.) should be followed.
Note: The point of this question is more from a curiosity perspective. I want to know out of curiosity whether it is even possible to transliterate the Haskell implementation into a functional C# equivalent.
So I've been learning myself Haskell for great good, and while solving Project Euler problems I ran into this beautiful Haskell Fibonacci implementation:
fibs :: [Integer]
fibs = 1:1:zipWith (+) fibs (tail fibs)
Of course I was tempted to write a C# version like this, so:
If I do this:
IEnumerable<int> fibs =
Enumerable.Zip(Enumerable.Concat(new int[] { 1, 1 }, fibs),
//^^error
fibs.Skip(1), (f, s) => f + s);
The error says use of unassigned local variable fibs.
So I went slightly imperative, while this compiles...
public static IEnumerable<int> Get()
{
return Enumerable.Zip(Enumerable.Concat(new int[] { 1, 1 }, Get()),
Get().Skip(1), (f, s) => f + s);
}
It breaks with a stack overflow exception! So I came here..
Questions:
Can anyone think of a functional C# equivalent that works?
I'd like some insight into why my solutions don't work.
The answer to your first question is: this is how to do it in C#:
using System;
using System.Collections.Generic;
using System.Linq;
class P
{
static IEnumerable<int> F()
{
yield return 1;
yield return 1;
foreach(int i in F().Zip(F().Skip(1), (a,b)=>a+b))
yield return i;
}
static void Main()
{
foreach(int i in F().Take(10))
Console.WriteLine(i);
}
}
The answer to your second question is: C# is eager by default, so your method has an unbounded recursion. Iterators that use yield however return an enumerator immediately, but do not construct each element until required; they are lazy. In Haskell everything is lazy automatically.
UPDATE: Commenter Yitz points out correctly that this is inefficient because, unlike Haskell, C# does not automatically memoize the results. It's not immediately clear to me how to fix it while keeping this bizarre recursive algorithm intact.
Of course you would never actually write fib like this in C# when it is so much easier to simply:
static IEnumerable<BigInteger> Fib()
{
BigInteger prev = 0;
BigInteger curr = 1;
while (true)
{
yield return curr;
var next = curr + prev;
prev = curr;
curr = next;
}
}
Unlike the C# version provided in Eric Lippert's answer, this F# version avoids repeated computation of elements and therefore has comparable efficiency with Haskell:
let rec fibs =
seq {
yield 1
yield 1
for (a, b) in Seq.zip fibs (Seq.skip 1 fibs) do
yield a + b
}
|> Seq.cache // this is critical for O(N)!
I have to warn you that I'm trying to fix your attempts, not to make a productive code.
Also, this solution is good to make our brains to explode, and maybe the computer also.
In your first snippet you tried to call recursive your field or local variable, that is not possible.Instead we can try with a lambda which could be more similar to that. We know from Church, that is also not possible, at least in the traditional way. Lambda expressions are unnamed; you can't call them by their name ( inside of the implementation ). But you can use the fixed point to do recursion. If you have a sane mind there is big chance of not knowing what is that, anyway you should give a try to this link before continuing with this.
fix :: (a -> a) -> a
fix f = f (fix f)
This will be the c# implementation (which is wrong)
A fix<A>(Func<A,A> f) {
return f(fix(f));
}
Why is wrong? Because fix(f) represents a beautiful stackoverflow. So we need to make it lazy:
A fix<A>(Func<Func<A>,A> f) {
return f(()=>fix(f));
}
Now is lazy! Actually you will see a lot of this in the following code.
In your second snippet and also in the first, you have the problem that the second argument to Enumerable.Concat is not lazy, and you will have stackoverflow exception, or infinite loop in the idealistic way. So let's make it lazy.
static IEnumerable<T> Concat<T>(IEnumerable<T> xs,Func<IEnumerable<T>> f) {
foreach (var x in xs)
yield return x;
foreach (var y in f())
yield return y;
}
Now, we have the whole "framework" to implement what you have tried in the functional way.
void play() {
Func<Func<Func<IEnumerable<int>>>, Func<IEnumerable<int>>> F = fibs => () =>
Concat(new int[] { 1, 1 },
()=> Enumerable.Zip (fibs()(), fibs()().Skip(1), (a,b)=> a + b));
//let's see some action
var n5 = fix(F)().Take(5).ToArray(); // instant
var n20 = fix(F)().Take(20).ToArray(); // relative fast
var n30 = fix(F)().Take(30).ToArray(); //this will take a lot of time to compute
//var n40 = fix(F)().Take(40).ToArray(); //!!! OutOfMemoryException
}
I know that the F signature is ugly like hell, but this is why languages like haskell exists, and even F#. C# is not made for this work to be done like this.
Now, the question is, why haskell can achieve something like this?Why? because whenever you say something like
a:: Int
a = 4
The most similar translation in C# is :
Func<Int> a = () => 4
Actually is much more involved in the haskell implementation, but this is the idea why similar method of solving problems looks so different if you want to write it in both languages
Here it is for Java, dependent on Functional Java:
final Stream<Integer> fibs = new F2<Integer, Integer, Stream<Integer>>() {
public Stream<Integer> f(final Integer a, final Integer b) {
return cons(a, curry().f(b).lazy().f(a + b));
}
}.f(1, 2);
For C#, you could depend on XSharpX
A take on Eric's answer that has Haskell equivalent performance, but still has other issues(thread safety, no way to free memory).
private static List<int> fibs = new List<int>(){1,1};
static IEnumerable<int> F()
{
foreach (var fib in fibs)
{
yield return fib;
}
int a, b;
while (true)
{
a = fibs.Last();
b = fibs[fibs.Count() - 2];
fibs.Add(a+b);
yield return a + b;
}
}
Translating from a Haskell environment to a .NET environment is much easier if you use F#, Microsoft's functional declarative language similar to Haskell.
Lets assume you have a function that returns a lazily-enumerated object:
struct AnimalCount
{
int Chickens;
int Goats;
}
IEnumerable<AnimalCount> FarmsInEachPen()
{
....
yield new AnimalCount(x, y);
....
}
You also have two functions that consume two separate IEnumerables, for example:
ConsumeChicken(IEnumerable<int>);
ConsumeGoat(IEnumerable<int>);
How can you call ConsumeChicken and ConsumeGoat without a) converting FarmsInEachPen() ToList() beforehand because it might have two zillion records, b) no multi-threading.
Basically:
ConsumeChicken(FarmsInEachPen().Select(x => x.Chickens));
ConsumeGoats(FarmsInEachPen().Select(x => x.Goats));
But without forcing the double enumeration.
I can solve it with multithread, but it gets unnecessarily complicated with a buffer queue for each list.
So I'm looking for a way to split the AnimalCount enumerator into two int enumerators without fully evaluating AnimalCount. There is no problem running ConsumeGoat and ConsumeChicken together in lock-step.
I can feel the solution just out of my grasp but I'm not quite there. I'm thinking along the lines of a helper function that returns an IEnumerable being fed into ConsumeChicken and each time the iterator is used, it internally calls ConsumeGoat, thus executing the two functions in lock-step. Except, of course, I don't want to call ConsumeGoat more than once..
I don't think there is a way to do what you want, since ConsumeChickens(IEnumerable<int>) and ConsumeGoats(IEnumerable<int>) are being called sequentially, each of them enumerating a list separately - how do you expect that to work without two separate enumerations of the list?
Depending on the situation, a better solution is to have ConsumeChicken(int) and ConsumeGoat(int) methods (which each consume a single item), and call them in alternation. Like this:
foreach(var animal in animals)
{
ConsomeChicken(animal.Chickens);
ConsomeGoat(animal.Goats);
}
This will enumerate the animals collection only once.
Also, a note: depending on your LINQ-provider and what exactly it is you're trying to do, there may be better options. For example, if you're trying to get the total sum of both chickens and goats from a database using linq-to-sql or linq-to-entities, the following query..
from a in animals
group a by 0 into g
select new
{
TotalChickens = g.Sum(x => x.Chickens),
TotalGoats = g.Sum(x => x.Goats)
}
will result in a single query, and do the summation on the database-end, which is greatly preferable to pulling the entire table over and doing the summation on the client end.
The way you have posed your problem, there is no way to do this. IEnumerable<T> is a pull enumerable - that is, you can GetEnumerator to the front of the sequence and then repeatedly ask "Give me the next item" (MoveNext/Current). You can't, on one thread, have two different things pulling from the animals.Select(a => a.Chickens) and animals.Select(a => a.Goats) at the same time. You would have to do one then the other (which would require materializing the second).
The suggestion BlueRaja made is one way to change the problem slightly. I would suggest going that route.
The other alternative is to utilize IObservable<T> from Microsoft's reactive extensions (Rx), a push enumerable. I won't go into the details of how you would do that, but it's something you could look into.
Edit:
The above is assuming that ConsumeChickens and ConsumeGoats are both returning void or are at least not returning IEnumerable<T> themselves - which seems like an obvious assumption. I'd appreciate it if the lame downvoter would actually comment.
Actually simples way to achieve what you what is convert FarmsInEachPen return value to push collection or IObservable and use ReactiveExtensions for working with it
var observable = new Subject<Animals>()
observable.Do(x=> DoSomethingWithChicken(x. Chickens))
observable.Do(x=> DoSomethingWithGoat(x.Goats))
foreach(var item in FarmsInEachPen())
{
observable.OnNext(item)
}
I figured it out, thanks in large part due to the path that #Lee put me on.
You need to share a single enumerator between the two zips, and use an adapter function to project the correct element into the sequence.
private static IEnumerable<object> ConsumeChickens(IEnumerable<int> xList)
{
foreach (var x in xList)
{
Console.WriteLine("X: " + x);
yield return null;
}
}
private static IEnumerable<object> ConsumeGoats(IEnumerable<int> yList)
{
foreach (var y in yList)
{
Console.WriteLine("Y: " + y);
yield return null;
}
}
private static IEnumerable<int> SelectHelper(IEnumerator<AnimalCount> enumerator, int i)
{
bool c = i != 0 || enumerator.MoveNext();
while (c)
{
if (i == 0)
{
yield return enumerator.Current.Chickens;
c = enumerator.MoveNext();
}
else
{
yield return enumerator.Current.Goats;
}
}
}
private static void Main(string[] args)
{
var enumerator = GetAnimals().GetEnumerator();
var chickensList = ConsumeChickens(SelectHelper(enumerator, 0));
var goatsList = ConsumeGoats(SelectHelper(enumerator, 1));
var temp = chickensList.Zip(goatsList, (i, i1) => (object) null);
temp.ToList();
Console.WriteLine("Total iterations: " + iterations);
}
I am playing a little bit with functional programming and the various concepts of it. All this stuff is very interesting. Several times I have read about Currying and what an advantage it has.
But I do not get the point with this. The following source demonstrates the using of the curry concept and the solution with linq. Actually, I do not see any advatages of using the currying concept.
So, what is the advantage of using currying?
static bool IsPrime(int value)
{
int max = (value / 2) + 1;
for (int i = 2; i < max; i++)
{
if ((value % i) == 0)
{
return false;
}
}
return true;
}
static readonly Func<IEnumerable<int>, IEnumerable<int>> GetPrimes =
HigherOrder.GetFilter<int>().Curry()(IsPrime);
static void Main(string[] args)
{
int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
Console.Write("Primes:");
//Curry
foreach (int n in GetPrimes(numbers))
{
Console.Write(" {0}", n);
}
Console.WriteLine();
//Linq
foreach (int n in numbers.Where(p => IsPrime(p)))
{
Console.Write(" {0}", n);
}
Console.ReadLine();
}
Here is the HigherOrder Filter Method:
public static Func<Func<TSource, bool>, IEnumerable<TSource>, IEnumerable<TSource>> GetFilter<TSource>()
{
return Filter<TSource>;
}
what is the advantage of using currying?
First off, let's clarify some terms. People use "currying" to mean both:
reformulating a method of two parameters into a methods of one parameter that returns a method of one parameter and
partial application of a method of two parameters to produce a method of one parameter.
Clearly these two tasks are closely related, and hence the confusion. When speaking formally, one ought to restrict "currying" to refer to the first definition, but when speaking informally either usage is common.
So, if you have a method:
static int Add(int x, int y) { return x + y; }
you can call it like this:
int result = Add(2, 3); // 5
You can curry the Add method:
static Func<int, int> MakeAdder(int x) { return y => Add(x, y); }
and now:
Func<int, int> addTwo = MakeAdder(2);
int result = addTwo(3); // 5
Partial application is sometimes also called "currying" when speaking informally because it is obviously related:
Func<int, int> addTwo = y=>Add(2,y);
int result = addTwo(3);
You can make a machine that does this process for you:
static Func<B, R> PartiallyApply<A, B, R>(Func<A, B, R> f, A a)
{
return (B b)=>f(a, b);
}
...
Func<int, int> addTwo = PartiallyApply<int, int, int>(Add, 2);
int result = addTwo(3); // 5
So now we come to your question:
what is the advantage of using currying?
The advantage of either technique is that it gives you more flexibility in dealing with methods.
For example, suppose you are writing an implementation of a path finding algorithm. You might already have a helper method that gives you an approximate distance between two points:
static double ApproximateDistance(Point p1, Point p2) { ... }
But when you are actually building the algorithm, what you often want to know is what is the distance between the current location and a fixed end point. What the algorithm needs is Func<Point, double> -- what is the distance from the location to the fixed end point? What you have is Func<Point, Point, double>. How are you going to turn what you've got into what you need? With partial application; you partially apply the fixed end point as the first argument to the approximate distance method, and you get out a function that matches what your path finding algorithm needs to consume:
Func<Point, double> distanceFinder = PartiallyApply<Point, Point, double>(ApproximateDistance, givenEndPoint);
If the ApproximateDistance method had been curried in the first place:
static Func<Point, double> MakeApproximateDistanceFinder(Point p1) { ... }
Then you would not need to do the partial application yourself; you'd just call MakeApproximateDistanceFinder with the fixed end point and you'd be done.
Func<Point, double> distanceFinder = MakeApproximateDistanceFinder(givenEndPoint);
The comment by #Eric Lippert on What is the advantage of Currying in C#? (achieving partial function) points to this blog post:
Currying and Partial Function Application
Where I found this the best explantion that works for me:
From a theoretical standpoint, it is interesting because it (currying) simplifies
the lambda calculus to include only those functions which have at most
one argument. From a practical perspective, it allows a programmer to
generate families of functions from a base function by fixing the
first k arguments. It is akin to pinning up something on the wall
that requires two pins. Before being pinned, the object is free to
move anywhere on the surface; however, when when first pin is put in
then the movement is constrained. Finally, when the second pin is put
in then there is no longer any freedom of movement. Similarly, when a
programmer curries a function of two arguments and applies it to the
first argument then the functionality is limited by one dimension.
Finally, when he applies the new function to the second argument then
a particular value is computed.
Taking this further I see that functional programming essentially introduces 'data flow programming as opposed to control flow' this is akin to using say SQL instead of C#. With this definition I see why LINQ is and why it has many many applications outside of pure Linq2Objects - such as events in Rx.
The advantage of using currying is largely to be found in functional languages, which are built to benefit from currying, and have a convenient syntax for the concept. C# is not such a language, and implementations of currying in C# are usually difficult to follow, as is the expression HigherOrder.GetFilter<int>().Curry()(IsPrime).
I have a class that I have to call one or two methods a lot of times after each other. The methods currently return void. I was thinking, would it be better to have it return this, so that the methods could be nested? or is that considerd very very very bad? or if bad, would it be better if it returned a new object of the same type? Or what do you think? As an example I have created three versions of an adder class:
// Regular
class Adder
{
public Adder() { Number = 0; }
public int Number { get; private set; }
public void Add(int i) { Number += i; }
public void Remove(int i) { Number -= i; }
}
// Returning this
class Adder
{
public Adder() { Number = 0; }
public int Number { get; private set; }
public Adder Add(int i) { Number += i; return this; }
public Adder Remove(int i) { Number -= i; return this; }
}
// Returning new
class Adder
{
public Adder() : this(0) { }
private Adder(int i) { Number = i; }
public int Number { get; private set; }
public Adder Add(int i) { return new Adder(Number + i); }
public Adder Remove(int i) { return new Adder(Number - i); }
}
The first one can be used this way:
var a = new Adder();
a.Add(4);
a.Remove(1);
a.Add(7);
a.Remove(3);
The other two can be used this way:
var a = new Adder()
.Add(4)
.Remove(1)
.Add(7)
.Remove(3);
Where the only difference is that a in the first case is the new Adder() while in the latter it is the result of the last method.
The first I find that quickly become... annoying to write over and over again. So I would like to use one of the other versions.
The third works kind of like many other methods, like many String methods and IEnumerable extension methods. I guess that has its positive side in that you can do things like var a = new Adder(); var b = a.Add(5); and then have one that was 0 and one that was 5. But at the same time, isn't it a bit expensive to create new objects all the time? And when will the first object die? When the first method returns kind of? Or?
Anyways, I like the one that returns this and think I will use that, but I am very curious to know what others think about this case. And what is considered best practice.
The 'return this' style is sometimes called a fluent interface and is a common practice.
I like "fluent syntax" and would take the second one. After all, you could still use it as the first, for people who feel uncomfortable with fluent syntax.
another idea to make an interface like the adders one easier to use:
public Adder Add(params int[] i) { /* ... */ }
public Adder Remove(params int[] i) { /* ... */ }
Adder adder = new Adder()
.Add(1, 2, 3)
.Remove(3, 4);
I always try to make short and easy-to-read interfaces, but many people like to write the code as complicated as possible.
Chaining is a nice thing to have and is core in some frameworks (for instance Linq extensions and jQuery both use it heavily).
Whether you create a new object or return this depends on how you expect your initial object to behave:
var a = new Adder();
var b = a.Add(4)
.Remove(1)
.Add(7)
.Remove(3);
//now - should a==b ?
Chaining in jQuery will have changed your original object - it has returned this.
That's expected behaviour - do do otherwise would basically clone UI elements.
Chaining in Linq will have left your original collection unchanged. That too is expected behaviour - each chained function is a filter or transformation, and the original collection is often immutable.
Which pattern better suits what you're doing?
I think that for simple interfaces, the "fluent" interface is very useful, particularly because it is very simple to implement. The value of the fluent interface is that it eliminates a lot of the extraneous fluff that gets in the way of understanding. Developing such an interface can take a lot of time, especially when the interface starts to be involved. You should worry about how the usage of the interface "reads"; In my mind, the most compelling use for such an interface is how it communicates the intent of the programmer, not the amount of characters that it saves.
To answer your specific question, I like the "return this" style. My typical use of the fluent interface is to define a set of options. That is, I create an instance of the class and then use the fluent methods on the instance to define the desired behavior of the object. If I have a yes/no option (say for logging), I try not to have a "setLogging(bool state)" method but rather two methods "WithLogging" and "WithoutLogging". This is somewhat more work but the clarity of the final result is very useful.
Consider this: if you come back to this code in 5 years, is this going to make sense to you? If so, then I suppose you can go ahead.
For this specific example, though, it would seem that overloading the + and - operators would make things clearer and accomplish the same thing.
For your specific case, overloading the arithmetic operators would be probably the best solution.
Returning this (Fluent interface) is common practice to create expressions - unit testing and mocking frameworks use this a lot. Fluent Hibernate is another example.
Returning a new instance might be a good choice, too. It allows you to make your class immutable - in general a good thing and very handy in the case of multithreading. But think about the object creation overhead if immutability is of no use for you.
If you call it Adder, I'd go with returning this. However, it's kind of strange for an Adder class to contain an answer.
You might consider making it something like MyNumber and create an Add()-method.
Ideally (IMHO), that would not change the number that is stored inside your instance, but create a new instance with the new value, which you return:
class MyNumber
{
...
MyNumber Add( int i )
{
return new MyNumber( this.Value + i );
}
}
The main difference between the second and third solution is that by returning a new instance instead of this you are able to "catch" the object in a certain state and continue from that.
var a = new Adder()
.Add(4);
var b = a.Remove(1);
var c = a.Add(7)
.Remove(3);
In this case both b and c have the state captured in a as a starting point.
I came across this idiom while reading about a pattern for building test domain objects in Growing Object-Oriented Software, Guided by Tests by Steve Freeman; Nat Pryce.
On your question regarding the lifetime of your instances: I would exspect them to be elligible for garbage collection as soon as the invocation of Remove or Add are returning.